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Abstract

Biologically inspired intelligence technique, an important embranchment of series on
computational intelligence, plays a crucial role for robotics. The autonomous robot and
vehicle industry has had an immense impact on our economy and society and this trend
will continue with biologically inspired neural network techniques. In this chapter, multi-
ple robots cooperate to achieve a common coverage goal efficiently, which can improve
the work capacity, share the coverage tasks, and reduce the completion time by a biolog-
ically inspired intelligence technique, is addressed. In many real-world applications, the
coverage task has to be completed without any prior knowledge of the environment. In
this chapter, a neural dynamics approach is proposed for complete area coverage by
multiple robots. A bio-inspired neural network is designed to model the dynamic envi-
ronment and to guide a team of robots for the coverage task. The dynamics of each neuron
in the topologically organized neural network is characterized by a shunting neural
equation. Each mobile robot treats the other robots as moving obstacles. Each robot path
is autonomously generated from the dynamic activity landscape of the neural network
and the previous robot position. The proposed model algorithm is computationally sim-
ple. The feasibility is validated by four simulation studies.

Keywords: biologically inspired intelligence, real-time motion planning, navigation and
mapping

1. Introduction

Biologically inspired intelligence technique, an important embranchment of series on compu-

tational intelligence, plays a crucial role for robotics. The autonomous robot and vehicle

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



industry has had an immense impact on our economy and society and this trend will continue

with biologically inspired neural network techniques. Biologically inspired intelligence, such

as biologically inspired neural networks (BNNs), is about learning from nature, which can be

applied to the real world robot and vehicle systems. Recently, the research and development of

bio-inspired systems for robotic applications is increasingly expanding worldwide. Biologi-

cally inspired algorithms contain emerging subtopics such as bio-inspired neural network

algorithms, brain-inspired neural networks, swam intelligence with BNN, ant colony optimi-

zation algorithms (ACO) with BNN, bee colony optimization algorithms (BCO), particle

swarm optimization with BNN, immune systems with BNN, and biologically inspired evolu-

tionary optimization and algorithms. Additionally, it is decomposed of computational aspects

of bio-inspired systems such as machine vision, pattern recognition for robot and vehicle

systems, motion control, motion planning, movement control, sensor-motor coordination,

and learning in biological systems for robot and vehicle systems.

One of the applications of biologically inspired intelligence techniques on the robot navigation

is complete area coverage navigation of autonomous mobile robots. Complete area coverage

(CAC) is an essential issue in mobile robots, which requires the robot path to pass through

every area in the workspace. Many robotic applications require CAC, e.g., cleaning robots [1–

6], vacuum robots [7], painter robots, autonomous underwater covering vehicles, de-mining

robots [8], land mine detectors [9], lawn mowers, automated harvesters [10], agricultural crop

harvesting equipment [11], and window cleaners [12]. CAC can be completed by a single robot

or multiple robots.

Nowadays, cooperative coverage by a multiple robot system is becoming increasingly impor-

tant. The cooperative area coverage by multiple robots can improve the efficiency and com-

plete the work more quickly than a single robot. These robots may share the coverage tasks

and thus reduce the time to complete the coverage task. Additionally, if one of the robots fails,

the rest will fulfill the missions, therefore, the coverage by robots is able to improve reliability

and robustness. For instance, in de-mining applications, coverage reliability, an important

factor, is enhanced by using cooperative multirobots. In some cleaning applications, the

workspace (e.g., a stadium) needs to be cleaned in a limited amount of time. Thus, it requires

multiple robots to work in a cooperative manner.

Multi-robot coverage has been extensively studied using various models. Depending on

whether a map is required for the multirobots, the coverage models may be categorized as

off-line and on-line algorithms [13]. Off-line algorithms require a map of workspace for robots

(e.g. [14–16]), while on-line algorithms do not need an environmental map (e.g. [17–21]).

Previous research on area coverage may be classified into cell-decomposition-based model

(e.g. [15, 16, 21–24]), spanning-tree-based approach (e.g. [14, 18, 23–25]), behaviour-based

model (e.g. [26–30]), graph-based model (e.g. [20, 31, 32]), depth first search approach (e.g.

[18, 19]), Frontier-based model (e.g. [33–37]), and others (e.g. [38–41]).

Many multi-robot coverage algorithms are based on cell decomposition. Cell decomposition

methods break continuous space into a finite set of cells. After this decomposition, a connec-

tivity graph is constructed according to the adjacency relationships between the cells. From

this connectivity graph, a continuous path can be determined by simply following adjacent

Artificial Intelligence - Emerging Trends and Applications4



free cells from the initial point to the goal point. Oh et al. [6] developed a triangular cell

decomposition method for unknown environments for CAC. This method combines triangular

cell decomposition, a template-based approach, and a wall following navigation algorithm for

CAC. It can only deal with a single robot CAC. Wagner et al. [21] proposed multi-robot

coverage algorithms to explore and cover an unknown environment by approximate cell

decomposition approach. The group of multiple robots has limited sensors and no explicit

communication. Kurabayashi et al. [15, 16] proposed an exact cell decomposition off-line

coverage algorithm for multiple cleaning robots using a Voronoi diagram and boustrophedon

approach, where a cost function is defined to obtain a near-optimal solution of the collective

coverage task. The approach can avoid overlaps of sweeping areas. The algorithm needs to

consider in advance the knowledge of the workspace with known obstacles.

Gabriely and Rimon [42] suggested a spanning tree coverage approach with single robot. It

divides up the workspace into discrete cells and generates spanning tree of graph induced by

the cells. The robot is able to cover every point precisely once and travel an optimal path in a

grid-like representation in the workspace that achieves complete area coverage. Hazon and

Kaminka [14] developed a complete and robust multi-robot spanning-tree coverage (MSTC)

algorithm based on approximate cell decomposition. Afterwards, the coverage efficiency was

improved by a multi-robot forest coverage (MFC) algorithm of approximate cell decomposi-

tion proposed by Zheng et al. [23]. Hazon et al. [18] successfully extended the spanning tree

work with single robot of Gabriely and Rimon [42] and their off-line work [14] into on-line

multi-robot coverage and improved the coverage efficiency.

Behaviour-based strategy for a multi-robot system employs relatively little internal variable

states to model the environment and makes fewer assumptions about their environment, thus

it is more robust. The cooperative coverage by multirobots with the feature of reactive plan-

ning model is implemented by designing individual and team behaviours. Jung et al. [29]

combined the advantages of spatial and topological map representations of the environment

in a behaviour-based framework for cooperative cleaning of multiple robots. The cooperative

multi-robot coverage missions can be accomplished by unifying paths in navigation, coopera-

tion, communication and reactive behaviours [43]. The more detailed explanation of the imple-

mentation of the architecture for behaviour-based agents for cooperative multiple cleaning

robots are given in [30]. Balch and Arkin [26] proposed a behaviour-based multi-robot

approach for coverage, in which the robots are developed with various goal-oriented behav-

iours for navigation. Recently, Fang et al. [27] used a behaviour-based coverage approach for

multirobots to efficiently define the region in which an optimal solution can be found in

unknown environments. Most recently, an idea of a leader robot and other follower robots for

planning path and controlling robots was proposed using the behaviour-based model [44].

The idea of building up a graph of environment is used for multi-robot coverage. One

workspace is decomposed into subregions called cells and therefore a graph may be

constructed. The underlying idea of graph-based approach is that multiple robots traverse

every edge of the graph to achieve the cooperative coverage. Wagner et al. [20, 31] proposed

an approximate cellular decomposition approach for multi-robot coverage to decompose the

environment. They employ a dirt grid on the floor for communication among robots. The

Biologically Inspired Intelligence with Applications on Robot Navigation
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robots communicate with each other by leaving traces. A graph is built up for representation of

the workspace to be covered. Each edge is assigned to two “smell labels”. If an edge is

traversed, it is marked by a fresh trace of odour. Recently, to benefit from the graph-based

approach, Williams and Burdick [32] constructed a graph for multi-robot navigation. An

improved graph representation of the task is applied for boundary coverage problem and a

graph algorithm is developed for the boundary coverage problem.

A robot can obtain updated knowledge for its environmental map if it moves to a frontier since

frontiers are this type of areas that are on the boundary between open space and uncovered

space. With the movement of single robot or multiple robots to successive frontiers, the robots

can obtain sufficient information to build up and update the maps for coverage mission.

Yamauchi [36, 37] adopted a Frontier-based coverage approach, which leads each robot to the

closest unknown region, represented by frontier between the free and unknown workspace to

produce a robust autonomous cooperative coverage strategy. The technique builds a global

map of the environment, which is analysed to locate the frontiers around the robot and

environments. Recently, Burgard et al. [33] and Ko et al. [35] developed algorithms to compute

utilities of frontier cells to cover different areas of the unknown environments.

Some previous work combines several approaches to take an advantage of different benefits.

For instance, Rekleitis et al. [19] split a terrain by an exact cell decomposition method and a

tree was built with each subregion as a node. A centralized depth first search (DFS) algorithm

is employed for robots to traverse the unknown region and thus the entire areas are explored

and covered. Hazon et al. [18] recently extended the spanning tree work with single robot [42]

and their own off-line work [14] into on-line multi-robot coverage. Their spanning trees are

constructed by a DFS-like procedure. The effective, robust, and complete multi-robot coverage

is implemented. Gossage et al. [34] combined the advantages, in order to obtain robust coop-

eration, of local Frontier-based approach and global graph-based representation of unknown

environments for the cooperation of multirobot. Most recently, Zavlanos and Pappas [45]

combined a distributed multi-destination potential field approach and a dynamic assignment

algorithm for coverage motion planning of multiple robots.

In someothermethods,multirobots collect the incoming sensor information of every single robot in

a team to cooperatively perform coverage in unknown environments. Inmost cases, cell decompo-

sitionmethod is used to split terrain and ensures complete coverage [46]. Butler [38, 39] proposed a

distributed cooperative coverage algorithm formultirobot, which performs independently on each

robot in a team with a rectilinear environment. The algorithm employs only intrinsic contact

sensing knowledge to determine the boundaries of the environment. Recently, Boonpinon and

Sudsang [47] developed a multi-robot mapping and area coverage approach using a centroidal

Voronoi diagramwhere a teamof robots exchange limited sensory information by explicit commu-

nication. Latimer et al. [40] andRekleitis et al. [41] proposed a coordinatedmulti-robot approach for

a coveragemissionwhile the workspace is typically broken down into distinct regions by Boustro-

phedon decomposition and different region is covered by robots with back-and-forth motions.

Most recently, Schwager et al. [48] suggested a near optimal sensing configuration for coverage by

a group of robots by learning the distribution of the sensory information in environments.

Although there have been many studies on multi-robot coverage and most attempt to improve

completeness, very few existing coverage algorithms focus on robustness. The MSTC algorithm

Artificial Intelligence - Emerging Trends and Applications6



proposed by Hazon and Kaminka [14] is robust and complete. The robots with this algorithm

would cover cells more than once. Neural network methods have been broadly applied to robot

motion planning, control and coverage (e.g. [2], [49, 50]). However, most of them deal with

single robot for coverage (e.g. [2, 5, 6]). Some neural network models require learning procedures

(e.g. [51, 52], which are computationally expensive and difficult to achieve CAC in real time.

In this chapter, a neural dynamics approach is proposed for multi-robot area coverage appli-

cations. Mobile robots have no collisions among themselves and can avoid obstacles and

cooperatively work together to improve cleaning productivity effectively. The proposed

approach is capable of performing CAC for multirobots, autonomously without any human

intervention. Each robot treats the other robots as moving obstacles. The neural activity

landscape of each robot is able to guide the robot to follow a reasonable path and to cooperate

with other robots. In this paper, the real-time path is generated by employing a neural network

algorithm, without either any prior knowledge of the environment or any pre-defined tem-

plate. No learning procedures are required in the proposed algorithm. The advantage of such

CAC strategy using the proposed neural networks is that the robots do not repeat the previous

covered locations. The simulation studies demonstrate that the robustness and fault-tolerant

can be ensured if one of the robots fails. It is computationally simple and flexible to implement

the proposed algorithm on autonomous CAC as no learning procedures and no templates are

required. The dynamics of each neuron is characterized by a shunting equation or an additive

equation derived from the membrane model for a biological neural system [53]. There are only

local lateral connections among neurons. Thus, the computational complexity depends on the

neural network size. The varying environment is represented by the dynamic activity land-

scape of the neural network. Multiple robots share the environmental information, which is

collected from the sensors mounted in the workspace, and all the sensors on individual robots.

The effective, complete, and robust cooperate area coverage is achieved by the proposed

neural dynamics model. The term “cooperate” is in the sense that multiple robots can work

together to achieve a common coverage mission more efficiently and more quickly. “Robust” is

in the sense that the multi-robot system does not fatally failed or is not wholly affected by a

single robot failure. In this chapter, cleaning robot is used as an example, but the method is

applicable for any CAC applications.

The rest of the chapter is organized as follows. In Section 2, the biological inspiration, model

algorithm, and stability analysis of this neural dynamics-based approach to real-time collision-

free CAC by multirobot are addressed. Several simulation studies aimed to demonstrate the

completeness, robustness, and effectiveness of the proposed model for CAC are performed

and described in Section 3. Finally, several important properties of the proposed model with

CAC are concluded in Section 4.

2. The proposed model

In this section, the originality of the proposed neural network approach to real-time CAC for

multiple mobile robots will be briefly introduced. Then, the fundamental concept and model

algorithm of the proposed approach will be presented.

Biologically Inspired Intelligence with Applications on Robot Navigation
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2.1. Biological inspiration

In 1952, Hodgkin and Huxley [53] proposed a computational model for a patch of membrane

in a biological neural system using electrical circuit elements. In this model, the dynamics of

voltage across the membrane, Vm, is described using the state equation technique as

Cm
dVm

dt
¼� Ep þ Vm

� �

gp þ ENa � Vmð ÞgNa

� EK þ Vmð ÞgK

(1)

where Cm is the membrane capacitance, EK, ENa, and Ep are the Nernst potentials (saturation

potentials) for potassium ions, sodium ions, and the passive leak current in the membrane,

respectively. Parameters gK, gNa and gp represent the conductances of potassium, sodium, and

passive channels, respectively. This model provides the foundation of the shunting model and

leads to a number of model variations and applications [54].

By setting Cm ¼ 1 and substituting xi ¼ Ep þ Vm, A ¼ gp, B ¼ ENa þ Ep, D ¼ Ek � Ep, S
e
i ¼ gNa

and Sii ¼ gK in Eq. (1), a shunting equation is obtained

dxi
dt

¼ �Axi þ B� xið ÞSei tð Þ � Dþ xið ÞSii tð Þ (2)

where xi is the neural activity (membrane potential) of the ith neuron. Parameters A, B, and D

are nonnegative constants representing the passive decay rate, the upper and lower bounds of

the neural activity, respectively. Variables Sei and Sii are the excitatory and inhibitory inputs to

the neuron. This shunting model was first proposed by Grossberg to understand the real-time

adaptive behaviour of individuals to complex and dynamic environmental contingencies and

has many applications in visual perception, sensory motor control, and many other areas [54].

Research on biologically inspired robots has currently received attention [24, 55, 56].

2.2. Model algorithm

The fundamental concept of the proposed model is to develop a neural network architecture,

whose dynamic neural activity landscape represents the dynamically varying environment. By

properly defining the external inputs from the varying environment and internal neural con-

nections, the uncovered areas and obstacles are guaranteed to stay at the peak and the valley of

the activity landscape of the neural network, respectively. The uncovered areas globally attract

the robot in the whole state space through neural activity propagation, while the obstacles

have only local effect in a small region to avoid collisions. The real-time collision-free robot

area coverage is accomplished based on the dynamic activity landscape of the neural network,

the previous robot position and the other robot positions, to guarantee all locations to be

covered and the robots to travel along smooth, continuous paths with less turning.

The proposed topologically organized model is expressed in a 2D Cartesian workspace W of

the cleaning robots. The position of the ith neuron in the state space S of the neural network,

Artificial Intelligence - Emerging Trends and Applications8



denoted by a vector qi ∈R2, uniquely represents a position in W. In the proposed model, the

excitatory input results from the uncovered locations and the lateral neural connections, while

the inhibitory input results from the obstacles only. Each neuron has local lateral connections

to its neighbouring neurons that constitute a subset Ri in S. The subset Ri is called the receptive

field of the ith neuron in neurophysiology. The neuron responds only to the stimulus within its

receptive field. Thus, the dynamics of the ith neuron in the neural network is characterized by

a shunting equation as

dxi
dt

¼� Axi þ B� xið Þ Ii½ �þ þ
X

k

j¼1

wij xj
� �þ

0

@

1

A

� Dþ xið Þ Ii½ ��

(3)

where k is the number of neural connections of the ith neuron to its neighbouring neurons within

the receptive field Ri. The external input Ii to the ith neuron at Position (m,n) is defined as:

Ii m; nð Þ ¼

E if it is uncovered

0 if it is covered

�E if it is obstacle another robotð Þ

8

>

<

>

:

(4)

where E≫B is a very large positive constant. The terms Ii½ �þ þ
Pn

j¼1 wij xj
� �þ

and Ii½ �� are the

excitatory and inhibitory inputs, Sei and Sii in Eq. (2), respectively. Function a½ �þ is a linear-

above-threshold function defined as a½ �þ ¼ max a; 0f g and the nonlinear function a½ �� is defined

as a½ �� ¼ max �a; 0f g. The connection weight wij from the ith neuron to the jth neuron is given

by wij ¼ f jqi � qjj
� �

, where ∣qi � qj∣ represents the Euclidean distance between vectors qi and qj

in the state space, and f að Þ is a monotonically decreasing function, such as a function defined

as f að Þ ¼ μ=a, if 0 ≤ a < r0; f að Þ ¼ 0, if a ≥ r0, where μ and r0 are positive constants. Therefore,

each neuron has only local lateral connections in a small region 0; r0½ �. It is obvious that the

weight wij is symmetric, i.e., wij ¼ wji. A schematic diagram of the neural network in 2D with

three-layer (r = 1, 2, and 3) neighbouring neurons with regard to the central neuron C(m,n) is

shown in Figure 1, where r0 is chosen as r0 ¼ 2 and r is the number of circles enclosing the

central neuron C(m,n). The receptive field of the ith neuron is represented by a circle with a

radius of r0. The ith neuron has only eight lateral connections to its neighbouring neurons that

are within its receptive field. The 2D Cartesian workspace in the proposed approach is

discretized into squares. The diagonal length of each discrete area is equal to the robot

coverage radius that is the size of robot effector or footprint [2]. Each position (grid) uses a

number to represent its environmental information. The neurons are placed uniformly on the

space to represent covered positions, uncovered positions, and obstacles. In this algorithm, it is

necessary to have a flag, denoted by Ii m; nð Þ in Eq. (4), for a neuron at Position m; nð Þ to

indicate its status that is uncovered, covered, obstacle, or moving obstacle (another robot is

regarded as a moving obstacle). This flag may be technically obtained by the sensor informa-

tion from the current map. A topologically organized discrete map is employed to represent

the workspace; each grid uses a number (flag) to represent its environmental information

Biologically Inspired Intelligence with Applications on Robot Navigation
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(state). This approach only needs current map, instead of the prior map information. The

boundary of the workspace is assumed to be known that can be obtained by wall-following

algorithm [57].

The proposed network characterized by Eq. (3) ensures that the positive neural activity can

propagate to all the state space, but the negative activity only stays locally. Therefore, the

uncovered areas globally attract the robot, while the obstacles only locally prevent the robot

from collisions. The positions of the uncovered areas and obstacles may vary over time, e.g.,

there are moving obstacles (other robots); the covered areas become uncovered again. The

activity landscape of the neural network dynamically changes due to the varying external

inputs from the uncovered areas and obstacles and the internal activity propagation among

neurons. For energy and time efficiency, the robot should travel a shortest path (with least re-

visited locations) and make least turning of moving directions. The robot path is generated

from the dynamic activity landscape and the previous robot position to avoid least navigation

direction changes. For a given current robot position in S (i.e., a position inW), denoted by pc ,

the next robot position pn (also called “command position”) is obtained by

pn ( xpn ¼ max xj þ cyj; j ¼ 1; 2;⋯; k
n o

(5)

where c is a positive constant, k is the number of neighbouring neurons of the pcth neuron, i.e.,

all the possible next positions of the current position pc. Variable xj is the neural activity of the

jth neuron, yj is a monotonically increasing function of the difference between the current to

next robot moving directions, which can be defined as a function of the previous position pp,

the current position pc, and the possible next position pj, e.g., a function defined as

Figure 1. The architecture of a 2D neural network with three-layer (r = 1, 2, and 3) neighbouring neurons with regard to

the central neuron C(m,n). The ith neuron has only eight lateral connections to its neighbouring neurons that are within its

receptive field.
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yj ¼ 1�
Δθj

π
(6)

where Δθj ∈ 0;π½ � is the turning angle between the current moving direction and next moving

direction, e.g., if the robot moves straight, Δθj ¼ 0; if goes backward, Δθj ¼ π. Thus, Δθj can be

given as: Δθj ¼ ∣θj � θc∣ ¼ ∣atan2 ypj
� ypc

; xpj � xpc

� �

� atan2 ypc
� ypc

; xpp � xpp

� �

∣. After the

current position reaches its next position, the next position becomes a new current position (if the

found next position is the same as the current position, the robot stays there without any move-

ment). The current robot position adaptively changes according to the varying environment.

In a multi-robot system, if there exist two robots that work together to sweep in a workspace, it

may be viewed as a multiple neural network system [58]. Each robot needs one neural network

and all robots share the same workspace information. Each robot treats the other robots as

moving obstacles recognized by the sensor information so that they can avoid collisions and

cooperatively work together. Each robot has its own neural network which is updated dynam-

ically on the positions of the robot. The environmental knowledge is also dynamically

updated, which is sensed by robots via the sensor information. Every position is flagged by a

number in Eq. (4). Once one of the multiple robots moves to Position m; nð Þ, the position

should be marked as the external input Ii m; nð Þ ¼ �E.

The proposed neural network is a stable system. The neural activity xi is bounded in the finite

interval �D;B½ � [54]. The stability and convergence of the present shunting neural network

model can also be rigorously proved using a Lyapunov stability theory. By introducing new

variables and performing variable substitutions, Eqs. (2) or (3) can be written as

dzi
dt

¼ ai zið Þ bi zið Þ �
X

N

j¼1

cijdj zj
� �

0

@

1

A (7)

which is Grossberg’s general form [54]. It can be proved that Eqs. (2) or (3) satisfies all the three

stability conditions required by the Grossberg’s general form [54]. The rigorous proof of the

stability and convergence of Eq. (7) can be found in [59]. The dynamics of the neural network is

guaranteed to converge to an equilibrium state of the system. Eq. (3) combined with the

previous robot position ensures to generate complete coverage path. At the beginning, when

t ¼ 1, the neural activity of all neurons is set to zero. The state of the workspace varies in terms

of the dynamics of the neural network described by (3) due to the influence of external inputs.

The planned motion ends when the network reaches a steady state.

It is inevitable that multiple cleaning robots have to deal with a deadlock situation in real-world

applications. When a cleaning robot arrives in a deadlock situation, i.e., all the neighboring

positions are either obstacle or covered locations, all the neural activities of its neighboring

locations are not larger than the activity at the current location, because its neighboring locations

receive either negative external input (obstacles) or no external input (covered locations), and all

the covered neighboring locations passed a longer decay time as they were covered earlier than

the current location [see Eq. (3)]. In the proposed model, the neural activity at the deadlock

Biologically Inspired Intelligence with Applications on Robot Navigation
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location will quickly decay to zero due to the passive decay term�Axi in Eq. (3). Meanwhile, due

to the lateral excitatory connections among neurons, the positive neural activity from the uncov-

ered locations in the workspace will propagate toward the current robot location through neural

activity propagation (please see [60]). Therefore, the robot is able to find a smooth path from the

current deadlock location directly to an uncovered location. The robot continues its cleaning task

until all the locations in the workspace become covered. Thus, the proposed model is capable of

achieving complete coverage path planning with deadlock avoidance. The multiple robots will

not be trapped in deadlock situations.

The complexity is squarely proportional to the degree of discretization. There are only local

connections among neurons. If the workspace is an N �N square and the number of neurons

isM ¼ N �N, N2 neurons are required and there are 8N2 neural connections. If the workspace

is a rectangle, the number of neurons required is equal to M ¼ Nx �Ny, where Nx and Ny are

the discretized size of the Cartesian workspace. Each neuron has maximal eight local connec-

tions. As a result, the total neural connections are 8M. The computational complexity of the

proposed algorithm is O N2
� �

.

2.3. Implementation issues

There have been many studies on the CAC implementation of mobile robots using various

approaches [46, 61–63]. The selection of on-board sensors is equally important as the develop-

ment of CAC navigation algorithm itself. The performance of multirobots will depend on both

CAC navigation algorithm and the placement of on-board sensors. Appropriate amount of

sensors is key for the multi-robot system. Use of excessive amount of sensors will cause the

increase of cost of robots [62, 64]. Each robot in this multi-robot system has the same configu-

ration. The basic configuration of the robot consists of CPU, memory, sensors, DC motors,

wheels, brush or dustpan, and an on-board power supply (e.g., rechargeable battery) [61].

• Sensors equipped on the robots are assumed to be imaging sensors (e.g., camera and

position sensor) and rang sensors (e.g., infrared sensors, sonar, ultrasonic sensors or small

radar). With on-board sensors, mobile robots can construct current environmental map

around the robots [2, 65]. Ultrasonic sensors are employed for range measures due to their

simplicity, flexibility, adaptability, low cost, and robustness. The interpretation of the

sonar readings is helpful to build an environmental map. The small angular resolution of

infrared sensors makes it suitable for CAC with back-and-forth motion. Infrared sensors

are capable of reducing angular uncertainty caused by accumulated error of dead reckon-

ing [63]. In addition, several cameras are suspended from the ceiling of workspace that

provides global environmental information to robots [66].

• Wheels, DC motors, and discretized environments: each robot is driven by two DC geared

motors with two wheels installed to the gear axis. The 2D Cartesian workspace is

discretized into squares as most other CAC models. The diagonal length of each discrete

grid is equal to a robot sweeping radius, which is the size of the robot effector or footprint

(Figure 2). The robot in this paper is assumed to be round in shape and a square is

embedded in this round as robot’s body. A robot sweeping range, which is the size of the
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robot effector, is proportional to the size of each square. The size of a robot is slightly

larger than that of each square. Two wheels driven by DC motors are mounted on shafts

with brush or dustpan. The wheels are axle mounted and supported using two sealed ball

bearings [see Figure 3(a)]. Note that ball bearings do not appear in Figure 3. New design

is assumed that the wheels have capability to rotate at any directions on the floor make the

robots flexibly turn in the workspace. For example, Figure 3(b) shows that the robot turns

clockwise and counterclockwise 45 ∘ . Therefore, sweeping an area can be achieved by

traversing the center of that area represented by a rectangular cell. It is assumed that a

discrete location represented by that squared cell is regarded to be covered once a robot

visits the discrete cell. If a cleaning robot covers every discrete cell, the robot path is

considered as a CAC in the workspace.

Figure 2. Discretized square enclosed by sweeping area.

Figure 3. Two wheels driven by DC motors are mounted to the robot. (a) The robot; (b) the robot rotates clockwise and

counter-clockwise 45�.
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3. Simulation and comparison experiments

The proposed model for CAC is performed by simulation experiments in C++ in this section.

The approach is capable of performing CAC for multiple cleaning robots, autonomously

without human operation. Two or more mobile robots can cooperatively sweep in indoor

environments so as to improve the work productivity. Each robot is required to not only clean

its own floor but also cooperate with others to perform the cleaning tasks. In this section, the

proposed approach is first applied to multiple robots for cooperative coverage in a corridor-

like environment. Then, cooperative coverage in an indoor room environment is studied. Next,

it is applied to cooperative coverage in a warehouse environment. Finally, four cleaning robots

working together to sweep a sport field is simulated.

3.1. Cooperative coverage in a corridor-like environment

To illustrate the cooperative coverage by a multi-robot system, the proposed model is applied

to a cooperative coverage with obstacle avoidance in a corridor-like environment. In the

simulation for the multi-robot system, there are two neural network systems for these two

robots that share mutual external input signals from the sensor information representing

environmental knowledge. Each neural network has 33� 28 topologically organized neurons

with zero initial neural activities. The model parameters are set as A ¼ 10, B ¼ 1, andD ¼ 1 for

the shunting equation; μ ¼ 0:7 and r0 ¼ 2 for the lateral connections; and E ¼ 100 for the

external inputs (on parameter sensitivity, see [2]). In Figure 4(a), one robot, called Robot 1,

represented using solid circle starts to sweep from the lower left corner S1(1, 1); the other,

Robot 2, exhibited by a hollow circle covers from the upper right corner S2(31, 26). After two

robots sweep four columns in their own regions, they encounter walls and then enter to clean

in a narrow corridor-like workspace [see Figure 4(a)]. Two robots move along smooth zigzag

Figure 4. Cooperative coverage in a corridor-like environment. (a) When Robot 1 reaches Position B1 8; 8ð Þ and Robot 2

Position B2 24; 19ð Þ; (b) when two robots fulfill the coverage task.
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paths by performing back-and-forth motions. Initially, when Robot 1 reaches Position A1 5; 17ð Þ

and Robot 2 Position A2 27; 10ð Þ, the neural activity landscape of the neural networks is shown

in Figure 5(a). In this case, two robots have two neural networks and the neural activities of

two neural networks are, respectively, computed through Eq. (3). Consequently, their neural

activities may be plotted in a figure as a neural activity landscape of neural network.

These two robots meet at the middle section of the corridor at Positions P1 16; 14ð Þ (flag

Ii 16; 14ð Þ ¼ �E) and P2 16; 13ð Þ (flag Ii 16; 13ð Þ ¼ �E), respectively. Obviously, Robot 1 and

Robot 2 reach the central corridor simultaneously without collision in the central area as

shown in Figure 4(a). From the central area, these two robots are able to search point-to-point

paths to move to uncovered areas since uncovered areas globally attract them (see [60]). These

two robots can follow continuous and smooth paths to achieve Q1 8; 8ð Þ and Q2 24; 19ð Þ, respec-

tively. They generate CAC in these two uncovered areas and sweep them as shown in

Figure 4(b) until they fulfill all the coverage mission at Positions T1 27; 8ð Þ and T2 5; 19ð Þ.

In fact, the procedure of these two robots cooperatively cover the workspace can be illustrated

by the neural activity landscape of the neural networks in Figure 5. It demonstrates that after

these two robots sweep their own areas, they clean the public aisle areas cooperatively and

then move to sweep their own areas again. Figure 5 shows the neural activity landscape when

these two robots move to Positions A1 5; 17ð Þ, A2 27; 10ð Þ; B1 12; 13ð Þ, B2 20; 14ð Þ; C1 15; 15ð Þ,

C2 17; 12ð Þ; D1 12; 4ð Þ, D2 20; 23ð Þ; E1 17; 6ð Þ, E2 15; 21ð Þ; and F1 25; 6ð Þ, F2 7; 21ð Þ.

3.2. Cooperative coverage in a warehouse environment

To investigate the flexibility and adaptability of cooperative coverage by multiple robots, the

proposed model is applied to a warehouse environment with wall-like obstacles placed in

different positions (Figure 6). For each robot, the neural network has 32� 32 topologically

organized neurons with zero initial neural activities and the model chooses the same parame-

ters as the case above.

Robots 1 and 2, respectively, work in the lower half and upper half sections of the workspace.

However, they can also assist each other, in other words, one robot can aid to cover the other

areas if it has already covered its own column. In this simulation, they start from the same side

in the workspace. Robot 1 represented by a solid dot starts from the lower left corner S1(1,1),

whereas Robot 2 by an empty circle sweeps from the upper left corner S2(1,30).

The wall-like obstacles have influence over the cleaning assignments of two robots. The robot

paths that these two robots meet at the middle of the workspace are shown in Figure 6(a)

when they reach Positions A1(1,15) and A2(1,16), where these two robots equally accomplish

the coverage tasks. The neural activity landscape of the neural networks when Robots 1 and 2

meet at Positions A1(1,15) and A2(1,16) can be found in Figure 7(a).

These two robots are responsible for the different areas in the warehouse and sweep their own

regions. Due to the placement of obstacles, these two robots get through different amounts of

sweeping assignments. For instance, when Robot 1 arrives at Position B1(7,5), Robot 2 only

reaches Position B2(4,23). The neural activity landscape of the neural networks is illustrated in

Figure 7(b). Similarly, when Robot 1 arrives at Position C1(12,15), Robot 2 only reaches Position
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Figure 5. The neural activity landscape of the neural networks for the corridor-like environment case when Robots 1 and

2 reach (a) Positions A1 5; 17ð Þ, A2 27; 10ð Þ; (b) B1 12; 13ð Þ, B2 20; 14ð Þ; (c) C1 15; 15ð Þ, C2 17; 12ð Þ; (d) D1 12; 4ð Þ, D2 20; 23ð Þ; (e)

E1 17; 6ð Þ, E2 15; 21ð Þ; and (f) F1 25; 6ð Þ, F2 7; 21ð Þ.
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C2(10,22), in which the corresponding neural activity landscape of the neural networks is

exhibited in Figure 7(c). Obviously, when these two robots meet at Positions D1(14,25) and

D2(14,26), Robot 1 is assisting Robot 2 for coverage work, where the corresponding neural

activity landscape of the neural networks is shown in Figure 7(d). Conversely, Robot 2 aids

Robot 1 to do coverage work when they arrive at Positions E1(16,4) and E2(16,5). They can

cooperatively work together without collisions to improve the cleaning productivity efficiently.

The neural activity landscape of the neural networks is illustrated in Figure 7(e). Finally, when

Robot 1 arrives at F1(28,29), Robot 2 reaches F2(27,30), which shows that the Robot 1 has

assisted to sweep one column area for Robot 2 as shown in Figure 6(a). These two robots

continue to sweep the rest of the workspace. Robot 1 passes Positions P(29,29) and Q(30,26)

and reaches the final position T1(30,1), while Robot 2 attains the final position T2(30,27) via

U(30,30) [see Figure 6(b)]. The neural activity landscape of the neural networks is illustrated in

Figure 7(f). Ultimately, they reaches Positions T1(30,1) and T2(30,27) asynchronously. There-

fore, the neural network is able to guide these two robots to complete the coverage task.

3.3. Cooperative coverage by four cleaning robots in a sports field environment

The proposed model is further applied to cooperative coverage in a sports field environment

by four cleaning robots, where there exist four neural network systems and the four cleaning

robots share mutual external input signals from sensory data representing the environmental

information. Each neural network has 20� 20 topologically organized neurons with zero

initial neural activities and the same model parameters as the above case. In Figure 8(a), the

use of various lines is to distinguish the generated paths by the robots. Robot 1 whose paths

are represented by solid lines starts to move from the lower left corner S1(1,1). Robot 2 whose

Figure 6. Cooperative coverage in the warehouse environment. (a) Robots 1 and 2 reach Positions F1(28,29) and F2(27,30);

(b) two robots work cooperatively.
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Figure 7. The neural activity landscape of the neural networks for the warehouse environment when Robots 1 and 2

reach (a) Positions A1 1; 15ð Þ and A2 1; 16ð Þ; (b) B1 7; 5ð Þ and B2 4; 23ð Þ; (c) C1 12; 15ð Þ and C2 10; 22ð Þ; (d) D1 14; 25ð Þ and

D2 14; 26ð Þ; (e) E1 16; 4ð Þ and E2 16; 5ð Þ; and (f) F1 28; 29ð Þ and F2 27; 30ð Þ.
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paths are represented by dashed lines moves from the upper left corner S2(1,18). Robot 3

whose paths are represented by dash-dotted lines starts from the upper right corner S3(18,18).

Robot 4 whose paths are represented by dash-dot-dot lines sweeps from the lower right corner

S4(18,1). In the simulation, the planned robot paths are shown in Figure 8(a), where the four

robots search snake-trail CAC paths and meet at the central area. Because for each neural

network, the positive neural activity can propagate to the whole state space of the neural

network, each robot can achieve CAC. If one grid is covered by one robot, it will be marked

covered by external input signal (Ii ¼ 0), another robot will know that it has been covered.

When the four robots eventually meet, they have no collision. It shows that these four robots

are able to autonomously sweep the whole workspace. They can sweep along zigzag coverage

paths and avoid collisions with each other.

After they meet at the central area, where there is a deadlock situation [2], i.e., Robot 1 is at F1
(9,9); Robot 2 at F2 (9,10); Robot 3 at F3 (10,10); and Robot 4 at F4 (10,9), the robots are able to

search point-to-point paths to move to any pre-defined targets. In this simulation as shown in

Figure 8(b), Robot 1 goes back to its initial point G1(1,1). Robot 2, 3, and 4 move back to their

initial points G2(1,18), G3(18,18), and G4(18,1), respectively. They may be pre-defined to move

to any points based on the demand (see [2]). The targets can globally attract the robots in the

whole workspace through neural activity propagation. This case has potential applications in

sport fields such as basketball or volleyball match. The four mobile robots can be assigned to

clean fields together (e.g., mop sweat on the floor during the volleyball match) and then move

back to their starting points during sports contest break, without any human intervention.

3.4. Cooperative coverage in an indoor environment with a robot failure

To verify the robustness and effectiveness of the proposed model, it is applied to a complicated

case of cooperative coverage in an indoor environment, where there exist seven sets of

Figure 8. CAC of four mobile robots in a sport field environment. (a) The robot paths when four meet at the centre; (b) the

entire robot paths after each robot returns its home position.
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obstacles with different sizes and shapes in the workspace as shown in Figure 9. Each neural

network has 33� 28 topologically organized neurons with zero initial neural activities. The

model parameters are chosen as A ¼ 50, B ¼ 1 and D ¼ 1 for the shunting equation; μ ¼ 0:7

and r0 ¼ 2 for the lateral connections; and E ¼ 100 for the external inputs. In this section, two

simulations are performed as shown in Figure 9. First, these two robots work cooperatively

Figure 9. Complete cooperative coverage in an indoor environment with (a) both robots function properly; (b) a robot

failure at Position F2 26; 26ð Þ.

Figure 10. The neural activity landscape of the neural networks for the unstructured environment case when Robot 1

reaches (a) Position P1 8; 8ð Þ; (b) Position Q1 16; 13ð Þ.

Artificial Intelligence - Emerging Trends and Applications20



[shown in Figure 9(a)]. Second, when Robot 2 fails at one position, Robot 1 is demonstrated to

perform the rest of the work.

Robot 1 symbolized by a solid circle starts to move from the lower left corner S1(1,1) and Robot

2 by an empty circle sweeps from the upper right corner S2(31,26) as illustrated in Figure 9.

The real-time collision-free robot paths are shown in Figure 9(a), where the solid lines repre-

sent paths of Robot 1 and the dashed lines stand for those of Robot 2. These two robots cover

the workspace cooperatively. Robot 1 reaches Position P1 8; 8ð Þ, while Robot 2 attains Position

P2 25; 20ð Þ as shown in Figure 10(a). Continuing the work cooperatively, two robots can

Figure 11. The neural activity landscape of the neural networks for the indoor environment case when Robot 2 fails at

F2 26; 26ð Þ and Robot 1 reaches (a) Position A1 11; 19ð Þ; (b) B1 24; 4ð Þ; (c) C1 25; 13ð Þ.
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approach to achieve complete coverage of the entire workspace as uncovered areas globally

attract them to visit. The neural activity landscape of the neural networks illustrates that these

robots march on to achieve CAC when Robot 1 arrives at Position Q1 16; 13ð Þ and Robot 2

Position Q2 18; 8ð Þ in Figure 10(b). It shows that these two cleaning robots are capable of

autonomously and cooperatively sweeping the whole workspace. Not only can they sweep

along a curve path to avoid the irregularly shaped obstacles but also are able to avoid colli-

sions with each other.

Now a simulation is performed to demonstrate the robustness of the proposed model. It is

assumed that Robot 2 fails to work at Position F2 26; 26ð Þ as shown in Figure 9(b). Robot 1 can

continue to complete the rest of coverage mission even though its partner, Robot 2, was stuck

at Position F2 26; 26ð Þ [see Figure 11(b)]. The neural activity landscape of the neural networks

when Robot 1 reaches Positions A1 11; 19ð Þ and B1 24; 4ð Þ are illustrated in Figure 11(a) and (b),

respectively. Eventually, when Robot 1 arrives at Position C1 25; 13ð Þ as shown in Figure 11(c),

the CAC approaches to an end. In fact, compared Figure 9(a) with Figure 9(b), Robot 1 assists

Robot 2 for eight columns of sweeping work. The neural activity landscape of the neural

networks for the indoor environment case when Robot 2 fails at F2 26; 26ð Þ illustrates the area

coverage progress of these two robots (Figure 11). Although Robot 2 fails at Position F2 26; 26ð Þ,

Robot 1 can still be responsible for the rest coverage work. This simulation shows that the

proposed approach is robust. The complete coverage can be achieved as long as at least one

single robot is able to work.

4. Conclusion

Multiple robots have the capacity for covering the areas more efficiently than a single robot. In

this chapter, a biologically motivated neural network approach to cooperative area coverage

by a multi-robot system is proposed, which is capable of autonomously accomplishing

collision-free cooperative coverage in CAC environments. The effectiveness of the presented

paradigm has been discussed and demonstrated through case studies. Multiple robots can

work together to achieve a common coverage goal efficiently and robustly.

It is practical to implement the proposed approach in autonomous area coverage as no learn-

ing and no templates are required. The robustness and fault-tolerant can be ensured if some

robots fail. The model algorithm is computationally simple. The robot path is generated

without explicitly searching over the global free workspace or the collision paths, without

explicitly optimizing any global cost functions, without any prior knowledge of the dynamic

environment, without any templates, and without any learning procedures.

In the future, some research work will be carried out. First, energy-driven multirobot algo-

rithms associated with deep reinforcement learning will be further studied to explore the

minimum-energy cleaning robots. Second, the task allocation and impact of number of robots

for the cleaning mission will be addressed. Third, the algorithm will be considered to be

implemented on an FPGA-based platform. Finally, SLAM and robot vision will be carried out

to make the cleaning algorithms more accurate.
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