
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

7

A NeuroGenetic Approach for Multiprocessor
Scheduling

Anurag Agarwal
Department of Information Systems and Operations Management, Warrington College of

Business Administration, University of Florida
USA

1. Abstract

This chapter presents a NeuroGenetic approach for solving a family of multiprocessor
scheduling problems. We address primarily the Job-Shop scheduling problem, one of the
hardest of the various scheduling problems. We propose a new approach, the NeuroGenetic
approach, which is a hybrid metaheuristic that combines augmented-neural-networks
(AugNN) and genetic algorithms-based search methods. The AugNN approach is a non-
deterministic iterative local-search method which combines the benefits of a heuristic search
and iterative neural-network search. Genetic algorithms based search is particularly good at
global search. An interleaved approach between AugNN and GA combines the advantages
of local search and global search, thus providing improved solutions compared to AugNN
or GA search alone. We discuss the encoding and decoding schemes for switching between
GA and AugNN approaches to allow interleaving. The purpose of this study is to
empirically test the extent of improvement obtained by using the interleaved hybrid
approach instead of applied using a single approach on the job-shop scheduling problem.
We also describe the AugNN formulation and a Genetic Algorithm approach for the Job-
Shop problem. We present the results of AugNN, GA and the NeuroGentic approach on
some benchmark job-shop scheduling problems.

2. Introduction

Multiprocessor scheduling problems occur whenever manufacturing or computing
operations are to be scheduled on multiple machines, processors or resources. A variety of
such scheduling problems are discussed in the literature. The most general scheduling
problem is the resource-constrained project-scheduling problem; this problem has received
a lot of attention in the literature Herroelen et al. (1998), Kolisch (1996). The open-shop,
flow-shop, job-shop and task scheduling problems can be considered special cases of the
resource-constrained project-scheduling problem. While smaller instances of the various
types of scheduling problems can be solved to optimality in reasonable computing time
using exact solution methods such as branch and bound, most real-world problems are
unsolvable in reasonable time using exact methods due to the combinatorial explosion of the
feasible solution space. For this reason, heuristics and metaheuristics are frequently
employed to obtain satisfactory solutions to these problems in reasonable time. In this

Source: Multiprocessor Scheduling: Theory and Applications, Book edited by Eugene Levner,
ISBN 978-3-902613-02-8, pp.436, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Multiprocessor Scheduling: Theory and Applications 122

paper, we propose a new hybrid metaheuristic approach called the NeuroGenetic approach
for solving one family of multiprocessor scheduling problems – the job-shop scheduling
problem. The NeuroGenetic approach is a hybrid of the Augmented Neural Networks
(AugNN) approach and the Genetic Algorithms (GA) approach. The AugNN approach
provides a mechanism for local search, while the GA approach provides a mechanism for
global search. An interleaving of the two approaches helps guide the search to better
solutions.
In this chapter, we focus on the job-shop scheduling problem (JSSP). In JSSP, there are n
jobs, each having m operations and each operation requires a different machine, so there are
m machines. For each job, the order in which operations require machines is fixed and is
independent of the order of machine requirement on other jobs. So in a 2x3 job shop-
problem, for example, say job 1 requires machines in the order 2, 3 and 1, job 2 may require
the machines in a different order, say 1, 3 and 2 or 1, 2 and 3 or 3, 1 and 2 or it could be the
same i.e., 2,3 and 1. In a flow-shop problem (FSP), which is special case of the job-shop
problem, the order in which machines are needed for each operation is assumed to be the
same for each job. An FSP is therefore, a special case of the JSSP. In both JSSP and the FSP,
there is only one machine of each type, and a machine can only process one operation at a
time. The problem is to find a precedence and resource feasible schedule for each operation
for each job with the shorted possible makespan. In general, preemption is not allowed, i.e.
operations must proceed to completion once started.
A job-shop scheduling problem can be considered a special case of the resource-constrained
project scheduling problem (RCPSP). In the RCPSP, a PERT chart of activities can be drawn
just like for a JSSP. The RCPSP is more general because it allows multiple successors for an
operation, whereas a JSSP allows only one successor. Also, while in RCPSP an activity may
require multiple units of multiple resource types, in JSSP activities require only one unit of
one resource type. Task scheduling problem is also a special case of RCPSP, in that only one
type of resource is required for all activities. In task scheduling there can be multiple
successors for an operation, like in an RCPSP.
In the next section, we review the literature primarily on JSSP. In the following section, the
AugNN formulation for a JSSP is described. Section 4 outlines the GA approach for solving
the JSSP. Section 5 describes the Neurogenetic approach and discusses how the AugNN and
GA approaches can be interleaved. Section 6 provides the computational results of several
benchmark problems in the literature. Section 7 summarizes the paper and offers
suggestions for future research. This study contributes to the literature of job-shop
scheduling by proposing for the first time an AugNN architecture and formulation for the
JSSP and also proposing a hybrid of AugNN and GA approach.

3 Literature Review

The JSSP has been recognized as an academic problem for over four decades now. Giffler
and Thompson (1960) and Fisher and Thompson (1963) were amongst the first to address
this problem. Exact solution methods have been proposed by Carlier and Pinson (1989),
Applegate and Cook (1991) and Brucker et al. (1994). A number of heuristic search methods
have also been proposed, for example, Adams et al. (1988) and Applegate and Cook (1991).
A variety of metaheuristic approaches have also been applied to the JSSP, such as Neural
Networks (Sabuncuoglu and Gurgun, 1996), Beam Search (Sabuncuoglu and Bayiz, 1999),
Simulated Annealing (Steinhofel et al. 1999), Tabu Search (Barnes and Chambers, 1995;

A NeuroGenetic Approach for Multiprocessor Scheduling 123

Nowicki and Smutnicki, 1996; Pezzella and Merelli, 2000; Zhang et al. 2008), Genetic
Algorithms (Falkenauer and Bouffoix, 1991; Storer et al, 1995; Aarts et al., 1994; Bean, 1994;
Croce et al., 1995), Evolutionary Algorithms (Mesghouni and Hammadi, 2004), Variable
Neighborhood Search (Sevkli and Aydin, 2007), Global Equilibrium Search technique
(Pardalos and Shylo, 2006). Jain and Meeran (1999) provide a good survey of techniques
used for the JSSP. For the RCPSP, a number of heuristic and metaheuristic approaches have
been proposed in the literature. For a good review of the heuristics, see Herroelen et al.,
1998.

4. Augmented Neural Network Formulation

The AugNN approach was first introduced by Agarwal et al. (2003). They applied the
AugNN approach to the task scheduling problem and offered an improved approach for
using AugNN approach in Agarwal et al. (2006). In this approach, a given scheduling
problem is converted into a neural network, with input layer, hidden layers and output
layer of neurons or processing elements (PEs). The connections between the PEs of these
layers are assigned weights. Input, activation and output functions are then designed for
each node in such a way that a single-pass or iteration from the input to the output layer
produces a feasible solution using a heuristic. An iteration, or a pass, consists of calculating
all the functions of the network from the input up to the output layer. A search strategy is
then applied to modify the weights on the connections such that subsequent iterations
produce neighboring solutions in the search space.
We now describe, with the help of an example, how to convert a given JSSP problem into a
neural network. We will assume a simple 3x2 JSSP instance of Figure 1 for this purpose.

Job 1 2 3

1 (4) 2 (5) 1 (3)
Machine (Proc Time)

2 (3) 1 (4) 2 (6)

Figure 1. An Example 3x2 Job Shop Scheduling Problem

In this 3x2 problem, there are 3 jobs, each with 2 operations, for a total of 6 operations (O11,
O12, O21, O22, O31 and O32). Job 1 requires 4 units of time (ut) on machine 1 (O11) followed by
3 ut on machine 2 (O12). Job 2 requires 5 ut on machine 2 (O21) followed by 4 ut on machine
1 (O22). Job 3 requires 3 ut on machine 1 (O31) followed by 6 ut on machine 2 (O32). The
problem is how to schedule these six operations such that the makespan is minimized.
Figure 2 shows a neural network for this problem.
There are two operation layers, corresponding to the two operations for each job. Each
operation layer has three nodes corresponding to each job. Note that for a more general nxm
case, there will be m operation layers, each with n nodes. Following each operation layer is a
machine layer with 3 nodes each. Each of the three operation nodes is connected to a machine
which is determined by the given problem. So, for example, given our 3x2 problem of Figure
1, O11 is connected to machine 1 and O12 is connected to machine 2; O21 is connected to machine
2 and O22 is connected to machine 1, and so on. For a more general n x m case, there will be n
machine nodes in each of the m machine layers. An input layer is designed to provide a signal
to the first operation layer to start the scheduling process. There is also an output layer with
one PE labeled OF for “final operation”, which is a dummy operation with zero processing
time and no resource requirement. The operation and the machine layers can be regarded as

Multiprocessor Scheduling: Theory and Applications 124

hidden layers of a neural network. Connections between operation nodes and machine nodes
are characterized by weights. These weights are all the same for the first iteration, but are
modified for subsequent iterations. There are also connections between machine nodes and
subsequent operation nodes, which are not characterized by any weights. These connections
serve to pass signals from one layer to the next to trigger some functions.

Figure 2: AugNN Architecture to solve a 3x2 Job Shop Scheduling Problem

The output of the operation nodes (OO) becomes input to the machine nodes. There are
three types of outputs from each machine node. One output (OMF) goes to the next
operation node (or to the final node). This signals the end of an operation on that machine.
The second type of output (OMM) goes to the machine node of its own type. For example,
machine 1 sends an output to all other machine 1 nodes. Similarly, machine 2 sends an

O11 O21 O31

M1,11

O12 O22 O32

I

OF

Operation Layer

Operation Layer

Machine Layer

Machine Layer

Output Layer

Input Layer

W12 W22 W32

W11

W21

W31

OI

OI
OI

OO1

OMF1,11

OMF2,12F

OMM

OMR1,1

M2,21 M1,31

M2,12 M1,22 M2,32

II
II

A NeuroGenetic Approach for Multiprocessor Scheduling 125

output to all other machine 2 nodes. These signals are used to enforce the constraint that the
same machine cannot process more than one operation at the same time. The third output
(OMR) is in the reverse direction, back to the operation node. Whenever an operation is
assigned to a machine, the machine node sends a signal back to the operation node,
indicating that it has been assigned. This signal changes the state of the operation node and
triggers other functions.
We now describe the input, activation and output functions for each node and the search
strategy for the weights. We will need the following notation to describe our functions:

n Number of jobs
m Number of machines

C Current iteration

J Set of jobs = {1,..,n}
Ji Job i, i ∈ J
M Set of machines = {1,..,m}
Mk Machine k, k ∈ M
O Set of operations
Oij ijth operation node, i ∈ J, j∈ M
Mk,ij Node for machine k, connected from Oij, i ∈ J, j ∈ M, k ∈ M

ωij Weight on the link from Oij to machine node, i ∈ J, j ∈ M

ωm Large weight on the link between machine nodes.

α Search coefficient

εc Error in iteration c
OF Final Dummy operation node
STijk Start time of Oij on Mk , i ∈ J, j ∈ M, k ∈ M
PTij Processing Time of Ji on Mj, i ∈ J, j ∈ M
Winij Winning status of Job Ji on Machine Mj, i ∈ J, j ∈ M

Following are all functions of elapsed time t :
t Elapsed time
II(t) Input function value of the Initial I node.
IOij(t) Input function value of Operation node Oij, i ∈ J, j ∈ M
IOF(t) Input function value of Operation node OF

IMk,ij(t) Input function value of Machine node k from operation Oij, i ∈ J, j ∈ M, k∈M
OI(t) Output function value of the Initial I node.
OOij(t) Output function value of Operation node Oij, i ∈ J, j ∈ M
OOF(t) Output function value of Operation node OF

OMFk,ij(t) Output of Mc. node Mk,ij to the operation node in forward direction, i∈ J, j∈

M, j m, k∈M
OMFk,ijF(t) Output of Machine node Mk,ij to OF in the forward direction, i ∈ J, j=m, k∈ M
OMRk,ij(t) Output of Machine node Mk,ij to Oij in reverse direction, i ∈ J, j ∈ M, k∈ M
OMMk(t) Output of Machine node Mk* to Mk* k∈ M

θOij(t) Activation function of Operation node Oij, i ∈ J, j ∈ M

θMk,ij(t) Activation function of Machine node Mk,ij, i ∈ J, j ∈ M, k∈M
assignijk(t) Operation Oij assigned to Machine Mk

S(t) Set of operations that can start at time t. S(t) = {Oij | OOij(t)= 1}

Multiprocessor Scheduling: Theory and Applications 126

The neural network algorithm can be described with the help of the input, activation and
output functions for the various PEs (input node, operation nodes, machine nodes and the
final node) and the search strategy.

• AugNN Functions
Input Layer (Node I):
Input function: II(0) =1
Output function: OI(0) = II(0)
Operation Layer Nodes:
Input function:

 IOi1(0) = II(0) = 1, ∀ i ∈ J (1)

IOij(0) = 0 , ∀ i ∈ J, j ∈ M, j > 1 (2)

 IOF(0) = 0 (3)

These functions at time t = 0 provide initial signals to the operation layers. The first
operation nodes of all the jobs (i.e. for j = 1) get a starting signal of 1 at time 0 (equation 1).
The remaining operation layers get a signal of 0 (equation 2) and the final output layer also
gets a signal of 0 (equation 3).
For time t > 0, we have the following functions:

For all other operations i.e. ∀ j > 1 Λ t > 0

IOij(t) = IOij(t-1) +
, 1()k ijOMF t

−
 , ∀ i∈ J, j∈ M, j > 1, k ∈ M (4)

 IOF(t) = IOF(t-1) +
, ()k ijFOMF t , j=m , ∀ k ∈ M, i∈ J (5)

IOij (equation 4) helps to enforce the constraint that a new operation of a job cannot start

unless the current operation is completed. At t = 0, IOij is 0. When an operation node gets a
signal from the machine node (OMF, described later), IOij becomes 1, which indicates that it
is ready to start.
IOF (equation 5) is the input of the final node. It gets an input from all the machines nodes
of all the jobs. When IOF becomes n, we know that all jobs are done.
Activation function:
Operation nodes’ initial activation state (i.e. at t=0) is 1.

∀ i ∈ J, j ∈ M,

,

1 if () 0

2 if ((-1) 1 2) () 1
()

3 if ((-1) 2 3) () = -1

4 if (-1)

ij

ij ij

ij

ij k ij

ij

IO t

O t IO t
O t

O t OMR t

O t

θ
θ

θ

θ

=

= ∨ ∧ =
=

= ∨ ∧

= ,4 ((-1) 3 () 0)ij k ijO t OMR tθ∨ = ∧ =

State 1 above implies that operation Oij is not ready to be assigned because input to this
operation is still 0. State 2 implies that the operation is ready to be assigned to a machine

A NeuroGenetic Approach for Multiprocessor Scheduling 127

because its input is 1. State 3 implies that the operation is in process because it is receiving a
negative signal from a machine k that it is currently being processed. State 4 implies that the
operation is complete and the negative signal from machine k is no longer there.
Output functions:

If an operation is ready to start (i.e. θOij(t) = 2), then the operation node sends a unit signal
to the machine node that it can be assigned.
Machine Layer Nodes:
Input function:

, m() () * ()* , ,
ijk ij ij kIM t OO t OMM t i J j M k Mω ω= + ∀ ∈ ∈ ∈ (6)

There are two components of IMk,ij(t). The first component (OOij(t) * ωik)is the weighted
output from operation node Oij. Whenever it is positive, it means that machine k is being
requested by operation Oij for assignment. Remember that OOij becomes 1 whenever it is
ready to be assigned. The second component is either zero or large negative. The second
component becomes large negative whenever machine k is already busy with another
operation.
Activation function:

,1 if ()* 0

() , ,

0 otherwise

k ij

ijk

IM t HeuristicParameter

assign t i J j M k M

>

= ∀ ∈ ∈ ∈

We have mentioned earlier that the AugNN functions, in addition to enforcing the
constraints of the problem, also help embed a chosen heuristic into the problem. We have
also seen how using the output of the operation node, The assignment takes place if the
product of input of the machine node and the heuristic dependent parameter, (such as
Processing Time or Earliest Finish Time) is positive and highest. The requirement for it
being positive is to honor the inhibitory signals. The requirement for highest is what
enforces the chosen heuristic.

k

STassign

ij

ijkijk

machineonOoperation theof time

start therecord weplace, takesassignmentan Whenever t. then 1,(t)If ==

If |S(t) | > 1 then if assignijk(t) = 1 then Winik = 1
The Winik term will be used later during the search strategy. We want to modify the weights
of links based on whether a particular operation node won the competition in case there was
more than one node competing for assignment.
Machine nodes’ Initial Activation State (i.e. at t=0) is 1.

1 if () 2 ,
()

0 otherwise

ij

ij

O t i J j M
OO t

θ = ∀ ∈ ∈
=

Multiprocessor Scheduling: Theory and Applications 128

 , , i J j M k M∀ ∈ ∈ ∈ ,

, ,

,

1 : machine available

2 if ((-1) 1 () 1) () 1 :machine busy (just

()

k ij k ij ijk

k ij

M t M t assign t

M t

θ θ

θ

= ∨ = ∧ =

=

,

,

assigned)

3 if ((-1) 2 3) : machine busy (processing)

4 if (-1) 3 : machine just finished processing

5 if

k ij ijk ik

k ij ijk ik

M t t ST PT

M t t ST PT

θ

θ

= ∨ ∧ < +

= ∧ = +

,

,

,

(-1) 1 ()* 0 : assigned to another job

6 if (-1) 4 : machine is finished processing

1 if ((

k ij k m

k ij ij

k ij

M t OMM t

M t k O

M t

θ ω

θ

θ

= ∧ <

=

,

-1) 1 5) ()* 0 : released by other job or not assigned

 to any other job

1 if (-1)

k m

k ij

OMM t

M t

ω

θ

= ∨ ∧ =

= 1 ()* 0 : available but operation assigned k mOMM t ω∧ <

At t = 0, all machines are available (State 1). When an assignment occurs on a machine, that
machine enters state 2 (Busy, just assigned). State 2 turns into state 3 (Busy) the following
time unit and state 3 continues till the machine is processing an operation. As soon as a
machine is done processing it enters state 4 (Just finished). When a particular machine node
is assigned to an operation, all other machine nodes that represent the same machine enter
state 5. For example, if machine node M1,11 is assigned to operation O11 then machine nodes
M1,31, M1,22 also enter state 5. In state 5, they cannot be assigned to another operation. When
a machine is finished processing an operation, it reaches state 6 (Just released). A machine
node enters the state of 1 from a state of 5 if it stops receiving a negative signal from other
machine nodes.
Output functions:

,

,

,

1 if () 4
() , ,

0 if () 1, 2,3,5,6,

k ij

k ij

k ij

M t
OMF t i J j k M

M t

θ

θ

=
= ∀ ∈ ∈

=

Whenever a machine node is done processing an operation, i.e. it reaches state 4, it sends a
signal to the operation ahead of it that it may start.

,

,

,

1 if () 2,3
() , ,

0 if () 1,4,5,6,

k ij

k ij

k ij

M t
OMR t i J j k M

M t

θ

θ

− =
= ∀ ∈ ∈

=

Whenever a machine node is busy processing an operation (i.e. in states 2 or 3), it sends a
negative signal to the operation node that it is processing. This helps switch the state of the
operation node from 2 to a 3.

,

,

1 if () 2,3
() , ,

0 if () 1,4,5,6,

k ij

k

k ij

M t
OMM t i J j k M

M t

θ

θ

=
= ∀ ∈ ∈

=

A NeuroGenetic Approach for Multiprocessor Scheduling 129

Whenever a machine node is busy processing an operation (i.e. in states 2 or 3), it also sends
a signal to other machine nodes corresponding to the same machine in other machine layers.
This ensures that the same machine is not assigned to another job at the same time.
Output Layer (Node F)
The output of F represents the makespan and the assignijk(t) gives the schedule. If a machine
is either assigned or released during a certain time unit, all functions need to be recalculated
without incrementing the time clock.
Input function:

IOF(t) = IOF(t-1) + OMFk,ijF(t)

Output function:

=
=

otherwise0

)(if
)(

ntIOt
tOO

F

F

The final node outputs the makespan (t), the moment it receives n signals (one from each
job) indicating that all jobs are complete.
Search Strategy:
A search strategy is required to modify the weights. The idea behind weight modification is
that if the error is too high, then the probability of a different machine being the winner
should be higher during subsequent iteration. Since the machine with the highest value of
IM, is the winner, an increase of weights will make the machine more likely to win and
conversely a decrease of weight will make it less likely. The magnitude of change should be
a function of the magnitude of the error and of some job parameter, such as processing time.
Keeping these points in mind, the following search strategy is used for the weights on the
links.
Winning tasks: If Winik = 1 then

1() () * * , ik c ik c ik cPT i J k Mω ω α ε
+

= − ∀ ∈ ∈

Non-winning Tasks: If Winik = 0 then

1() () * * , ik c ik c ik cPT i J k Mω ω α ε
+

= + ∀ ∈ ∈

When the above functions and search strategies are employed, each pass or iteration
provides a feasible solution.

• End of iteration routines:
Calculate the gap (the difference between obtained makespan and the lower bound). Lower
bound is the time of the critical path on the PERT chart, assuming infinite resources. The
lower bound can be calculated once at the beginning.
1. Store the best solution so far.
2. If the lower bound is reached, or if the number of iterations is greater than a specified

number, stop the program.
3. If continuing with the next iteration, modify weights using the search strategy.

Multiprocessor Scheduling: Theory and Applications 130

5. Genetic Algorithm

Many different chromosome encodings have been suggested for the JSSP. For example,
Falkenauer and Bouffouix (1991) proposed a chromosome formed of several
subchromosomes, one for each machine; each subchromosome is a string of symbols, each
symbol identifying an operation that has to be processed on the relevant machine. Croce et
al. (1995) used the same encoding as Falkenauer and Bouffouix. Bean (1995) used a random
key alphabet U(0,1), a vector of random numbers. Each solution chromosome is made of 2n
genes where n is the number of operations. The first n genes are used as operation
priorities, whereas the genes between n+1 and 2n are used to determine the delay times
used when scheduling an operation. Dagli and Sittisathanchai (1995) use a chromosome
with n.m genes, where n is the number of jobs and m the number of machines, each gene
represents an operation. The order of genes represents the order in which the operations
will be scheduled.
In this work, we use the representation similar to the one used by Dagli and Sittisathanchai
(1995), i.e. there will be n.m number of genes, each gene represents an operation number,
and the order of the genes dictates the order in which the operations are scheduled. Care
has to be taken that the ordering of operations is feasible. Any order in which the
operations of each job are in the required order would be a feasible ordering. The GA
algorithm is described as:
{ Generate an initial population of feasible ordered chromosomes Pi, where i = 1
 Evaluate each chromosome in the initial population.
 While stopping criteria is not met, repeat
 { Select best chromosomes of initial population to copy to the next population. Pi+1
 Crossover best chromosomes of Pi and place into Pi+1
 Mutate chromosomes in Pi and place in Pi+1
 Evaluate population Pi+1
 }
}
Crossover
The crossover mechanism should be such that the resulting child chromosome must
produce a feasible schedule. In other words, the priority order represented by the child
chromosome must be precedence feasible. We use a two-point crossover scheme. In a two-
point crossover, two integer points c1 and c2 are randomly generated such that c2 > c1 and c2 –
c1 > nm/3 and both c1 and c2 are between 1 and n.m. Two parent chromosomes are used as
input. The child chromosome genes are produced as follows:
Genes1 through c1 from parent 1 go the child chromosome as is. Genes c1 + 1 to c2 genes of
the child come from parent 2 using the rule that any unused genes in parent 2 starting from
the first position are placed in the child till c2 genes in the child are filled. The remaining
genes in the child come from parent 1 i.e. all unused genes appear in the child in the same
order as they appear in parent 1. This rule ensures the feasibility of the schedule generated
by the child chromosome.
Mutation
With a certain mutation probability, a certain number of genes are moved in such a way that
the schedule remains precedence feasible, i.e. the order of operations with respect to a
particular job is not disturbed, but the order of jobs with respect to other jobs may be

A NeuroGenetic Approach for Multiprocessor Scheduling 131

disturbed. Since the order of jobs between jobs is independent of each other, such a move
maintains the precedence order of operations.
Evaluation
A given chromosome, which basically represents the ordering of the operations, is evaluated
by generating a schedule. We perform better of forward and backward scheduling and also
perform double justification to make sure the best possible schedule is obtained for the
given chromosome. A parallel schedule generation scheme was found to be better than a
serial schedule generation scheme for the job-shop problem. The Smallest Latest Finish
Time Operation First and the Highest Remaining Work Next heuristics gave the best results.

6. Neurogenetic Approach

In the NeuroGenetic approach, we interleave the search between AugNN and GA. For
example, we may run x number of generations of GA, take the best chromosome so far and
try to improve upon this solution in the local search space, using y number of iterations of
the AugNN search. However, in order to switch from GA search mode to AugNN search
mode, appropriate weight vector has to be determined. The weight vector should be such
that in conjunction with a chosen heuristic, AugNN would produce the same schedule as
the given GA schedule. Using this set of weights and the chosen heuristic, we run say y
iterations using the AugNN approach. If better solutions are found during the AugNN
search iterations, these solutions can replace the worst solutions in the most recent GA
population. GA search can then resume for another x number of generations, and so on till
some stopping criteria is met. The critical part of this interleaving mechanism is how to
determine the set of weights that would allow AugNN to replicate a given GA solution. We
next describe an algorithm to determine the weights using the heuristic Highest Remaining
Work (RWK) Next. We start with a unit weight vector for all activities. We will call the
chromosome that we want to achieve using the weights and the RWK Next heuristic the
target chromosome and the starting chromosome the source chromosome.
Algorithm for Switching from GA Encoding to AugNN Encoding
Create a source chromosome based on non-increasing order of RWK.
Repeat until each gene in the source chromosome is at the same as position as in the target chrom.
{ Let wa and wb represent the weights corresponding to the out of place gene and the target
 position gene
 If (wa*RWKa > wb*RWKb and positiona > positionb) and
 Set wa > wb * (RWKb/RWKa) = 0.1 + wb * (RWKb/RWKa)
 End If
 Rearrange the source chromosome based on non-increasing order of w*RWK
}
Example: let us say we are scheduling activities in a PERT chart and we are using the
heuristic of “Max Remaining Work Next”. Suppose there are eight activities and the vector
F of their Remaining Work is (19, 12, 14, 10, 9, 6, 5, 0). Assume a vector of weights w =
(1,1,1,1,1,1,1,1). Assume that GA produces a string of (1, 2, 3, 5, 4, 6, 7, 8) which is our target
vector. The source vector S, based on the vector F would be (1, 3, 2, 4, 5, 6, 7, 8). We notice
that the gene at positions 2, 3, 4 and 5 in S are different from the target vector. To bring gene
in position 2 in S to position 3,
So, set w2 = w3 * (RWK3/RWK2) + 0.1
Or w2 = 1 * (14/12) + 0.1 = 1.267

Multiprocessor Scheduling: Theory and Applications 132

So the new w = (1.0, 1.267, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) and the new w.F = (19, 15.2, 14, 10, 9, 6, 5,
0). The new ordering based on w.F = (1, 2, 3, 4, 5, 6, 7, 8). At this point, gene in position 4 is
not in the same position as the target.
So we set w5 = w4*(RWK4/RWK5) + 0.1
Or w5 = 1*(10/9) + 0.1 = 1.211
So the new w = (1.0, 1.267, 1.0, 1.0, 1.211, 1.0, 1.0, 1.0) and the new w.F = (19, 15.2, 14, 10, 10.9,
6, 5, 0). The new ordering based on w.F = (1, 2, 3, 5, 4, 6, 7, 8) which is the target string.
Switching from AugNN Encoding to GA Encoding
Switching the encoding schemes from AugNN to GA is a relatively straightforward.
Whatever ordering of operations is obtained using the product of the weight vector and the
heuristic parameter becomes the ordering of genes in the GA chromosome.

Instance Size BKS1 Heuristic AugNN GA NeuroGenetic
Dev.
(%)

MT06 6x6 55 55 55 55 55 0.00

MT10 10x10 930 1051 980 965 950 2.15

MT20 20x10 1165 1265 1182 1191 1178 1.12

ABZ5 10x10 1234 1287 1249 1252 1245 0.89

ABZ6 10x10 943 986 952 961 945 0.21

ABZ7 20x15 656 721 711 702 672 2.44

ABZ8 20x15 665 736 699 698 680 2.25

ABZ9 20x15 679 739 718 715 685 0.88

ORB01 10x10 1059 1145 1072 1082 1063 0.38

ORB02 10x10 888 919 902 905 893 0.56

ORB03 10x10 1005 1110 1008 1110 1007 0.19

ORB04 10x10 1005 1071 1051 1060 1031 2.58

ORB05 10x10 887 959 895 899 894 0.78

ORB06 10x10 1010 1110 1053 1042 1036 2.57

ORB07 10x10 397 431 410 405 399 0.50

ORB08 10x10 889 1034 925 930 910 2.36

ORB09 10x10 934 978 945 952 934 0.00

ORB10 10x10 944 1028 978 990 961 1.80

Average 1.20
 1Best Known Solution

Table 1. Makespan using different algorithms on some well-known benchmark problems

A NeuroGenetic Approach for Multiprocessor Scheduling 133

Instance Size BKS1 Heuristic AugNN GA NeuroGenetic Dev. (%)

LA01 10x5 666 666 666 666 666 0.00
LA02 10x5 655 677 655 670 655 0.00
LA03 10x5 597 636 617 607 599 0.33
LA04 10x5 590 619 607 609 592 0.34
LA05 10x5 593 593 593 593 593 0.00
LA06 15x5 926 926 926 926 926 0.00
LA07 15x5 890 890 890 890 890 0.00
LA08 15x5 863 863 863 863 863 0.00
LA09 15x5 951 951 951 951 951 0.00
LA10 15x5 958 958 958 958 958 0.00
LA11 20x5 1222 1222 1222 1222 1222 0.00
LA12 20x5 1039 1039 1039 1039 1039 0.00
LA13 20x5 1150 1150 1150 1150 1150 0.00
LA14 20x5 1292 1292 1292 1292 1292 0.00
LA15 20x5 1207 1207 1207 1207 1207 0.00
LA16 10x10 945 1010 981 965 950 0.53
LA17 10x10 784 817 793 788 784 0.00
LA18 10x10 848 909 869 852 848 0.00
LA19 10x10 842 899 875 844 842 0.00
LA20 10x10 902 951 927 922 910 0.88
LA21 15x10 1046 1162 1127 1085 1047 0.09
LA22 15x10 927 1034 982 950 936 0.97
LA23 15x10 1032 1072 1032 1032 1032 0.00
LA24 15x10 935 1025 979 982 957 2.35
LA25 15x10 977 1105 1031 1016 988 1.12
LA26 20x10 1218 1311 1236 1241 1222 0.32
LA27 20x10 1235 1345 1296 1265 1261 2.10
LA28 20x10 1216 1363 1281 1295 1236 1.64
LA29 20x10 1152 1228 1189 1178 1166 1.21
LA30 20x10 1355 1418 1382 1388 1368 0.96
LA31 30x10 1784 1784 1784 1784 1784 0.00
LA32 30x10 1850 1850 1850 1850 1850 0.00
LA33 30x10 1719 1719 1719 1719 1719 0.00
LA34 30x10 1721 1752 1735 1730 1721 0.00
LA35 30x10 1888 1898 1888 1890 1888 0.00
LA36 15x15 1268 1451 1368 1325 1305 2.92
LA37 15x15 1397 1550 1457 1498 1446 3.51
LA38 15x15 1196 1311 1247 1258 1223 2.26
LA39 15x15 1233 1335 1256 1272 1242 0.73
LA40 15x15 1222 1354 1285 1271 1251 2.37

Average 0.62%
 1Best Known Solution

Table 2. Makespan using different algorithms on Lawrence benchmark problems

Multiprocessor Scheduling: Theory and Applications 134

7. Computational Results

We show results for several benchmark datasets including three problems from Fisher and
Thompson (1963), 40 problems from Lawrence et al. (1984), five problems from Adams et al.
(1988) and ten ORB problems. Tables 1 and 2 summarize the results. We run the AugNN,
the GA and the NeuroGenetic algorithm for 1000 unique solution iterations each. The
results are not the best as found in the literature, but we did not run our algorithm for long
periods of time. We were interested in seeing whether the interleaving of AugNN and GA
resulted in any improvements. In general, we found that the interleaved approach gave
some improvement. We provide the best known result in the BKS column, the result of
dispatch rule heuristic in the heuristic column, followed by the AugNN, the GA and the
NeuroGenetic results. The last column shows the percent deviation of the NeuroGenetic
makespan with respect to the best known solution. For the Lawrence problems (Table 2),
the average deviation across the 40 problems was 0.61%; for the other 18 benchmark
problems (Table 1), the average deviation was 1.2%. The heuristic gave the optimum
solution for 15 of the 40 Lawrence problems, AugNN provided the optimum solution for 17
problems and NeuroGenetic approach provided optimum solution for 21 problems.

8. Summary and Conclusions

In this study we combine two metaheuristic search techniques, the Augmented Neural
Networks and Genetic Algorithms approach to create a hybrid metaheuristic called the
NeuroGenetic approach. We apply this hybrid approach to a multiprocessor scheduling
problem, the job-shop scheduling problem to test if the hybridization helps improve the
solution. The hybridization of AugNN and GA is achieved by interleaving the two
approaches. Since the GA approach is better at diversification or global search whereas
AugNN is better at intensification or local search, the combination provides improved
solutions than either GA or AugNN search with the same number of iterations.
Computational results showed that such hybridization provided improvements in the
solutions, than if each technique was used alone. Given the encouraging results, more
research needs to be done in this area. Such hybrid techniques can be applied to other
scheduling problems and also on the job shop scheduling problem by applying other GA
approaches that have performed well in the literature. The AugNN technique can also be
hybridized with other non GA techniques such Tabu Search and Simulated Annealing
approaches, which tend to give good results for the job-shop scheduling problem.

9. References

Aarts, E.H.L., Laarhoven, P.J.M.V., Lenstra, J.K., Ulder, J.L.J., A Computational Study of
Local Search Algorithms for Job Shop Scheduling, ORSA Journal on Computing,
1994, 6(2), 118-125.

Adams, J., Balas, E. and Zawack, D., The Shifting Bottleneck Procedure for Job Shop
Scheduling, Management Science, 1988, 34(3), 391-401.

Agarwal, A., Jacob, V. and Pirkul, H., An Improved Augmented Neural-Networks
Approach for Scheduling Problems, INFORMS Journal on Computing, 2006, 18(1),
119-128.

A NeuroGenetic Approach for Multiprocessor Scheduling 135

Agarwal, A., Jacob. V., Pirkul, H., Augmented Neural Networks for Task Scheduling,
European Journal of Operational Research, 2003, 151 (3), 481-502.

Applegate, D., and Cook, W., A Computational Study of the Job-Shop Scheduling Problem,
ORSA Journal on Computing, 1991, 3(2), 149-156.

Barnes, J.W., and Chambers, J.B., Solving the Job Shop Scheduling Problem with Tabu
Search, IIE Transactions, 1995, 27, 257-263.

Bean, J.C., “Genetics and Random Keys for Sequencing and Optimization, ORSA Journal on
Computing, 1994, 6, 154-160.

Brucker, P., Jurisch, B. and Sievers, B., A Branch and Bound Algorithm for Job-Shop
Scheduling Problem, Discrete Applied Mathematics, 1994, 49, 105-127.

Carlier, J. and Pinson, E., An Algorithm for Solving the Job Shop Problem, Management
Science, 1989, 35, 164-176.

Croce, F.D., Tadei, R. and Volta, G. A Genetic Algorithm for the Job Shop Problem,
Computers and Operations Research, 1995, 22(1), 15-24.

Dagli, C.H., and Sittisanthanchai, S., Genetic Neuro-Scheduler: A New Approach for Job
Shop Scheduling, International Journal of Production Economincs, 1995, 41, 135-145.

Falkenauer, E. and Bouffoix, S., A Genetic Algorithm for Job Shop, Proceedings of the 1991
IEEE International Conference on Robotics and Automation, 1991.

Fisher, H. and Thompson, G.L., Probabilistic Learning Combinations of Local Job-Shop
Scheduling Rules, in: Industrial Scheduling, J.F. Muth and G.L. Thompson (eds.),
1963, Prentice Hall, Englewood Cliffs, NJ, 225-251.

Giffler, B. and Thompson, G.L. Algorithms for Solving Production Scheduling Problems,
Operations Research , 1960, 8(4), 487-503.

Herroelen W., Demeulemeester E., and De Reyck B., Resource- constrained project
scheduling: A survey of recent developments, Computers & Operations Research,
1998, 25 (4), 279-302.

Jain, A.S., and Meeran, S., Deterministic Job Shop Scheduling: Past, Present and Future,
European Journal of Operational Research, 1999, 113, 390-434.

Kolisch R., Efficient priority rule for the resource-constrained project scheduling problem,
Journal of Operations Management, 1996, 14(3), 179–192.

Mesghouni, K., and Hammadi, S., Evolutionary Algorithms for Job Shop Scheduling,
International Journal of Applied Mathematics and Computer Science, 2004, 14(1), 91-103.

Nowicki, E. and Smutnicki, C., A Fast Taboo Search Algorithm for the Job Shop Scheduling
Problem, Management Science, 1996, 6, 108-117.

Pardalos, P. and Shylo, Oleg., An Algorithm for the Job Shop Scheduling Problem Based on
Global Equilibrium Search Techniques, Computational Management Science, 2006,
3(4) 331-348.

Pezzella, F., and Merelli, E., A Tabu Search Method Guided by Shifting Bottleneck for the
Job Shop Scheduling Problem, European Journal of Operational Research, 2000, 120,
297-310.

Sabuncuoglu, I., and Gurgun, B., A Neural Network Model for Scheduling Problems,
European Journal of Operational Research, 1996, 93, 288-299.

Sabuncuoglu, I., and Bayiz, M, Job Shop Scheduling with Beam Search, European Journal of
Operational Research, 1999, 118, 390-412.

Sevkli, M., and Aydin, M.E., Parallel Variable Neigborhood Search Algorithms for Job Shop
Scheduling Problems, IMA Journal of Management and Mathematics, 2007, 18, 117-133.

Multiprocessor Scheduling: Theory and Applications 136

Steinhofel, K., Albrecht, A., and Wong, C.K., Two Simulated Annealing-Based Heuristics for
the Job-Shop Scheduling Problem, European Journal of Operational Research, 1999,
118, 524-548.

Storer, R.H., Wu, S.D., and Vaccari, R., Problem and Heuristic Space Search Strategies for
Job Shop Scheduling, ORSA Journal on Computing, 1995, 7(4) 453-487.

Zhang, C.Y., Li, P.G., Rao, Y.Q. and Guan, Z.L., A Very Fast TS/SA Algorithm for the Job
Shop Scheduling Problem, Computers & Operations Research, 2008, 35, 282-294.

Multiprocessor Scheduling, Theory and Applications

Edited by Eugene Levner

ISBN 978-3-902613-02-8

Hard cover, 436 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A major goal of the book is to continue a good tradition - to bring together reputable researchers from different

countries in order to provide a comprehensive coverage of advanced and modern topics in scheduling not yet

reflected by other books. The virtual consortium of the authors has been created by using electronic

exchanges; it comprises 50 authors from 18 different countries who have submitted 23 contributions to this

collective product. In this sense, the volume can be added to a bookshelf with similar collective publications in

scheduling, started by Coffman (1976) and successfully continued by Chretienne et al. (1995), Gutin and

Punnen (2002), and Leung (2004). This volume contains four major parts that cover the following directions:

the state of the art in theory and algorithms for classical and non-standard scheduling problems; new exact

optimization algorithms, approximation algorithms with performance guarantees, heuristics and metaheuristics;

novel models and approaches to scheduling; and, last but least, several real-life applications and case studies.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Anurag Agarwal (2007). A NeuroGenetic Approach for Multiprocessor Scheduling, Multiprocessor Scheduling,

Theory and Applications, Eugene Levner (Ed.), ISBN: 978-3-902613-02-8, InTech, Available from:

http://www.intechopen.com/books/multiprocessor_scheduling_theory_and_applications/a_neurogenetic_appro

ach_for_multiprocessor_scheduling

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

