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Abstract

Aromas and flavours play an important role in horticultural crops’ quality, namely in 
fruits. Plant breeders have made considerable advances producing cultivars with higher 
yields, resistant to pests and diseases, or with high nutritional quality, without paying 
enough attention to flavour quality. Indeed, consumers have the perception that fruit 
aromas and flavours have declined in the last years. Attention is given nowadays not 
only to flavoured compounds but also to compounds with antioxidant activity such 
as phenolic compounds. Fruit flavour is a combination of aroma and taste sensations. 
Conjugation of sugars, acids, phenolics, and hundreds of volatile compounds contribute 
to the fruit flavour. However, flavour and aroma depend on the variety, edaphoclimatic 
conditions, agronomical practices and postharvest handling. This chapter reviews the 
aromas and flavours of the most important fruits and discusses the most recent advances 
in the genomics, biochemistry and biotechnology of aromas and flavours.

Keywords: fruits, flavour quality, volatile compounds, genomics of flavour, 
biochemistry of flavour, biotechnology of flavour

1. Introduction

Quality in horticulture can be defined as the traits of a given commodity, regardless of its 
yield [1]. Here, we not only include visual appearance, ability to endure postharvest  processing 
but also chemical and nutritional composition and flavour. Great advances have been made in 
horticultural breeding, obtaining fruits with characteristics that are those that growers (e.g. yield, 

© 2018 The Author(s). Licensee IntechOpen. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



resistance to pests and diseases, appearance), distributors (handling and processing resistance) 
and retailers (handling and processing resistance, appearance) desire but, most of the times, 
failing to achieve top nutritional and flavour characteristics [2]. In parallel to this increase in 
breeding, knowledge regarding chemical composition and flavour traits has too been rising, 
also followed by insights on physiological, metabolic and biochemical pathways taking place in 
plants. However, increasing flavour of fruits by breeding is still not an easy task, due to the mul-
titude of factors affecting the compounds responsible for this characteristic, like climate, produc-

tion systems and pre- and postharvest processing [3]. Flavour is the interaction between taste, 
orthonasal and retronasal olfaction perceptions, commonly denominated as ‘taste and aroma’, 
which is one of the major quality traits of fruits and together with texture is responsible for 
repeated purchases of a given commodity [4]. The aroma fraction of flavour can even influence 
the perception of other traits, as recorded for sweetness and sourness [5]. Furthermore, flavour, 
which is the interaction of taste and aroma, hence dependent on chemical traits, is strongly linked 
to the individual preferences of consumers and can be seen as the ‘modern concept of quality’ [6].  
Knowing the preferences of consumers and aiming to fulfil those expectations regarding the 
flavour of fruits, besides increasing the probability of producers to easily sell their commodities, 
they will also be linked to an expected improvement in nutritional uptake, as better-tasting fruits 
will likely replace less healthy snack foods [1]. New tools, namely those related to molecular 
techniques, allow the identification of genes responsible for biosynthesis of compounds and open 
new perspectives for the improvement of flavour, by cloning those genes, increasing that specific 
pathway or silencing the expression of a gene responsible for an undesired compound [2].

In this chapter, we will review the aroma and flavour compounds of the major fruits (fresh 
fruits and nuts) and, finally, review the latest advances in genomics, biochemistry and bio-

technology of aromas and flavour compounds.

2. Fresh fruits

Volatile compounds are produced as indicators of fruit ripening, and they can be classified as 
primary (present in intact tissues) or secondary compounds (result of tissue disruption) [7]. 
Different fruits produce different volatile compounds, although their precursors are phytonu-

trients and the resulting volatile compounds are usually esters, alcohols, aldehydes, ketones, 
lactones and terpenoids [8].

The volatile compounds responsible for the aroma and/or flavour of the fruits are affected 
by several factors, starting with the genetic factors, environmental conditions, production 
practices, maturity degree and ending with postharvest handling and storage settings. 
These factors should be taken into account when comparing fruits’ volatile profiles, since 
they can explain differences between species and cultivars. Furthermore, they can lead to 
modifications in the pathways involved in volatile biosynthesis. Volatiles with critical impor-

tance in aroma and flavour characteristics are biosynthesized from amino acids, lipids and 
carbohydrates, via a limited number of major biochemical pathways [9]. The first limiting 
step for volatile formation is the availability of primary precursors, including fatty acids and 
amino acids, compounds highly regulated during fruit development in terms of amount and 
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composition [10]. This limiting step has been studied and the formation of volatile com-

pounds can be significantly increased, both qualitatively and quantitatively, if fruits are 
incubated in vitro with adequate metabolic precursors [11].

Some of the fruits with a higher amount of production and more commonly consumed world-

wide are apples, bananas, cherries, oranges and grapes, which are shortly addressed here. In 
apples, over 300 volatile compounds were described [12], although they can be considered 
cultivar specific [13] and maturation dependent, from aldehydes to alcohols and esters [14]. 
The latter chemical class is predominant in ripe apples, and straight and branched esters can 
be found, namely ethyl, butyl and hexyl acetates, butanoates and hexanoates [15]. There is 
a clear increase of volatile compound production in apple skin, rather than in the internal 
tissues, due to a higher abundance of fatty acid substrates or increased metabolic activity [16]. 
The relative amount of each compound is, as referred earlier, linked to a specific cultivar and 
cannot only be used for cultivar discrimination but also to monitor ripening of fruits [17]. In 
apples, branched chain esters are produced from the breakdown of leucine, isoleucine and 
valine, while straight chain esters are synthesised from membrane lipids [18]. The hydro-

peroxides that result from these reactions are converted to aldehydes, then to alcohols and 
finally to esters. This sequence leads to the flavour of immature apples (‘green notes’) due to 
C6 aldehydes and alcohols to the ‘fruity notes’ given by the increased ester production [19]. 
For banana, about 250 volatile compounds have been described, although the really odorant 
are less than 40 [20]. Olfactometric methods have described several aromas and linked those 
to some compounds, namely ‘banana’ to 3-methylbutyl esters and acetate esters, ‘grassy’ to 
aldehydes and alcohols and ‘spicy’ to phenols [20, 21]. Major volatile compounds that contrib-

ute to banana aroma are volatile esters, such as isoamyl acetate and isobutyl acetate [22] but 
also isoamyl alcohol, butyl acetate and elemicine [23]. As for other fruits, the ripening process 
changes the volatile profile, with increased concentration of acetates and butanoates [24] and 

is cultivar dependent [25]. Recently, Bugaud and Alter [26] have found that 3- methybutyl 
esters were the most abundant volatile compounds, with 2-methylpropyl butanoate and 
3-methylbutyl butanoate linked to ‘banana’ note; the presence of 3-methyl acetate to ‘fer-

mented’ and ‘chemical’ notes, while the presence of ‘grassy’ (freshly cut green grass) aroma 
decreased as the total amount of volatiles increased with ripening, namely esters. For cherries, 
over 100 volatile compounds have been identified, including free and glycosidically volatile 
compounds, belonging to the chemical classes of carbonyls, alcohols, acids, esters, terpenes 
and norisoprenoids [27]. Major compounds include hexanal, (E)-2 hexenal and benzaldehyde 
and are associated with green/grassy notes. For some cultivars, other minor compounds 
gain increased importance, due to their low odour detection threshold such as (Z)-3-hexenal, 
decanal, nonanal, (E,Z)-2,6-nonadienal and (E,E)-2,4-nonadienal in ‘Lapins’, ‘Rainier’, ‘Stella’, 
‘Hongdeng’ and ‘Zhifuhong’ cultivars [28, 29]. Some ketones have also been found in cher-

ries, although they have relatively low importance in overall aroma [28], while alcohols, 
being the most abundant benzyl alcohol, 1-hexanol and (E)-2-hexen-1-ol, are responsible for 
green notes and the fresh green odour. Additionally, 1-Octen-3-ol has been described as one 
of the most predominant volatile compound in ‘Hongdeng’, ‘Hongyan’ and ‘Rainier’ sweet 
cherry cultivars [29]. The content of esters in cherries increases during ripening, but their 
relative abundance is low. The most common are ethyl acetate, butyl acetate, hexyl acetate, 
(Z)-2-hexenyl acetate and (E)-2-hexenyl acetate, with methyl benzoate described as among 
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the most powerful volatiles in some cultivars, such as ‘Rainier’ [28]. Terpenoid compounds 
are also present in cherries at low levels, limonene, linalool and geranylacetone being the 
most common [30]. However, when analysing the glycosidically bound aroma compounds 
in three sweet cherry cultivars (‘Hongdeng’, ‘Hongyan’ and ‘Rainier’), Wen et al. [29] show 
that terpenoids are the second major class, after alcohols. In oranges, more than 300 volatile 
compounds have been reported, the major ones being limonene, β-myrcene and linalool [31], 
but valencene can also be of great importance, depending on the cultivar [32]. However, these 
compounds, although representing the large majority of the volatiles, are not the ones more 
responsible for the aroma, as their contribution is limited due of high odour-detection thresholds. 
Other minor compounds, like aldehydes (octanal, decanal, undecanal, (Z)-3-hexenal and 
(E)-2-decenal), esters (ethyl butanoate, ethyl 2-methylbutanoate and ethyl isobutyrate) and 
other terpenes (β-sinensal, geranial and neral) are those with a significance for the overall fla-
vour of oranges [31]. Most of the grape cultivars have no scent, although the wines obtained 
from them are full of aromas [33, 34]. A great number of compounds have been recorded, 
including monoterpenes, C13 norisoprenoids, alcohols, esters and carbonyls [35, 36]. If lin-
alool and geraniol have been identified as major aroma compounds in both red and white 
grapes [37], the volatile profile can be useful for the discrimination of grape cultivars [36]. 
Major free volatile compounds are hexanal, (E)-2-hexenal [36] while glycosidically bound 
include terpene and benzenic glycosides [34]. In more aromatic grape cultivars, like Muscat, 
major free compounds include linalool, geraniol, citronellol, nerol, 3,7-dimethyl-1,5-octadien-
3,7-diol and 3,7-dimethyl-1,7-octadien-3,6-diol while those glycosidically bound were gera-
niol, linalool, citral, nerol, citronellol, α-terpineol, diendiol I, diendiol II, trans-furan linalool 
oxide, cis-furan linalool oxide, benzyl alcohol and 2-phenylethanol. Other monoterpenes that 
can also add to Muscat aroma were rose oxide, citral, geraniol, nerol and citronellol [38]. As 
for the other fruits, the volatile profile of grapes changes during ripening, and apparently 
a greater number of volatile compounds exist pre-veraison than post-veraison, as recorded 
for Riesling and Cabernet Sauvignon grapes, that also recorded differences (esters and alde-
hydes were the major class of compounds from Riesling grapes and alcohols for Cabernet 
Sauvignon) at veraison (Table 1) [39].

Although the flavour of fruits is the interaction of taste and aroma, the chemical composition 
of fruits (organic acids, sugars, amino acids, pro-vitamins, minerals and salts) can also influ-
ence aroma perception and ultimately, flavour. For sugars, glucose, sucrose and fructose are 

Fruit Main volatile compounds References

Apple Acetaldehyde, ethyl butanoate, ethyl methyl propanoate, 2-methyl butanol, ethyl 
2-methyl butanoate, 2-methyl butyl acetate, hexyl acetate, butyl acetate, hexyl butanoate, 
hexyl hexanoate, (E)-2-hexenal, (Z)-2-hexenal

[42–44]

Banana (E)-2-hexenal, acetoin, 2, 3-butanediol, solerol, hexanal, isoamyl acetate, 3-methylbutyl 
acetate, 3-methylbutyl butanoate

[44, 45]

Cherry Hexanal, (E)-2 hexenal, benzaldehyde, (E)-2-hexen-1-ol [27–29]

Orange Limonene, β-myrcene, linalool, hexanal, ethyl butanoate [32, 46, 47]

Grape Linalool, geraniol, (E)-2-hexenal, hexanal, phenylethyl alcohol, octanoic acid [36, 37]

Table 1. Key volatile compounds present in some fruits largely consumed worldwide.
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the most important sugars affecting the perception of sweetness (ranking fructose > sucrose > 
glucose) [40] and their proportion in a given fruit will change flavour. However, this relation-

ship is not completely understood, as measurement of sugars as soluble solids, in orange, does 
correlate to sweetness but in mango does not [4]. The main organic acids in fruits are malic, 
citric and tartaric, citric being the most sour and tartaric the least [40]. Citric acid is linked 
to citrus fruits, tartaric to grapes and malic to apples, and they are responsible for the sour 
flavour detected on those fruits. Other fruits, like melon or banana, have reduced acidity [41]. 
The presence of minerals and salts can change the perception of acidity, by combining with 
organic acids, influencing the buffering capacity [40]. Many research studies on the flavour of 
fruits give us a good overview of this particular trait of these commodities. However, much is 
still to be done, since many cultivars are yet still less studied. Furthermore, the link between 
taste and aroma compounds and the consumer perception of those is still not well understood, 
and this should be the ultimately goal to achieve consumer-oriented commodities.

3. Nuts

Global consumption of nuts grew in the last years and it is expected to grow continuously on 
a yearly basis [48]. In 2015, almonds, cashews, walnuts and hazelnuts were the most preferred 
nuts by the consumers [49] but other nuts, such as pine nuts, pecans, chestnuts, Brazil nuts, 
macadamias and pistachios, are also an appreciated food, especially in the regions where they 
are regularly produced. They are generally consumed as whole nuts (fresh, roasted or salted) 
or used in a variety of commercial products and processed food [50]. Europe and North 
America are the largest nut consumer regions, accounting for almost 50% of the worldwide 
consumption [48]. Nuts have been a regular part of the human diet since pre-agricultural 
times [51] due to their nutritional value, sensory properties [49] and potential health proper-

ties [50, 52], and their consumption can reduce cardiovascular disease risk, the incidence of 
cancer and type 2 diabetes mellitus [53], as well as obesity and ageing effects [54].

Nut quality related to consumer purchase decisions is based on nut appearance such as size, 
colour, cleanness and freedom from decay and defects [55] but textural properties [54, 56] such 
as aroma and flavour also play an important role in consumer acceptability [57]. Sweetness, 
oiliness and roasted flavour are commonly associated with good overall nut sensory attri-
butes [55], some compounds generated during the roasting process responsible for the typical 
nut flavour [58]. Roasting is a common practice used by the nut industry and involves several 
physical-chemical processes [59], which can modify the odour, flavour and quality of the final 
product [60], including negative effects, such as rancidity [61].

In general, nuts are characterised by their high content in unsaturated fatty acids [49, 50, 57] 

which make them highly sensitive to oxidation during the roasting process leading to the 
formation of harmful free radicals [61], which are responsible for undesirable odours and 
flavours [62]. As a result, the roasting process negatively affects the nutritional quality of 
nuts but also may influence both the formation of health-promoting components and those 
with potentially adverse health effects [63]. So, selecting the appropriate roasting condi-
tions, mainly temperature and time, is crucial for achieving higher nut quality [55], which is 
also dependent on the genotype. For example, in walnuts, roasting treatments under 180°C, 
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for 20 min, produced 17 times higher levels of compounds that indicated oxidation, when 
compared to raw walnuts [63]. In comparison, the compounds that indicated oxidation only 
increased by 1.8 times for hazelnuts and 2.5 times for pistachios [63]. According to the same 
authors [63], the roasting process at low/middle temperatures (120–160°C) preserves consti-
tutional compounds and sensory properties of different nuts (macadamia nuts, hazelnuts, 
almonds, pistachios and walnuts). Nevertheless, as it occurs with other foods, the characteris-

tic flavour of nuts is dependent on the volatile compounds.

During roasting and other heat processes, additional volatile compounds are formed from 
reactions among food compounds. In roasted nuts, a wide range of volatiles contribute to the 
typical and desirable roast flavour. According to Xiao et al. [64], in raw almonds, a total of 41 
volatile compounds were identified, including aldehydes, ketones, alcohols, pyrazines and 
other volatile compounds. The benzaldehyde was the predominant volatile compound  present 
in the raw samples and is associated with a marzipan-like flavour [64]. Roasting resulted in 
about a 90% decrease in the benzaldehyde level and in the formation of up to 17 new volatile 
compounds that were not found in raw almonds. Many of these compounds are typically 
 generated during the complex and well-known Maillard (non-enzymatic browning) reaction 
that occurs during roasting. Volatile compounds like pyrazines, furans and pyrroles have been 
previously identified as key compounds of roasted almond aroma and concentration of many 
of these volatile compounds increased with roasting time [64]. It was theorised that one of the 
reasons for the uncertainty surrounding the characterisation of the ‘nutty’ term is that nuts 
have aroma qualities that may be typical to only their own species and that there is no common 
aroma quality present among all nuts [65]. In a research conducted by Clark and Nursten [66],  
over 200 aroma compounds were identified as having nutty aromas. This work indicated 
benzaldehyde, 3,4-methylenedioxybenzaldehyde and 4-methylbenzaldehyde as responsible 
for nutty aromas in almonds, while 2,4-octadienal and 4-pheynyl-4-pentenal were linked to 
the same attribute in walnuts and 2-ethyl-3-methylpyrazine in roasted peanuts. In the harvest 
year, edaphoclimatic conditions of orchards and storage conditions have also been mentioned 
as key factors determining overall nut quality. In order to evaluate the influence of time and 
temperature conditions on the oxidative degradation of hazelnuts, Ghirardello et al. [63]  

observed that storage of nuts at low temperatures reduced the effects of lipid oxidation  during 
8 months, but refrigeration was necessary to preserve high nut quality for up to 1 year.

4. Grapes and wine

Grapes belong to the large group of fleshy fruits [67]. According to Peynaud and Riberéau-
Gayon [68], grapes were classified as: (1) Vitis vinifera or European grape, subdivided into 
several cultivars; (2) American vines, Vitis riparia, Vitis rupestris, Vitis labrusca; (3) Hybrids and 
Vitis rotundifolia or Muscadine grapes; and (4) Asian vines, Vitis amurensia. The composition 
and concentration of grapes’ aroma compounds are influenced by many factors such as grape 
variety [69–71], degree of ripening [72], sunlight [73–76] and vintage.

In grapes, volatile aroma compounds are found both as ‘free’ and as ‘bound’ to a sugar moiety, 
if ‘bound’, they are not odour active, but, upon hydrolysis of the glycoside, they may then be 
volatilised [77]. The amount of ‘free’ volatile aroma compounds makes it possible to classify 
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the grape cultivars into neutrals or aromatic [78, 79]. The aromatic grape cultivars presented 
a varietal character resulting from higher concentration in the amount of ‘free’ volatile aroma 
compounds, namely terpenes, norisoprenoids and isoprenoids [80]. The importance of these 
‘free’ volatile aroma compounds is related not only to their high concentrations but also to 
their lower perception thresholds. Therefore, grape flavour depends on the content and com-

position of several groups of compounds [81]. Among the compounds responsible for the 
aromatic quality are monoterpenes and C

13
-norisoprenoids. These compounds are indigenous 

from the grape and responsible for intense fruity and floral attributes in wines, contributing 
to the wine varietal aroma [82–84]. Other volatile compounds present in grapes are terpene 
hydrocarbons, pyrazines [38, 85–87] and some C

6
−aldehydes and alcohols [88].

During ripening, grapes develop a characteristic flavour and/or aroma by synthesising vola-

tile compounds [89, 90]. For example, linalool and geraniol have been shown to contribute to 
the aroma of ‘Concord’ grapes, closely resembling the aroma of methyl anthranilate [91, 92].  
The aroma compounds, which are secondary metabolites of the plant metabolism, are dis-

tributed between the pulp and skin of the grape berry, with the highest concentration in the 
grape skin [92, 93]. Wu et al. [94] characterised the aromas of table grapes, and they found 
that in 20 grape cultivars, a total of 67 volatile compounds, 61 in the mesocarp and 64 in the 
skin and the total contents of volatiles of mesocarp and skin largely depended on the levels of 
esters and terpenes, respectively (Figure 1).

Vitis labrusca and Vitis rotundifolia cultivars have a distinct and pronounced odour; the foxy 
aroma of V. labrusca is attributed to methyl anthranilate [95]. Chemical compounds originated 
from several sources contribute to wine aroma. Grape volatile aroma compounds, such as 
monoterpenes, C

13
-norisoprenoids, methoxypyrazines and thiols, if present, are of major impor-

tance for the wine varietal character [96]. The volatile compounds found in wine presented 
different sensory attributes like fruits such as cherry, pear or passion fruit [97]. As an example, 
in Figure 2, different fruit flavours’ attributes perceived in red and white wines are identified.

Figure 1. Grape berry flavours compounds localization.
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5. Genomics, biochemistry and biotechnology of aromas and flavour

As already mentioned, the flavour of fruits is a complex set of interactions between two main 
sensations: taste and aroma [2]. Taste is mainly a set of sweet and sour sensations linked to 
the presence of sugars and organic acids (although other minor compounds affect bitterness, 
astringency or saltiness). However, the aroma is usually the predominant sensation, surpassing 
taste [98]. Indeed, if taste sensations, detected in mouth, are recognised by six classes of recep-
tors (sweet, sour, salty, bitter, umami and fat-taste), for flavour complexity, where the olfactory 
system is essential, 350 olfactory receptor genes are known in humans [1].

The known decrease in flavour of fruits is strongly connected to the pressure on the produc-
ers: they are usually paid depending on physical characteristics of fruits (size, shape and 
colour) but not to chemical traits, so the selection of cultivars is performed to enhance those 
qualities; the ripening of fruits is delayed as much as possible to make sure that they are able 
to withstand harvest, handling, storage and shipping without damages, but without a normal 

Figure 2. Fruit flavours in the red and white wine.
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ripening, flavour sensations decreased [99]. Considering that flavour perception relies on the 
interaction of a considerable amount of compounds, it makes it one of the most challenging 
quality attributes to manipulate, which has led to a reduced attention given to this theme [40]. 
However, consumers’ pressure is growing to bring back the typical flavour of old horticul-
tural commodities, where the flavour sensations were almost instantly detected by odour, 
followed by the recognition of taste.

To achieve the goal of horticultural commodities of full flavour, some strategies can be 
 followed, including changes in agricultural practices but also genetics tools, using the infor-
mation on the known pathways of formation of those compounds linked to taste and aroma. 
Considering the first approach, one should cite the preharvest factors such as genome or 
growing conditions, harvest maturity or postharvest storage like those important in the final 
flavour of any horticultural commodity [40]. Some of them are somewhat easy to control 
(growers are able to choose the cultivar, cultural practices and postharvest procedures), while 
others, such as climate conditions, are outside human influence. The choice of the cultivar to 
grow and its link to flavour and how chemical components in the plant tissue are expressed 
are connected to genetic backgrounds [99]. Indeed, recent works comparing cultivars of sweet 
cherry [100], peach [101], gooseberry [102], fig [103] or pear [104], to cite a few, show how 
genetic backgrounds can influence chemical composition and ultimately flavour, recognised 
by sensory evaluation. However, although genetics have a major role when determining the 
flavour of freshly harvested fruits, the gene expression can be modified by pre- and posthar-
vest factors [105] (Figure 3), as recently reported for peach [106]. Included in those preharvest 
factors are weather, soil preparation and cultivation, soil type, irrigation, fertilisation practices 
and crop loads, while for postharvest, it should be mentioned that storage temperature man-
agement, packaging under controlled or modified atmosphere, the use of edible coating, heat 
or physicochemical treatments are the factors [107]. The next step on flavour research was 
given when information on biosynthesis was obtained by using molecular and biochemical 
approaches. Knowing the metabolic pathways, namely the genes involved and the associated 
enzymes but also the regulatory elements (hormones and transcription factors) or which 
mechanisms are implicated in the storage or sequestration of volatile precursors, is key in 
allowing a biotechnological approach to their manipulation [108]. The genes that are linked to 
flavour can be mostly divided into two categories: those encoding for enzymes and those 
responsible for factors regulating pathway output [1]. If the knowledge for synthesis pathways 
and genes for those enzymes responsible has been increasing rapidly, the regulation of meta-
bolic pathway output is not well understood, and the number of genes involved may be quite 
large, as found for strawberry, where 70 quantitative trait loci (QTLs) affecting volatiles and 
their precursors have been identified [109] or mandarin (206 QTLs) [110], for instance. As 
referred earlier, the compounds responsible for aroma can be divided in several classes, the 
most important being monoterpenes, sesquiterpenes, lipids-, sugars- and amino acid-derived 
compounds. Knowing how they are biosynthesized and what is involved, when and how are 
key steps to allow their manipulation. In fact, several steps of aroma volatile biosynthesis for 
which genes have been characterised and used as targets for genetic transformation are pre-
sented in Figure 4 (adapted from [108]). The large part of the available research on the manipu-
lation of flavour has been conducted on tomato, as it is a plant easy to transform, with an 
associated high economic importance [111] and information regarding this fruit is readily 
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available (e.g. [1]). However, some data regarding other horticultural commodities are avail-
able, and some are cited here. For instance, modulation of the soluble sugar content in straw-

berry has been achieved, by an antisense cDNA of ADP-glucose pyrophosphorylase (AGPase) 
small subunit (FagpS), a key regulatory enzyme for starch biosynthesis. The down-regulation 
of the AGPase gene led to an increase of the soluble sugar content, which primarily changed 
the taste sensation of strawberries but can ultimately also change aroma and flavour, as soluble 
sugars may be converted into volatile compounds [112]. For orange, the down-regulation of 
the D-limonene synthase (important as D-limonene is the most abundant volatile component 

Figure 4. Representation of the steps of major groups of aroma volatiles biosynthesis. FaQR—Fragaria × ananassa quinone 
oxidoreductase; FaOMT—Fragaria × ananassa O-methyltransferase; DMMF—2,5-dimethyl-4-methoxy-3(2H)-furanone; 
IPP—isopentenyl pyrophosphate; DMAPP—electrophile dimethylallyl pyrophosphate; LIS—linalool synthase; 
GS—geraniol synthase; Cstps1—sesquiterpene synthase gene; CCD—carotenoid cleavage dioxygenases; LOX—
lipoxygenases; HPL—hydroperoxide lyase; AAT—alcohol acyltransferase; ADH—alcohol dehydrogenase. Adapted 
from Pech et al. [108]). Metabolic ways (or pathways) and enzymes which genes have been up- or down-regulated, by 
genetic engineering, are in orange.

Figure 3. Factors affecting flavour formation in horticultural crops.
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of all commercially grown citrus fruits) did not affect negatively fruit and juice intensity and 
discrimination but provided a clear insight to how the combined presence of several volatiles 
can influence fruit flavour [113]. Considering the compounds that are precursors of aromatic 
compounds, several strategies can be developed to modify their amounts, and will be shortly 
addressed, providing few but key examples. For fatty acids are derived into saturated and 
unsaturated short-chain alcohols, aldehydes and esters by the lipoxygenase (LOX) pathway. 
The first way to manipulate the volatile composition using fatty acids is to change their 
amounts present in plant organs. Recently, it was observed in pear that if incubated in vitro 
with metabolic precursors of volatile compounds, the formation of those was significantly 
increased, both qualitatively and quantitatively [11]. Some of the enzymes involved in the fatty 
acid conversion to volatiles can also be tuned to modify the final aroma. For desaturases, they 
have been identified in strawberry as being responsible for the production of lactones, a group 
of fatty acid-derived volatiles in peach, plum, pineapple and strawberry [114]. Another group 
of enzymes, phospholipases, are involved in the formation of polyunsaturated free fatty acids, 
the substrates for lipoxygenases [115]. The expression of phospholipases can be modified by 
the use of hexanal-based formulations [116] or by the application of chilling [117, 118]. 
Hydroxyperoxide lyase (HPL) forms very unstable hemiacetals from hydroperoxides gener-
ated by LOX, leading to the formation of aldehydes. HPL silencing in potato plants have 
reduced the content of the C6 compounds in the leaves, while increasing that of C5 [119]. 
Alcohol dehydrogenase (ADH) catalyses the interconversion of aldehydes and their corre-
sponding alcohols and is a key enzyme in volatile ester biosynthesis [13]. Recent works show 
that the overexpression of an alcohol dehydrogenase (ADH) from mango led to a change in 
alcohols and aldehydes related to flavour [120], with previous works also showing that over-
expression of an ADH increased the level of alcohols [121]. Alcohol acyl-transferases (AAT) 
catalyse the transfer of an acyl-CoA to an alcohol, resulting in the synthesis of a wide range of 
esters [122]. The reduction of AAT expression in apples resulted in reduced levels of key esters 
in ripe fruit, altered ratios of biosynthetic precursor alcohols and aldehydes, changing in a 
perceptible way, by sensory analysis, the ripe fruit aroma [123], and recent works show that 
they may be linked to the volatile ester and phenylpropene production in many different fruits 
[124]. The volatile formation pathway from amino acids is mainly due to the decarboxylases 
activity, but few are known to date. The catabolism of melon amino acid aminotransferase and 
branched-chain amino acid aminotransferase (BCAT) is connected to the amino acid-derived 
aroma compound formation [125]. Terpenoids are structurally diverse and the most abundant 
plant secondary metabolites, being of great significance, as they have vast applications in the 
pharmaceutical, food and cosmetics industries [126], with information regarding volatile ter-
penoids having been recently reviewed [127]. For carotenoid-derived compounds, the major 
enzymes involved are carotenoid cleavage dioxygenases (CCD), and the suppression of one 
gene encoding for CCD leads to the reduction of the production of β-ionone, geranylacetone 
and pseudoionone [128, 129]. Finally, for sugar-derived compounds, information is also avail-
able. One of the enzymes responsible for their conversion into volatiles is O-methyltransferase. 
This enzyme has been overexpressed in strawberries and a reduced expression of its encoding 
gene (FaOMT) changed furaneol to the 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) 
ratio, ultimately changing the aroma of the fruit [130]. Many other works have been looking to 
gain insights into this specific theme, providing important information on how to manipulate 
aroma and flavour components, and some of those can be found reviewed by Aragüez and 
Valpuesta Fernández [44] or Dudareva et al. [131].
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6. Conclusions

The quality of horticultural commodities can be assessed in many ways, including by their 
aroma and flavour. This chapter overviews the large amount of information available regard-

ing these characteristics in fruits. However, all this information is still not enough to fully 
understand the processes behind the formation of compounds, the interaction of those com-

pounds with each other, but, more importantly, how they will finally influence the consumers’ 
perception of aroma and flavour, and, ultimately, their tendency to buy such commodities. 
This is true to not only all fruits referred in this chapter but also to those not included here, 
and a continuous effort to identify volatile and non-volatile compounds for flavour and aroma 
in understudied species or cultivars must be undertaken. Furthermore, the improvement of 
flavour and aroma by adequate cultural practices must be achieved without a decline in other 
quality traits of crops. This must also be the goal of gene manipulation focused in metabolic 
and regulatory pathways of compound formation. The future appears to be bright concerning 
flavour in horticultural commodities, as we are likely to see multidisciplinary approaches, 
from genetic engineering to biochemical and metabolic characterisation, linked to sensory 
evaluations, which will result in flavour-rich and healthier fruits, with increased interest for 
both producers and consumers.
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