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Abstract

Latest process technologies in transistor development demonstrate massive changes in the
size of transistor chip. In this chapter, a 14-nm technology node is used to model nanosize
transistor. The 14-nm technology node consists of multiple numbers of carbon nanotube.
Carbon nanotube is a very good energy efficient and low-cost material. Carbon nanotube
demonstrates excellent characteristics in metallic and semiconducting characteristics by
analyzing electrical properties. At first, the nanotube device physics and material proper-
ties are briefly explained in this chapter. Further, a nanotube device is designed for
semiconducting properties. The gate length of nanotube is 14 nm which is placed on the
gate channel. Finally, the model of 14-nm nano-transistor will be demonstrated for low-
energy consumption which can be considered as a better replacement of CMOS.
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1. Introduction

Nanoelectronics research is upgrading due to the increases of consumer demand of electronics

device in small scale. Nanotechnology research area encourages the researchers to work on

nanomaterials as an immerging technology for future. Carbon nanotube (CNT) is a potential

material in the field on nanotechnology that has the ability to overcome almost all the limita-

tions of other nanomaterials for its excellent electrical and mechanical properties. Therefore,

one of the potential uses of CNT is to place as gate channel of a FET is called carbon nanotube

field effect transistor (CNTFET). Silicon-based circuit is moving towards its physical limitation

point according to the proven experiment [1]. Due to similar ballistic transport and high career

portability of silicon material, CNTFET can be a good replacement of silicon [2] while CNT can

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



be acted as a semiconducting material [3, 4]. Nanotube is able to show its excellent electrical
properties in designing digital devices [5, 6] in small scales. Another special characteristic also to
be highlighted for nanotube is I-V features which enable to use the CNT in MOS transistors [7–
10]. According to device physics, the performance of the chip can be improved by reducing the
size but there is a limitation about the reduction of silicon device size. Nano-hardware, which
was created from the 1990s, has turned out to be a standout amongst the most dynamic research
subjects in this day and age. The nanoelectronics innovation, which can fundamentally diminish
the transistor measure, is particularly alluring to individuals. Single-walled carbon nanotube is
mostly used in transistor [11]. Ballistic transport properties of MOS transistor are unchanged
while the gate channel Si is substituted by nanotube [12]. In perspective of the outstanding size-
lessening issues of traditional Si-based hardware, there have as of late been serious examinations
on new advances in light of nano-organized materials which are shaped by sorted-out develop-
ment and self get-together strategies. CVD process was used in the laboratory to grow nanotube
from dielectrophoresis in early ages of its generation [13]. The first CNTFET was fabricated for
prototype testing [14] which allows the researchers to work on this promising field of nanotech-
nology. CNTFET shows good performance in designing logic gates for integrated circuit model-
ing [15, 16]. Therefore, CNTFET can be a promising research in the near future.

2. Carbon nanotubes properties

2.1. Geometry of carbon nanotubes

A carbon nanotube can be characterized by chiral vector and its length and a vector called the
chiral vector. Chiral vector is the sum of the multipliers of the two base vectors, like Eq. (1) [17–20]

Ch ¼ ma1 þ na2 (1)

The coordinates of the graphene sheet (m,n) allows finding the chiral vector (Ch) of the
nanotube.

The two-dimensional graphene lattice in real space can be created by translating one unit cell
by the vectors T ¼ na1 þma2 with integer combinations (n, m), where a1 and a2 are basis
vectors and is shown in Figure 1,
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a0 ¼ 3acc is the length of the basis vector, and acc ≈ 1:42 Å is the nearest neighbor C-C bonding
distance.
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To all the more decisively acquire the moment vector T, we can get it from the m, n segments of

the Ch vector. On the off-chance that we demonstrate the parts of T with t1 and t2, as T is

opposite to the Ch, the inward result of these vectors is equivalent to zero and we can conclude

Eq. (3)

t1∗a1 þ t2∗a2 ¼ 0 (3)

The briefest vector t1 and t2 that are legitimate as per Eq. (3) can be isolated t1 and t2 by their

most prominent normal devisor or in short shape most noteworthy basic divisor (gcd), to

acquire the briefest nuclear site vector towards the path, opposite to the Ch vector. dR as in

Eq. (4), t1, t2 can be accomplished in Eqs. (5) and (6)

dR ¼ gcd mþ n; 2nþmð Þ (4)

t1 ¼
2mþ n

dR
(5)

t2 ¼
2nþm

dR
(6)

The angle between the chiral vector and the a1 base vector is called the chiral angle, the twist

angle or the helix angle and is denoted by θc and can be obtained in Eq. (7)

Figure 1. The nanotube unit cell.
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θc ¼ Arctg
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Here, we should take note of that to consider a one of a kind chiral plot for each nanotube; the

point is expressed by an incentive in the locale (0, 30�). Utilizing these definitions, the breadth

of the tube can be processed utilizing the balance of the length of the Ch and the nanotube’s

periphery; lastly, we can acquire the measurement characterized by

dt ¼
L

π

¼ a

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ nmþm2
p

(8)

The length of the chiral vector is the peripheral length of the nanotube:

L ¼ ∣Ch∣ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ nmþm2
p

(9)

The bandgap of a single wall nanotube (SWNT) is defined by

Eg ¼ 2γ0acc=dt (10)

From Eq. (4), if (n-m) is divisible by 3, then nanotube is metallic, otherwise the nanotube is

semiconducting.

Now, the number of atom of the nanotube is defined by

Nat ¼ 4∗
n2 þm2 þ nm

dR
(11)

2.2. Classification of carbon nanotubes

Carbon nanotube (CNT) is classified into three groups as shown in Figure 2: (1) armchair, (2)

zigzag and (3) chiral, based on the geometrical arrangements of the graphene during the form

tube formation.

If the Ch is defined as n; 0ð Þ, it is given the name zigzag nanotube and if the Ch is defined as n; nð Þ,
then the tube is called armchair, and these refer to the form shaped on the circumference of the tube.

2.3. Carbon nanotube formation

2.3.1. Armchair tubes

If the chiral indices (m, n) of a nanotube in a zone-folding region can be divisible by 3, then it

becomes metallic. These nanotubes are called ‘zone folding metallic’, or shortly, ZF-M tubes.

2.3.2. Zigzag tubes (semiconducting tubes with bandgap)

The primary band gap of a nanotube is considered as semiconducting material if the Chirality

(m, n) in the zone folding area is not divisible by 3. We should allude to these nanotubes as

‘zone collapsing semiconducting’, or in a matter of seconds, ZF-S tubes.

Design, Simulation and Construction of Field Effect Transistors6



2.4. Electrical properties

Carbon nanotubes (CNTs) have outstanding electrical properties based on the chirality. There

are two types of carbon nanotube, such as single-walled carbon nanotube (SWCNT) and

multiple-walled carbon nanotube (MWCNT) based on the requirements of the CNT in the

integrated circuit (IC) design [21–23]. Figure 3 shows the different types of carbon nanotube. A

single-walled carbon nanotube has only one shell with a small diameter usually less than 2 nm.

Figure 2. Classifications of different CNTs: (a) armchair, (b) zigzag and (c) chiral (François, 2009).

Figure 3. Diagram of carbon nanotube: (a) single-walled and (b) multi-walled (François, 2009).
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As well as multi-walled carbon nanotube consists of two or more concentric cylindrical shells

with the diameter of 2–30 nm.

The electrical properties of a nanotube can be realized from its bandgap. Semiconducting

nanotube is a novel choice for the transistor development. Thus, Figure 4 shows bandgap

versus radius for semiconducting (zigzag) nanotubes. The bandgap decreases inversely with

an increase in diameter. The points with a zero bandgap correspond to metallic nanotubes

which satisfy n = 3i, where i is an integer.

3. Modeling process of 14-nm CNTFET

This research consists of the design and verification of the CNTFET device’s small signal

model. Figure 5 shows a solid model of CNTFETwith a built-in circuit model in this work.

3.1. CNTFET biasing

Three different types of biasing structure are seen in the CNTFET device. They are common-

drain, common-gate and common-source structure. Common-source transistor circuit is con-

sidered in this modeling. The common-source circuit is shown in Figure 6; the DC shows bias

on drain and gate with an AC signal present as the input at the gate.

Figure 4. Bandgap versus radius for zigzag nanotube.
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3.2. CNTFET small signal model

This section describes about the design and analysis of the small signal model circuit for

CNTFET. The proposed small signal model of a CNTFET is shown in Figure 7. In Figure 7,

Cg-CNTS refers to the capacitance between gate electrodes to source, Cg-CNTD refers to the

capacitance between gate electrodes to drain, Cg-CNTS refers to the capacitance between gate

electrodes to source, and Ri represents the internal resistance. Furthermore, gm refers to the

intrinsic transconductance and gd refers to the drain conductance of the circuit as shown in

Figure 7. In this circuit, the parasitic elements are excluded for the analysis purpose.

Figure 5. Perspective view of the CNTFET 3D solid model.

Figure 6. Common-source biasing circuit.
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4. Analysis of CNTFET model

4.1. Transconductance of CNTFET SPICE model

Figure 8(a) and (b) shows the simulation results of frequency versus transconductance while

the transconductance is increased linearly. This is as a result with μS through the stage of the

lower frequency as well as mS through the stage of increasing frequency. Therefore, high-

frequency small signal model of CNTFET is obtained in 10 THz with 1.8 mS. On analyzing

the data, we first calculate and simulate the transconductance value in μS and in mS.

Figure 8(a) shows the plot for the value of transconductance in μS and Figure 8(b) shows the

plot for the value of transconductance in mS.

Tables 1 and 2 show the selected values of transconductance necessary for the small signal

model obtained from the analysis of the model as shown in Figure 8(a) and (b). By comparing

the two tables, transconductance in mS performs the higher frequency rather than to use in μS.

Therefore, we consider transconductance in mS in this research.

4.2. I-V characteristics of CNTFET

The proposed CNTFET circuit model is implemented in PSpice. A CNTFET DC characteristic

is analyzed and simulated to check the output characteristics. Modeling of CNTFET with the

I-V characteristics analysis is obtained from the channel length of 14 nm and width of two

times the length of the proposed CNTFET. The I-V characteristic curves validate the proposed

circuit model by getting drain current of 6.9 � 105 A at the applied gate voltage of 0.4 V as

shown in Figure 9.

Figure 7. Intrinsic circuit model for CNTFET.
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4.3. Frequency response of CNTFET

The current gain of the proposed CNTFET is shown in Figure 10. Current gain magnitude is

found in 45 dB while the frequency is operated in 10 THz. The value of the CNTFET’s

Figure 8. Simulation of frequency, fT, versus transconductance, gm: (a) transconductance in μS and (b) transconductance

in mS.
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Gm (μS) FT (Hz)

19 1.0800 � 1011

22 1.2505 � 1011

28 1.5915 � 1011

32 1.8189 � 1011

36 2.0463 � 1011

45 2.5578 � 1011

50 2.8421 � 1011

55 3.1263 � 1011

60 3.4105 � 1011

Table 1. Frequencies for different current gain of small signal model while transconductance in μS.

Gm (mS) FT (Hz)

1.0 5.68 � 1012

1.1 6.25 � 1012

1.2 6.82 � 1012

1.3 7.39 � 1012

1.5 8.52 � 1012

1.6 9.00 � 1012

1.7 9.66 � 1012

1.8 10.00 � 1012

Table 2. Frequencies for different current gain of small signal model while transconductance in mS.

Figure 9. I-V transfer characteristics of CNTFET.
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transconductance gm is set as 1.8 mS from the analysis as shown in Figure 10 at the gate

voltage of 0.4 V [24].

To validate the output characteristics of the current development of proposed CNTFET, we

compare the work with other researches. Table 3 shows the comparison of the performance of

the proposed model. From this performance comparison, we would like to conclude that the

proposed CNTFET model is capable of operating in high frequency.

5. Conclusion

This chapter discussed the development of the CNTFET model using 14-nm technology. We

delineated a short examination of the proposed plan of CNTFET little banner show. The

arrangement contains a suitable blueprint of the little banner procedure and demonstrated

the displays by re-enacting little banner parameters for CNTFET with respect to that of 45 dB.

Figure 10. Output current gain of the CNTFET at 10-THz frequency.

Device Parameters CNTFET [25] This Research

Current gain (db) 20 45

gm (mS) 3.8 1.8

Cgs (F) 65f 14a

Cgd (F) 52f 14a

Cut-off-Freq (Hz) 30G 10T

Table 3. Comparison of current research.
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The inherent capacitance of 14 aF and transconductance of 1.8 mS are used as a piece of this

examination. A benchmark is showed up for the immense execution of the exhibit made by

differentiating and late research data. Particular characteristics are showed up by a course of

action of multiplication. Besides, this system has familiar capacitance with survey, the charge

defending capacitance at the repeat of 10 THz.
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