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Abstract

Emerging chemical compounds are ubiquitous in all environmental compartments and 
may pose a risk to biota ecosystems. The quantification and prediction of environmental 
partitioning of these chemicals in various environmental compartment systems (water, 
sediments, soil, air, biota) is an important step in the comprehensive assessment of their 
sources, fates, and not finally of their uptake potential by various living organisms of 
ecosystems.

Any numerical solution that has as a final goal “prediction” requires a large number of 
experimental data. In case of environmental studies of chemical compounds, monitoring 
most studies is costly, time-consuming, and requires both qualified personnel and high-
precision equipment. Finding a suitable numerical model that could predict the fate of 
chemicals could be extremely useful, facilitating those environmental scientists, users, 
managers, authorities, and corresponding decision-makers for a more conscious use of 
these substances, thus protecting the environment and biota.

Considering the mentioned disadvantages regarding chemical compounds’ monitoring, 
the aim of this research is to find numerical solutions that enable the prediction of such 
chemical compounds’ fate under different environmental compartments and the uptake 
potential by living organisms as plants. The concept of the inverse numerical method 
was used in order to find chemical compounds’ rate of accumulation in various environ-
mental matrixes and potential uptake by living organisms, all starting from the chemical 
compounds’ concentrations.

Keywords: numerical modeling, simulation, prediction, pollutants fate, kinetics
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1. Introduction

Thousands of chemicals are used in industry, agriculture, pharmacy, commerce, and daily 
life. With that, a large number of chemical compounds enter the environment. Often these are 
considered with potential harmful effects on environmental media quality and biota safety. 
Thus, the understanding of them is crucial both for a better management of their use and for 
the better protection of the environment and living organisms. Monitoring these chemical 
compounds frequently is time-consuming and requires large financial efforts; one of the most 
cost-effective as well as time-efficient methods of evaluating their behavior in the environ-
ment and living organisms could be the use of predictive numerical models.

Experimental data and models for chemical compounds’ fate and kinetics in living organ-
isms play a crucial role for assessing the potential human and ecological risks associated with 
chemical use.

Plants are receptor organisms and could be either direct or indirect vectors for chemical expo-
sure to all other organisms [1]. In the first instance, the generated experimental data consider-
ing chemical concentrations in different media of the environment and biota are necessary 
to improve our understanding on plant-chemical-environment interactions. These, in turn, 
admit and bring forward the development of better scientific knowledge as well as conceptual 
and predictive models on chemical partition, fate, and uptake [2]. The strong interconnections 

between experimental data and model development are continuous and a long-term updated 
process which is needed to advance our ability to provide reliable quality information that 
can be used in various environmental protection contexts and regulatory risk assessments [1].

At this moment there are no standard protocols both for chemical compounds’ bioaccumulation 
data generation and for data use for prediction through numerical methods [1, 3]. For the reli-
able modeling of plant-chemical-environment interactions with the major goal to predict chemi-
cal compounds’ fates and kinetic in living organisms, it is necessary to understand and keep 
into account all process, phenomena, and characteristics of both chemicals and receptors (living 
organisms and the environment) and the interconnected process between them. Inconsistent data 
collection, inaccurate generation of them, or reporting them with gaps will provide improper and 
less useful information for their application in assessment and numerical model development.

This chapter is about to find optimal numerical modeling ways considering chemical com-
pounds’ fate and kinetics in a living organism, specifically plants. The aim of this study was to 
propose a numerical procedure which estimates the highest accumulation rate of a chemical 
compound of interest for a growing living organism and to validate the procedure.

2. Problem formulation

i. The presence of chemical compounds in the environment and biota is the subject of global interest 
with the general aim to ensure that their impact on humans, other living organisms, and the 
environment is minimized. Chemicals that once enter the environment can persist or sup-
port different types of transformations resulting in new transformation products. Based 
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on the characteristics of transformation products, these transformation processes could be 
either of benefit (attenuation processes) or be hazardous (when the resultant transforma-
tion products possess more hazardous characteristics than the “parent” compound).

ii. Chemical compounds’ transformation in the environment: Based on chemical compounds’ 
specific physicochemical properties as well of biogeochemical and physicochemical char-
acteristics of the media in which they are discharged (soil, water, air), these chemicals 
can be distributed across different environmental compartments (soil, surface and/or 
underground water , air, sediments, etc.) and biota [4]. In almost all cases their accu-
mulation in environmental or biota compartments is characterized by continuous dy-
namic processes such as volatilization, degradation, precipitation, sorption, and so on, 
processes that often have the potential to end up in the formation of new chemical com-
pounds called as transformation products of the initial chemical compound (Figure 1).  
Often these compounds could enter in new reaction processes and for other new end 
products. A schematic diagram of principal processes that could take place in both envi-
ronment and biota and their interconnection with the “initial” chemical compounds and 
“resultant” transformation products is presented in Figure 1.

Challenges considering potential transformation products are given by their physicochemical 
properties that in several cases could make them more harmful against environment quality 
or biota safety than the initial chemical compound. Both processes as well as the resultant 
transformation products’ formation are directly dependent on the environmental conditions 
as well properties of chemicals.

Figure 1. A schematic presentation of the main processes involved in chemical compounds and corresponding potential 
transformation of products’ fate between different environmental compartments and biota.
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i. Chemical compounds’ uptake by plants: Chemicals’ uptake by plant organisms is a system of 
complex and multi-step processes. These processes could be classified firstly as chemical 
uptake and transportation between different anatomical compartments (e.g., root to any 
other anatomical compartment) and secondly as chemical uptake from different environ-
mental compartments (route of exposure) and plant anatomical compartments (particle 
deposition, vapor uptake from the atmosphere, and so on). The amplitude of these process-
es is determined by physicochemical properties of the chemical that is under uptake [5].  

Current literature presents clear-cut evidence that the availability of most organic chemi-
cal compounds is governed on the one hand by their lipophilicity and on the other hand 

depends on the organic matter (OM) content of the soil under consideration [6]. Some 

compounds form “bound” residues with organic matter (OM) or humus particles in the 
soil. Besides, the nature and rooting pattern of the vegetation will have greater influ-
ence on the solubility of chemicals. Exuding up to 25% of the net carbon fixed during 
photosynthesis into the rhizosphere, plants modify given soil-chemical interactions in 
multiple ways. Secondary plant products (phenolic) and soil bioactive compounds (car-
bohydrates, organic acids, etc.) could also impact soil micro-biodiversity that could influ-
ence in a positive way transformation of organic pollutants to reactive metabolites [7]. For 

example, it has been demonstrated that isoproturon is metabolized to available plant and 
reactive compounds in rhizosphere soil [8], while the bacterial conversion of arochlors to 
reactive metabolites has been one of the early results of bioremediation studies [9].

ii. Probably, one of the most effective ways to study chemical behavior and fate is to use 

mathematical fate models. Mechanistic environmental models use mathematical equations 
which describe the parameters of an environment (e.g. data on flows, depths, pH, tem-
perature, etc.) interconnected with the physicochemical properties of the chemical com-
pounds under various conditions with the final aim of predicting their fate in the envi-
ronment. According to [10], this can be an inexpensive and suitable approach for setting 
the limits for discharges in the environment of certain chemical compounds, and since 
the initial parameter description has been set up and validated by in situ and laboratory 

data, it can be studied with a minimum set of analysis (e.g., only the quantification of 
chemical compound inputs to the ecosystem) [10].

3. Framework for chemical compound interaction with the 

environment and living organisms

The ability of numerical models to accurately predict concentrations of target chemical 
compounds in any living organism depends on the model’s ability to mimic the processes 

involved in their uptake, and this must be assessed before they can be confidently applied 
[10]. After that it is necessary to consider all of these processes in order to include them in the 
numerical model that wants to be developed [11].

Soil-root transport: The uptake of chemicals by the root from the soil is mediated in high percent-
age by soil water content through the plant transpiration process [12]. A large number of organic 
chemicals also can be sorbed or bound to the components in soil (clay, iron oxides, organic matter),  
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those often found in the rhizosphere in significant amounts [13, 14]. Also, lipophilic organic 
chemicals possess a greater tendency to partition into plant roots than hydrophilic chemicals. 

Although chemicals properties are important predictors of the uptake potential, the physiology 
and composition of the plant root itself is also a significant influence, with differences in the 
uptake potential explained by the varying types and amounts of lipids in root cells [15]. Uptake 

from the external media is often expressed as a root concentration factor (RCF), which is the 
ratio of chemical concentration in the root to the concentration found in external media [13, 16].

Transfer from roots to other anatomical compartments of plants: The major factor that illustrates 
the amount of a chemical compound that was transferred from the plant root part to other 
anatomical compartments is the transpiration stream concentration factor (TSCF) which is 
the ratio of chemical concentration in transpiration to the concentration found in the external 
part. TSCF could be predicted from knowledge of the chemical compound lipophilicity, with 
maximum uptake, a logK

OW
 about 1 [17]. Once the chemical is transported to the stem, plant 

water and solutes take it and continue to transport these chemicals to the rest of the anatomi-
cal compartments through vascular systems and cell tissues [18].

Vapor or gas uptake from ambient air: Another exposure route with chemicals in case of plant 
materials could be the ambient air that contains a large number of contaminants. This expo-
sure route is governed by gaseous exchange and facilitates the transport and uptake of chemi-
cals that are volatiles and which are more easily partitioned in air than in water. This has been 
shown to be the main uptake pathway in the above-ground plant parts for a variety of chemi-
cal compounds (e.g. PCBs, tetra- and hexa-chlorinated PCDD/Fs) [19]. Previous studies have 

reported a good correlation between shoot uptake and chemical properties of compounds 
(KOW, Henry’s Law constant, octanol-air partition coefficient, etc.). In studies presented by 
[20], it was evidenced that gaseous uptake is the primary pathway for chemicals with an 
octanol-air partition coefficient (logKOA) less than 11 [20].

Particulate deposition on plant surfaces: Pesticides as well as other chemical contaminants are 
bound to soil particles which may be transported by wind and/or rain and deposited on the 
above-ground anatomical compartments of plants. Studies presented by [5, 21], evidenced 
that dry deposition onto the leaf of suspended particles that contain PCCD/Fs is the major 
route of uptake due to PCCD/Fs permeation through the cuticle. Similarly, in their stud-
ies, wet deposition was shown which could also be the dominant deposition mechanism for 
organic chemicals with Henry’s Law constant of less than  1 ×  10   −6   [5, 21].

To date, a number of mathematical models have been developed to facilitate the exposure 
assessment of chemical contaminants, with important results in the modeling of pollutants’ 
multimedia fate and the modeling of pollutants’ linkage with transformation products, espe-
cially in water environmental compartments [4].

4. Case study presentation

The properties of wild growing mushrooms make them valuable resources both in culinary 
practices and in pharmaceutical practices. They are recognized as healthy food with low  
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Figure 2. Chemical compound concentration variations in different anatomical compartments: (a) concentration variation in 
the first anatomical compartment (basal bulb) of the mushroom; (b) concentration variation in the second anatomical com-
partment (stipe) of the mushroom; (c) concentration variation in the third anatomical compartment (cap) of the mushroom.

Numerical Simulations in Engineering and Science202



contents of calories and fats but high in vitamins, minerals, and vegetable proteins. Their 
suitability for use by the pharmaceutical industry is given by their rich antioxidant chemical 
constituents that are capable of preventing the human body from oxidative damage [22]. It 

is also known that mushrooms could be considered as good bioindicators for the evaluation 
of environmental pollution, since they are known to accumulate a broad range of chemical 
compounds [23]. The aim of this study was to propose a numerical procedure which estimates 
the highest accumulation rate (R) of a chemical compound on the entire anatomical com-
partments of a mushroom body. Such data could lead to improvement in both food quality 
assurance and environment safety assessment. Analytical assessments on mushroom samples 
have shown that the accumulation potential of chemical compounds varies with mushroom 
species and varieties and also varies between the same mushroom anatomical compartments 
(see Figure 2) as well between mushroom development stages (“age”).

5. Solving modality path selection and motivation: the inverse 

numerical method for rate estimation from concentration

Inverse problems are extremely frequent in interdisciplinary science subjects. A large scale of 
mathematical and numerical techniques for solving scattering problems as well as other inverse 
problems usually exist [24]. These methods are often very different from the methods used for 
solving direct problems due to the differences in mathematical structure and input data [25].

In our study, the estimation process of the chemical compound accumulation rate was built 
on the following differential equation:

    
d (p𝜙 (z) 𝜒C (z) ) 

 ___________ 
dz

   −   d ___ 
dz

   [p𝜙 (z)  ( W  
C
   −   ̄  ET  )    dC (z) 

 _____ 
dz

  ]  + p𝜙 (z)   Up  
f
   (C (z)  −  Ba  

f
  )  = R  (1)

where the elements which may affect the rates are given as follows:  z  is the height [mm],  Φ  is 

the diameter [mm],  p  is the porosity,  χ  is the hydration coefficient,   W  
c
    the is saturated hydration 

factor,    ̄  ET    is the evaporation-transpiration coefficient,   Up  
f
    is the uptake factor,   Ba  

f
    is the bioac-

cumulation factor,  R  is the rate of accumulation for the chemical compound of interest,  C  is the 

concentration data of the target chemical compound [ng⋅g−1].

The rate estimation model had as a starting point the one-dimensional transport-reaction 
equation for dissolved compounds presented by Lettmann et al. [26]. In this chapter the same 

type of equation was used but this time the equation is based on the main factors that can 
influence in some way the assimilation rate of a chemical compound in a vegetal organism—
specifically in a mushroom body. Our model was supported by concentration data (C) of the 
target compounds, which were measured in the laboratory from cross-sections taken at every 
2 mm over the whole body of the studied mushroom species. Also, the concentration mea-
surements correspond to cross-sections taken at every 2 mm, and each section was divided 
into three concentric subintervals with regard to diameter.

The goal of the first step is to approximate  R  using the left-hand side of Eq. (1). The approxi-
mation of differential operators from the left side of the proposed equation has been solved 
using smoothing spline functions [27, 28].
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Model validation was performed by solving a two-point boundary differential equation rela-
tive to Eq. (1) on the interval given by extreme values of z and comparing with the measured 
values of C. The numerical method for target compounds’ accumulation rate validation (the 
solution of BVP) was implemented using MATLAB1 bvp4c function [29, 30]. Good concor-
dance was identified between the measured concentration and the concentrations computed 
by the solution of Eq. (1), given the rate R estimated during the validation process. The con-
cordance is given by mean-square deviation. In the paper presented by Lettmann et al., [26] 

the approximation of the linear differential operator is performed by finite differences, while 
in our case its approximation was done through smoothing spline. Also, the rate estimation 
was generated randomly while in our case rate estimation was based on experimental data 
obtained in the laboratory. Their work, due to the nature of the practical problem, has no con-
straint on volume while in our case we were limited to the relative small volume and dimen-
sions of the studied mushroom species.

6. Analysis and modeling: the estimation of R

6.1. Input data

We select for the study mushrooms from species Macrolepiota procera, which is one of the 
most popular in consumption and frequency from our country. Experimental measurements 
of major parameters involved in our model (parameters from Eq. (1)) were done on mature 
samples collected from the natural habitat where the evidence of potential contamination 
with chemical compounds exist. The measured data were grouped by compartments—basal 
bulb, stipe, gills and cap—representing the main anatomical parts of the mushroom body. 
Their form is illustrated in Table 1.

To convert our problem from bi-dimensional to a one-dimensional one, we consider a 
weighted mean for concentrations and parameters. The piecewise constant parameters ( p ,  χ ,   
W  

c
   ,    ̄  ET   ,   Up  

f
   ,   Ba  

f
   ) are weighted by height (z), and the concentrations are weighted by diameter, on 

sections approximately orthogonal to median axes (see Figure 3).

6.2. Differential operator and its approximation

Once we have the averaged concentration we compute the rate using the formula:

  R (z)  =   
d (pΦ (z) 𝜒C (z) ) 

 ___________ 
dz

   −   d ___ 
dz

   [pΦ (z)  ( W  
c
   −   ̄  ET  )    dC (z) 

 _____ 
dz

  ]  + pΦ (z)   Up  f   (C (z)  −  BA  f  )   (2)

The numerical differentiations involved in Eq. (2) are critical operations, leading to large errors. 
Lettmann et al. [26] performed using finite differences methods followed by a Tikhonov least-
squares regularization [31–33]. Our approach is different and is based on smoothing splines. 
The diameter  Φ  is approximated by a cubic piecewise Hermite spline (MATLAB function pchip) 

1MATLAB is a trademark of The MathWorks, Inc.
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and the concentration by a smoothing spline (MATLAB function spaps, in the spline toolbox or 
in the curve fitting toolbox in newer versions). Since our approximations are piecewise poly-
nomial, the computation of their derivatives is straightforward (using fnval and fnder func-
tions) [34, 35]. The utilization of the smoothing spline for concentration allows us to reduce 
the propagated errors and to perform a correction equivalent to Tikhonov regularization [34].

6.3. The smoothing spline

We look for a spline function f, in the B-spline basis, that minimizes the expression:  ρ  E  f   + F ( D   m  f) ,  

where   E  
f
    is the distance of the spline function f from the given data, given by:

   E  
f
   =  ∑ 

j=1
  

n

     w  
j
     ‖ y  

j
   − f ( x  

j
  ) ‖    2 ,  (3)

 F ( D   m  f)   is:

  F ( D   m  f)  =   ∫ 
 x  

min
  
  

 x  
max

  

   λ (t)    ‖ D   m  f (t) ‖    2  dt,  (4)

Table 1. Input parameters and input data structure.
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and ρ is the smoothing factor. The spaps function uses the algorithm described in Reinsch’s 
work [32]. For additional details on smoothing and interpolation splines, see deBoor’s book 
[33] and the MATLAB curve fitting toolbox user’s guide [36, 37].

7. Validation and solution of the differential equation

This step has a double purpose: to prove that the approximation of rate, given by Eq. (2), is 
sufficiently accurate and to compute the concentration from the rate, without performing any 
measurement. We want to solve the two-point boundary value problems Eq. (1) and bound-
ary conditions:

   { 
C ( z  initial  )  =  C  

0,  
   

C ( z  final  )  =  C  
n
  .
     (5)

Our solution uses the collocation method [38]. The independent variable z in Eq. (1) means the 
length of the path along the medial axis.

8. Discussions and main conclusions

Physiological events modeling, as uptake, bioaccumulation, or metabolism, and so on, in living 
organisms are extremely difficult both due to the complex nature of physiological processes  

Figure 3. Schematic representation of target chemical compound concentration distribution around mushroom anatomical 
compartment.
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and due to the complexity of the biological system that is modeled. For this reason the exis-
tence of implemented models in this area is very scarce, if not almost inexistent. Most existing 
models from the literature refer to models which are applied to a micro-scale fragment from 
a biological system (intercellular models) and less for globalized macro-scales that integrate 
multiple events [29, 39].

In this chapter we tried to overcome this challenge, trying to model the accumulation rate for a 
chemical compound based on experimental data obtained in the laboratory after analysis con-
ducted on numerous mushroom specimen analyses of Macrolepiota procera. Our first approach 
was on the anatomical compartments of the mushroom body, but the results were not satisfactory.

Initially, the independent variable z was the height of the same compartment. Because com-
partments as cap and lamellae had an insufficient number of data (since the length of cap and 
lamellae is 1.2 cm and the minimal width for sample collection was from the section taken 
from 2 and 2 mm), we obtained large deviations between measured concentrations and com-
puted concentrations at inter-compartment boundaries (see Figure 4).

Thus, because in chemistry in a given volume the concentration of a chemical compounds is 
the same in any point of these volume, we considered in the next that we have several points 
of concentration data of same value in horizontal sections of the cap (Figure 3).

These drawbacks lead us to modify the approach mentioned in Section 6 on Analysis and 
modeling: The estimation of R. Due to symmetry we considered a half of an axial section and a 
medial axis of the section. Now z is the length of the path on medial axis. To apply the classical 
theory on ordinary differential equations to Eq. (1), we need to have a function of class   C   2   on 

the domain of z, while the parameters defining the rate are piecewise constant. For this reason 
we considered the weighted average of these parameters on the whole length of the medial 
axis. The diameter  Φ (z)   was approximated by the piecewise Hermite cubic spline of measured 
diameters. Our choice is motivated by the fact that these splines are shape-preserving. The 

Figure 4. The averaging of parameters (ODE solution, smoothing spline) and target chemical concentrations on the whole 
mushroom.
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next step was the application of Eq. (2) to compute the rate R. The rate R, computed along the 
medial axis, as described in the previous section, is plotted in Figure 5.

Analyzing data obtained for monitored chemical compound rate, it was possible to observe 
that larger fluctuations are present in the mushroom stipe while in the caps part (cap and 
lamellae) a decreasing tendency is registered. These data are in correlation both with infield 
experimental measurements and with the computed concentration obtained from our 
model—see Figure 6 where the concentration C is presented, after the solution of the differen-
tial equation (1) with boundary conditions (5).

Figure 5. The graph of rate R.

Figure 6. The graph of concentration C, obtained by the solution of a two-point boundary value problem.
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In order to assess the accuracy of our model we plot the initial and the computed concentra-
tion data (Figure 7).

There is good matching, as Figure 8 shows. The least square deviation for the concentra-
tion is 5.1384e-005, and it was computed at points corresponding to the measured z and 
concentrations.

The model proposed for the rate estimation of a chemical compounds in living organisms, 
specifically a mushroom, is new. Based on our knowledge, up to date, there is no paper on the 

Figure 7. The graph of initial and computed concentrations.

Figure 8. Differences between the initial and the computed concentration.
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rate estimation for a specific chemical compound in a vegetal system. The model presented 
by Lettmann et al. [26] has completely different premises—there is no volume limitation in 
their case study while in our case we were limited to the smaller dimension of the studied 
living organism, the mushroom species Macrolepiota procera. Once have the rate for a species, 
we can compute concentrations via the solution of Eqs. (1) + (5) without doing any additional 
laboratory measurement.
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