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Abstract

The energy storage ability and temperature arrangement of a concrete bed which was
charged and discharged at the same time was examined mathematically in this research.
This was carried out by modeling a single globe-shaped concrete which was utilized to
simulate a series of points along the concrete bed axis. Charging and discharging mode of
the system were compared for 0.0094, 0.013, and 0.019 m3/s air flow rates. Higher change
in temperature response was detected between the charging and fluid to solid heat trans-
fer process at the inception of the concrete bed and the heat gain by the cool air flowing
inside the copper tube was fairly high. The analysis of energy storage efficiency was also
carried out and it was noticed that the globe-shaped concrete of 0.11 m diameter has the
highest storage efficiency of 60.5% at 0.013 m3/s airflow rate.

Keywords: energy storage, heat transfer model, globe-shaped concrete, charging and
discharging

1. Introduction

Heat can be transferred in a concrete bed through the following means: (i) heat transfer by

convection from the bed wall to the fluid flowing inside the bed; (ii) heat transfer by convection

from the globe-shaped concretes to fluid flowing in the bed, and this is known as fluid to

particle mode; (iii) heat transfer by conduction from the bed walls to the globe-shaped con-

cretes; (iv) heat transfer by conduction from one globe-shaped concrete to another, and this is

known as particle to particle mode; (v) heat transfer by radiation; and (vi) heat transfer

through fluid mixture [1]. The modes are as shown in Figure 1.

The particle to particle conduction mode can be further analyzed in axial and radial directions.

Heat transfer through radiation mode will actually be important at higher temperatures.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Practically, it is found that two or three of the modes discussed earlier on can occur simulta-

neously. For example, the conduction between the particles may be affected by the convection

between the particles and the fluid. This interaction among the different modes is one of the

main reasons for the difficulty in correlating the total heat transfer and analyzing the experi-

mental data in this field [2].

This research carried out numerically the temperature distribution in a concrete bed and also

looked into the ability of a concrete bed to store energy simultaneously.

2. Review of literature

Anzelius [3] is the first author to publish a paper in heat transfer through packed beds but

Schumann [4] is usually the first reference cited in most literature [1]. Both authors made some

assumptions in order to find solution to equations that guide heat transfer for an incompress-

ible fluids passing uniformly through a bed of solid particles with perfect conductivity. The

following are the heat transfer equations derived for the system:

Ts–Ts,0ð Þ

Ts–Ts,0ð Þ
¼ 1–e�Y–Z

ΣYnMn yzð Þ ¼ e�Y�Z
ΣZnMn (1)

Tf –Ts

� �

Tf ,0–Ts,0

� � ¼ 1–e�Y–Z
Σ YnMn yzð Þ½ � ¼ e�Y�Z

Σ ZnMn yzð Þ½ � (2)

where Ts is the solid temperature, Tf is the temperature of fluid and Y and Z are dimensionless

quantities. Eqs. (1) and (2) was solved simultaneously and the result were analyzed graphically

to form Schumann curves. Knowing the outlet air and bed temperature, these curves can be

Figure 1. Schematic showing the modes of heat transfers in concrete bed.
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used to determine the volumetric heat transfer coefficients and also the heat transfer coeffi-

cients of a packed bed undergoing heat exchange with a fluid provided the following condi-

tions which were the simplifying assumptions made by Schumann were satisfied:

1. Due to the infinitesimal nature of the solid particles, resistance to heat transfer was so

small.

2. Resistance to conduction heat transfer in the fluid was so small.

3. At any section of the bed, the heat transfer rate from fluid to solid or from solid to fluid

was directly proportional to their average difference in temperature between the solid and

fluid within the bed.

4. The transport properties of solid and fluid were not dependent on temperature, for exam-

ple the density.

Furnas [5] utilized and expanded the Schumann curves to cover more range of temperatures and

suggested an empirical relation for determination of heat transfer coefficient as shown in Eq. (3):

hv ¼
BG0:7T0:3101:68ε–3:56 ε2

dp
0:9

(3)

where, hv is the volumetric heat transfer coefficient. B is a constant dependent on the bed

material, G is the mass velocity of the fluid, T is the average air temperature, dp is the particle

diameter and ε is the porosity.

Saunders and Ford [6] utilized dimensional analysis to derive correlations to calculate heat

transfer coefficient. The research was for spherical shaped alone and the application is not

suitable for other solid particle geometries.

Another correlation for the determination of heat transfer coefficient between gases and ran-

domly packed solid spheres was postulated by Kays and London [7]. Using the Colburn j-factor,

the relationship was written as:

jh ¼
0:23

Rep
0:3

(4)

where, jh ¼ St:Pr2=3

200 < Rep < 50, 000 and 0:37 < ε < 0:39

Löf and Hawley [8] studied heat transfer between air and packed bed of granitic gravel.

Unsteady state heat transfer coefficients were correlated with the air mass velocity and particle

diameter to obtain the equation:

h ¼ 0:652 G=dp
� �0:7

(5)

This was calculated for 8 mm < dp < 33 mm; 50 < Rep 500 and temperature range of 311–394 K.

The author reached a conclusion that the temperature of the entering air had no appreciable

effect on the hat transfer coefficient.
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Leva et al. [9] studied and analyzed heat transfer coefficient between smooth spheres of low

thermal conductivities and fluids (air and carbon dioxide) in packed beds and tubes of 50.8

and 6.4 mm diameters, respectively. The ratio of particles to tube diameters was varied from

0.08 to 0.27; gas flow rate was of Reynolds number range 250 to 3000. Correlation of film

coefficient was determined as:

h ¼ 3:50
k

Dt

� �

e�4:6
Dp
Dt

DpG
µ

� �

0:7 (6a)

which is approximately:

h ¼ 0:40 k=Dtð Þ DpG=µ
� �

0:7 (6b)

Or, N ¼ 0:4 Re0:7 (6c)

Maximum film coefficient was predicted and verified at a value of Dp/Dt equal 0.153.

Riaz [10] and Jefferson [11] studied the dynamic behavior of beds undergoing heat exchange

with air using single and two phased modes. By incorporating factors of axial bed conduction

and intra-particle resistance, which Schumann ignored, the heat transfer coefficients were

evaluated and found to be 1 + Bi/5 times smaller than those predicted using Schumann curves.

Ball [12], Norton [13], Meek [14], Bradshaw and Meyers [15], Harker and Martyn [16] and also,

Bouguettaia and Harker [17] have all researched on various packed beds using air and other

gases as fluids and have developed correlations involving the heat transfer coefficient.

3. Methodology

3.1. Heat transfer model for a globe-shaped concrete bed

The modeling of heat transfer in a concrete bed was carried out mathematically. It was done

through a single globe-shaped concrete which was simulated mathematically to represent

series of points along the concrete bed axis.

A one dimensional finite difference formulation was used in modeling the single globe-shaped

concrete material, where heat conduction to neighboring globe-shaped concrete was ignored.

Using this assumption reduced the globe-shaped concrete model to that of an isolated sphere

in cross flow, where the total surface area of the sphere was exposed to convection. Also, the

thermal properties of the materials within the bed accounted for temperature dependence.

3.2. Finite difference formulation of a single spherical shaped concrete material

Since conduction to other globe-shaped concrete has been neglected, the geometry allows the

concrete to be reduced to one dimension along its radius.
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A finite difference method was utilized to model this mathematically, [18]. For this approach,

the globe-shaped concrete can be characterized by three different nodal equations:

i. a general, interior node

ii. the center node

iii. the surface node

All exposed to convection as shown in Figure 2.

For the general and interior node within the globe-shaped concrete model, the conduction

equation for T(r,t) is:

rcCc
∂T

∂t
¼

1

r2
∂

∂r
Kcr

2 ∂T

∂r

� �

þ _q r;tð Þ (7)

where Cc = specific heat of concrete.

Kc ¼ thermal conductivity of concrete.

_q ¼ heat generation.

And this equation was represented in finite difference form.

The specific heat, thermal conductivity, and the heat generation, are temperature dependent

and varied with the temperature along the radial direction.

Because the thermal properties are functions of temperature, and consequently functions of the

globe-shaped concrete radius, the finite difference equations are derived by the volume inte-

gration over a finite difference node.

Multiplying Eq. (7) by r2 and integrating both sides of the equation from rn – Δr/2 to rn + Δr/2

resulted to:

Figure 2. Schematic showing the cross-section of the globe-shaped concrete materials imbedded with copper tube.
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rcCc
∂T

∂t

ð

r
nþΔr

2

r
n�Δr

2

r2dr ¼

ð

r
nþΔr

2

r
n�Δr

2

∂

∂r
Kcr

2 ∂T

∂r

� �

drþ

ð

r
nþΔr

2

r
n�Δr

2

r2 _q r;tð Þdr (8)

The specific heat was assumed constant with respect to r, and therefore brought outside the

integral.

By evaluating the integrals in Eq. (8) and representing the derivatives in finite difference form

using the fully implicit method gives:

rcCc
TZþ1
n � TZ

n

Δt

� �

r3nþ � r3n�

3

� �

¼

ð

r
nþΔr

2

r
n�Δr

2

2KcrdT þ _q

ð

r
nþΔr

2

r
n�Δr

2

r2dr (9)

rcCc
TZþ1
n � TZ

n

Δt

� �

r3nþ � r3n�

3

� �

¼
2Kcr

2

2

dT

Δr

� �r
nþΔr

2

r
n�Δr

2

þ _qn
r3

3

� �r
nþΔr

2

r
n�Δr

2

(10)

rcCc
TZþ1
n � TZ

n

Δt

� �

r3nþ � r3n�

3

� �

¼ Kc nþð Þr
2
nþ

TZþ1
nþ1 � TZþ1

n

Δr

 !

�

Kc n�ð Þr
2
n�

TZþ1
n � TZþ1

n�1

Δr

� �

þ qn
r3nþ � r3n�

3

� �r
nþΔr

2

r
n�Δr

2

(11)

where TZ
n and TZþ1

n indicate temperatures for an arbitrary node at times tZ and tZþ1 respec-

tively.

Also,

Wn ¼ WatTZþ1
n (12)

and,

Knþ ¼
K TZþ1

nþ1 þ K
� 	

2
, atTZþ1

n (13)

also,

rnþ ¼ rn þ
Δr

2
(14)

rn� ¼ rn �
Δr

2
(15)

Eq. (11) can be rearranged and solved for TZ
n plus a known quantity which resulted to:
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rcCc
TZþ1
n � TZ

n

Δt

� �

¼
3Kc nþð Þr

2
nþ

r3nþ � r3n�

TZþ1
nþ1 � TZþ1

n

Δr

 !

�

3Kc n�ð Þr
2
n�

r3nþ � r3n�

TZþ1
n � TZþ1

n�1

Δr

� �

þ _qn
3r3nþ � r3n�

3r3nþ � r3n�

� �

(16)

rcCc
TZþ1
n

Δt
� rcCc

TZ
n

Δt
¼

3Kc nþð Þr
2
nþ

r3nþ � r3n�

TZþ1
nþ1 � TZþ1

n

Δr

 !

�

3Kc n�ð Þr
2
n�

r3nþ � r3n�

TZþ1
n � TZþ1

n�1

Δr

� �

þ _qn

(17)

Multiply Eq. (17) by Δt and divide by rcCc resulted to:

TZþ1
n � TZ

n ¼
3Kc nþð Þr

2
nþΔt

rc mð ÞCc mð ÞΔr r3nþ � r3n�
� � TZþ1

nþ1 � TZþ1
n

� 	

�

3Kc n�ð Þr
2
n�Δt

rc mð ÞCc mð ÞΔr r3nþ � r3n�
� � TZþ1

n � TZþ1
n�1

� 	

þ
3Δt _qn

rc mð ÞCc mð Þ

(18)

∴TZ
n þ

3Δt _qn
rc mð ÞCc mð Þ

¼ TZþ1
n �

3Kc nþð Þr
2
nþΔt

rc mð ÞCc mð ÞΔr r3nþ � r3n�
� �

" #

TZþ1
nþ1

� 	

þ

3Kc nþð Þr
2
nþΔt

rc mð ÞCc mð ÞΔr r3nþ � r3n�
� �

" #

TZþ1
n

� 	

þ
3Kc n�ð Þr

2
n�Δt

rc mð ÞCc mð ÞΔr r3nþ � r3n�
� �

" #

TZþ1
n

� 	

þ

3Kc n�ð Þr
2
n�Δt

rc mð ÞCc mð ÞΔr r3nþ � r3n�
� �

" #

TZþ1
n�1

� 	

(19)

Collecting the like terms from Eq. (19) yielded:

∴TZ
n þ

3Δt _qn
rc mð ÞCc mð Þ

¼
3Δt

rc mð ÞCc mð ÞΔr

 !

Kc n�ð Þr
2
n�

r3nþ � r3n�
� �

" #

TZþ1
n�1

� 	

þ

1þ
3Δt

rc mð ÞCc mð ÞΔr

 !

Kc n�ð Þr
2
n� þ Kc nþð Þr

2
nþ

� �

r3nþ � r3n�
� �

( )" #

TZþ1
n

� 	

�

3Δt

rc mð ÞCc mð ÞΔr

 !

Kc nþð Þr
2
nþ

r3nþ � r3n�
� �

" #

TZþ1
nþ1

� 	

(20)

This resulting equation is valid for any general, interior node within the globe-shaped concrete

0 < rn < R.

At the center node, where rn = 0 the temperature profile is axisymmetric, and ∂T
∂r ¼ 0, when r = 0

thus, the temperature on either side of the node is equal.
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TZþ1
n�1 ¼ TZþ1

nþ1

likewise, Kc n�ð Þ ¼ Kc nþð Þ

∴Eq. (20) simplified to:

∴TZ
n þ

Δt _qn
rc mð ÞCc mð Þ

¼ TZþ1
n �

6Δt

rc mð ÞCc mð ÞΔr2
Kc nþð Þ

 !

TZþ1
nþ1 (21)

This occur at rn = 0.

This simplified form of Eq. (20) was used to represent the center node.

The conduction through the surface of the globe-shaped concrete is equal to the convection at

the surface.

∴� K
∂T

∂r at, r¼R
¼ �UC Tr¼R � T∞ð Þ (22)

However, this boundary condition cannot be directly represented in finite difference form,

since such formulation requires a volume element and Eq. (22) applies at a point.

Instead a first law energy balance was utilized to obtain the nodal equation for the surface of

the globe-shaped concrete. This energy balance can be written as:

_Ein � _Eout þ _Egen ¼ _Est (23)

where,

_Ein ¼ �KA
∂T

∂r
(24)

_Eout ¼ UCA T � Tg

� �

(25)

_Egen ¼ _qV (26)

_Est ¼ rCV
∂T

∂t
(27)

Representing Eq. (23) in a finite difference form consistent with Eq. (20) and (21) resulted to:

�KA
∂T

∂r
�UCA T � Tg

� �

þ _qV ¼ rCV
∂T

∂t
(28)

This can be written in finite difference form to give:

�4πr2n�Kn�
TZþ1
n � TZþ1

n�1

Δr
� 4πr2nUC TZþ1

n � T
∞

� �

þ
4

3
π r3n � r3n�
� �

_qn ¼

4

3
πrCn r3n � r3n�

� �TZþ1
n � TZ

n

Δt

(29)

where, Uc = convection coefficient.
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Solving for TZ
n plus known quantities involving _q and Uc, in a similar manner to Eq. (20) and

(24) resulted to:

�4πr2n�Kn�T
Zþ1
n

Δr
þ
�4πr2n�Kn�T

Zþ1
n�1

Δr
� 4πr2nUCT

Zþ1
n � 4πr2nUCT∞þ

4

3
π r3n � r3n�
� �

_qn ¼
4

3
πrCn

r3n � r3n�
� �

Δt
TZþ1
n �

4

3
πrCn

r3n � r3n�
� �

Δt
TZ
n

(30)

Multiply Eq. (30) by Δt and divide by 4
3πr r3n � r3n�

� �

resulted to:

TZ
n � TZþ1

n ¼
3Δt

ΔrrCn

r2n�Kn�

r3n � r3n�

� �

TZþ1
n �

3Δt

ΔrrCn

r2n�

r3n � r3n�

� �

TZþ1
n�1þ

3ΔtUC

rCn

r2n�

r3n � r3n�

� �

TZþ1
n þ

3ΔtUC

rCn

r2n
r3n � r3n�

� �

T
∞
�

_qnΔt

rCn

(31)

TZ
n þ

Δt

rCn

_qn þ
3ΔtUC

rCn

r2n�

r3n � r3n�

� �

¼ �
3Δt

ΔrrCn

r2n�Kn�

r3n � r3n�

� �

TZþ1
n�1þ

1þ
3Δt

rCnΔr

r2n�Kn�

r3n � r3n�

� �

þ
3ΔtUC

rCn

r2n
r3n � r3n�

� �� �

TZþ1
n

(32)

TZ
n ¼ �

3Δt

ΔrrCn

r2n�Kn�

r3n � r3n�

� �

TZþ1
n�1þ

1þ
3Δt

rCnΔr

r2n�Kn�

r3n � r3n�

� �

þ
3ΔtUC

rCn

r2n
r3n � r3n�

� �� �

TZþ1
n �

Δt

rCn

_qn �
3ΔtUC

rCn

r2n�

r3n � r3n�

� �
(33)

Eqs. (20), (21) (32) and (33) constitute a system of algebraic equations for heat transfer model-

ing in globe-shaped concrete.

4. Result and discussion

The values of Eq. (33) are obtained from the values in Table 1. Since the thermal properties are

constant, average temperatures could therefore be used to determine thermal properties of bed

materials.

The following data were obtained from the theoretical/mathematical modeling carried out on

thermal performance of packed bed energy storage system as shown in Figure 3.

The following are the definitions of the symbols:

Time = the interval time of measurements, in minutes.

Ts-in = the inlet air temperature to the packed bed storage tank in �C.

Ts-out = the outlet air temperature from the packed bed storage tank in �C.
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Tt-in = the inlet air temperature to the copper tube in �C.

Tt-out = the outlet air temperature from the copper tube in �C.

TA1, TA2, TA3, and TA4 = the air stream temperatures (�C) through the bed at different heights

of the storage tank 117.5, 235, 352.5, and 470 cm, respectively.

Tci1, Tci2, Tci3, and Tci4 = the core temperatures of the globe-shaped concrete (�C) through the

bed at different heights of the storage tank 117.5, 235, 352.5, and 470 cm, respectively.

Tti1, Tti2, Tti3, and Tti4 = the temperatures of air flowing inside the copper tube (�C) through the

bed at different heights of the storage tank 117.5, 235, 352.5, and 470 cm, respectively.

Parameters Values

Airflow rate 0.01316 m3/s (28 cfm)

Air—density 1.07154 Kg/m3

Air—specific heat capacity 1008 J/Kg K

Concrete—density 2400 Kg/m3

Concrete—specific heat capacity 1130 J/Kg K

Copper tube—density 8900 Kg/m3

Copper tube—specific heat capacity 384 J/Kg K

Area of globe-shaped concrete 0.013 m2

Area of copper tube + header 0.664 m2

Volumetric heat transfer coefficient 106.5 W/m3 K

Table 1. Modeling parameters.

Figure 3. Schematic of the storage tank systems.
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Tct1, Tct2, Tct3, and Tct4 = the temperatures of the contact made between globe-shaped concrete

and imbedded copper tube (�C) through the bed at different heights of the storage tank 117.5,

235, 352.5, and 470 cm, respectively.

Tt1, Tt2, Tt3, and Tt4 = the surface temperatures of the copper tube (�C) through the bed at

different heights of the storage tank 117.5, 235, 352.5, and 470 cm, respectively.

Figure 4. Average temperature measurement of charging packed bed storage system for globe-shaped concrete of size

0.11 m diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.

Figure 5. Average temperature measurement of charging packed bed storage system for globe-shaped concrete of size

0.08 m diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.
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The results of the experimentation were shown in Figures 4–6 for globe-shaped concrete of

size 0.11; 0.08 and 0.065 m diameter respectively while the discharging only temperature

measurements were shown in Figures 7–9 respectively for air flow rate of 0.0094, 0.013, and

0.019 m3/s.

Figure 6. Average temperature measurement of charging packed bed storage system for globe-shaped concrete of size

0.065 m diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.

Figure 7. Average temperature measurement of discharging packed bed storage system for globe-shaped concrete of size

0.11 m diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.
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Figure 10 presents the comparison of the temperature variations with time at Ts-in, Ts-out, Tt-in,

Tt-out, TA1, TA2, TA3, TA4, Tci1, Tci2, Tci3, Tci4, Tti1, Tti2, Tti3, Tti4, Tct1, Tct2, Tct3, Tct4, Tt1, Tt2, Tt3, and Tt4

during the simultaneous charging and discharging while Figure 11 presents for discharging

only. The comparisons were presented for air flow rates of 0.0094, 0.013, and 0.019 m3/s.

Figure 9. Average temperature measurement of discharging packed bed storage system for globe-shaped concrete of size

0.065 m diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.

Figure 8. Average temperature measurement of discharging packed bed storage system for globe-shaped concrete of size

0.08 m diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.
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These figures show that the difference of the temperature response between the charging and

fluid to solid heat transfer process at the initial period (<30 min) of the packed bed was large

(large inlet–outlet temperature difference means large heat supply), and the heat recovered

by the cool air (approximately 27�C) flowing inside the copper tube was fairly high (larger

inlet–outlet temperature difference compared with the later period indicates larger heat

recovery).

Therefore, a relatively large part of the heat supplied by the simulated air heater was used to

heat the air flowing inside the copper tube through conduction and convection and also stores

the rest for continuous usage.

The following are the storage efficiency for globe-shaped concrete of size 0.11 m, 0.08 m and

0.065 m diameter at airflow rate of 0.0094, 0.013 and 0.019 m3/s (Figure 12):

For 0.11 m diameter globe-shaped concrete:

Figure 10. Comparison of average temperature measurement of charging packed bed storage system for globe-shaped

concrete of size 0.065, 0.08, 0.11 m in diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.
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i. Storage efficiency at air flow rates of 0.0094 m3/s = 40.7%

ii. Storage efficiency at air flow rates of 0.013 m3/s = 60.5%

iii. Storage efficiency at air flow rates of 0.019 m3/s = 57.5%

For 0.08 m diameter globe-shaped concrete:

i. Storage efficiency at air flow rates of 0.0094 m3/s = 23.5%

ii. Storage efficiency at air flow rates of 0.013 m3/s = 51.3%

iii. Storage efficiency at air flow rates of 0.019 m3/s = 50.2%

For 0.065 m diameter globe-shaped concrete:

i. Storage efficiency at air flow rates of 0.0094 m3/s = 14.8%

ii. Storage efficiency at air flow rates of 0.013 m3/s = 35.06%

iii. Storage efficiency at air flow rates of 0.019 m3/s = 40.3%

Figure 11. Comparison of average temperature measurement of discharging packed bed storage system for globe-shaped

concrete of size 0.065, 0.08, 0.11 m in diameter and flow rate of 0.0094, 0.013, and 0.019 m3/s.
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5. Conclusion

The study led to the following findings and conclusions:

1. The mathematical model developed can accurately predict the temperature within the

concrete bed for energy storage purpose.

2. The steady intermittent input temperature variation actually led to continuous discharge

temperature at the copper tube outlet.

3. The mathematical model may be extended to specify the packed bed storage system

dimensions.

4. Globe-shaped concrete of 0.11 m diameter has the highest storage efficiency of 60.5% at

0.013 m3/s airflow rate.

Figure 12. Storage efficiency of simultaneous charging and discharging packed bed storage system for globe-shaped

concrete of diameter 0.065, 0.08, 0.11 m and air flow rate 0.0094, 0.013, and 0.019 m3/s.
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