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Abstract

Phase change materials (PCMs) are attracting significant attentions in research and appli-
cation, categorized into mainly three types, that is, organic (O), inorganic (IO) and eutectic
(E). This section introduces the experimental and numerical investigations conducted in
recent decades, mainly focused on the properties enhancement of PCMs and the perfor-
mance improvement of its application in latent heat storage (LHS) units, as well as the
evaluation and optimization of LHS units. It was concluded that lots of contribution have
been made to PCMs and LHS units analysis. However, there is still some weakness in
research, such as the lackness of detailed and systematic research on properties, the non-
uniform standard on testing method as well as the contradictory conclusions. The most
evaluation of LHS units is based on energy, instead of exergy, entropy and entransy. There
is another issue that most of the research is based on numerical analysis, while less
experimental research is conducted, especially in the case of LHS unit.

Keywords: phase change materials (PCMs), latent heat storage (LHS), numerical,
experimental

1. Introduction

Energy is the basis of modern society and is important for the survival of mankind as well as the

development of civilization. Non-renewable and renewable sources are two kinds of energy

source. Since the non-renewable energy source will be run out someday, the utilization of renew-

able energy source has been paidmore and more attention in research. However, in most cases of

renewable energy sources, such as solar and wind, intermittent nature is found. What is more,

there is always a gap between energy supply and energy demand, as far as power, space and time

in concern. Thus, energy storage technologies are proposed to solve or diminish this issue.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Energy is usually stored in energy storage (ES) system, in the form of mechanical, chemical,

biological, magnetic and thermal. These energy storage forms can also be subsidized further in

details. For instance, mechanical energy can be stored in compressed air, flywheel or hydro-

pool, etc. and chemical energy can be stored in battery, reversible-reaction or hydrogen, etc.

Among these energy storage forms, the most commonly used is the thermal energy storage

(TES) with phase change materials (PCMs), due to its merits of low-cost, environmental-friend,

easy-to-operate and abundant sources of storage facilities.

As a matter of fact, we human being has used renewable energy and conducted thermal

energy storage, since quite a long time ago. For example, the ancient people utilized wind or

hydro power to drive wheels for irrigation and they collected ice or snow in winter for cooling

in summer. In modern society, we try to fully utilize the clean energy source, to deeply

understand the process involved in TES process and to seek nature materials or manufacture

artificial materials for TES. For the performance improvement of TES, the thermophysical

properties are important limitations. For instance, the limited thermal conductivity of PCMs

strongly constrains the conductive heat transfer process. The viscosity of PCMs at liquid phase

also constrains the convective heat transfer process. In this section, we will introduce some

progress of the research on PCMs and TES and discuss on the weak points.

2. Experimental studies of PCMs

Experiments studies were conducted on the properties of PCMs and the performance in LHS,

as well as the enhancement.

2.1. Types and properties of PCMs

The materials involved in LHS are called as phase change materials (PCMs). There are varieties

of PCMs under development, categorized as organic (O), inorganic (IO) and eutectic (E)

materials, available in a wide range of melting/solidification temperature (Figure 1).

Figure 1. Categories of PCMs.
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Desired property of PCMs includes thermodynamic, kinetic, physical and chemical properties,

as well as economic availability, as shown in Table 1.

Unfortunately, there is not a single kind of PCMs that satisfies all the properties listed above.

The most undesired character of PCMs property is its thermal conductivity, since it will limit

the heat transfer during energy storage/release process and correspondingly lead to deterio-

rated performance of LHS unit. This is often the case, except for some metallic PCMs. For

instance, several measures have been taken. The major technical method is to composite with

materials of high thermal conductivity.

2.2. Types of TES

TES can be categorized as three types, that is, sensible heat storage (SHS), latent heat storage

(LHS) and thermo-chemical storage (TCS). In the first type (SHS), thermal energy is stored as

the temperature increase of certain matters, usually with large thermal capacity. So, the

amount of energy storageQ can be easily estimated as the product of mass m, thermal capacity

C and temperature uplift ΔT, as shown:

ð1Þ

In the second type (LHS), thermal energy is stored as the phase change process of certain

materials, including the transformation of phase between solid and liquid (S-L) in melting/

solidification process, between solid and gas (S-G) in sublimation/desublimation process, from

liquid to gas (L-G) in condensation/evaporation process, as well as the transition from one

solid phase to another (S-S). The amount of energy storage Q is the sum of the sensible heat

stored in both phases and the latent heat involved in phase-transformation, which is the main

portion of energy storage amount.

Q ¼

ðTm

T1

m � Cphase_1 � dT þm � ΔHm þ

ðT2

Tm

m � Cphase_2 � dT (2)

Thermal properties Physical properties Kinetic properties Chemical

properties

Economic availability

High latent heat of transition Small volume change Sufficient

crystallization rate

Long-term

chemical stability

Abundant

High thermal conductivity Low vapor pressure No supercooling No toxicity Cost effective

Suitable melting/

solidification temperature

High density Non-flammable Available

Non-corrosive Commercially viable

Table 1. Properties of PCMs in demand.
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In the third type (TCS), thermal energy is stored in similar way as LHS. The major difference is

that thermal energy is mainly stored as the enthalpy change in thermo-chemical reaction,

instead of phase-transformation process.

Comparing with LHS and TCS, SHS technology often requires larger vessels. Comparing with

LHS, TCS is associated with larger energy storage density, but is still at pre-mature state in

terms of research and development. Therefore, latent heat storage (LHS) attracts the most

attention in research and is believed as the most promising technology.

The performance of heat storage/release in PCMs is realized in LHS unit. The major favored

characteristics of LHS unit includes faster rate of heat charging/discharging, higher efficiency

of heat release, based on thermodynamic evaluations, including the basis of energy, exergy,

entropy and entransy as well. Another important research field is the optimization of LHS unit.

It is widely accepted that performance of LHS unit is mainly constrained by heat transfer

process. Therefore, heat transfer enhancement is a major task for LHS unit performance

improvement in most research. Since heat transfer is generously expressed as:

Q ¼ K � A � ΔTm (3)

where K represents the heat transfer coefficient in conduction or convection process, A repre-

sents the surface area for heat transfer and ΔTm represents the temperature difference between

PCMs and HTF. The enhancement of heat transfer implies the increase of Q. So, it is obvious

that there are three major methods for heat transfer enhancement of LHS unit, that is, increase

of K, A and ΔTm.

The heat transfer coefficient should include both conductive and convective. The increase of

conductive heat transfer coefficient can be mainly traced back to the thermal conductivity

enhancement on PCMs. The only exception would be the encapsulation of PCMs. As far as the

increase of convective heat transfer coefficient, the theoretical basis is convective heat transfer.

Therefore, the progress on convective heat transfer can be applied directly in the performance

improvement of LHS unit, such as the influence of passage size and shape, the effects of faster

flow velocity and the disturbed flow pattern. More effective increase of convective heat transfer

coefficient should be attributed to the application of heat pipe (HP) technology.

2.3. Heat transfer enhancement techniques

Heat transfer for thermal energy storage applications with phase change materials is reviewed

by Ref. [1]. The major measures include conductive heat transfer enhancement and convective

heat transfer enhancement.

2.3.1. Composites with porous materials

Composite with porous materials is an effective method for thermal conductivity enhancement

of PCMs. Impregnation is a fast-growing technology. The porous material offers space for

PCMs and the high thermal conductivity of porous materials supports more effective heat

Phase Change Materials and Their Applications12



transfer in composite. Expanded graphite and metal foam are the mostly adopted porous

materials.

Zhao and Wu [2] reported the considerable improvement of thermal conductivity of sodium

nitrate with porous expanded graphite matrix and metal foams. The experimental results of

embedding non-metallic PCMs in porous graphite showed tens or hundreds times of thermal

conductivity improvement. Siaphush et al. [3] reported the effective thermal conductivity

increased from 0.423 W/m/K to 3.06 W/m/K, when 95% porosity copper foam is adopted in

PCMs of eicosane. It is also reported that critical porosity value exists for enhancement with

porous carbon graphite foams. Yin et al. [4] reported in experiments that the critical mass

fraction of porous graphite is 6.25%. Exceeding this value, the reinforcement effect decreases.

Similar phenomenon is also found in our research on the effect of adoption expanded graphite

in octadecane for performance improvement of LHS unit. However, the critical value is found

at around 20%. Gao et al. [5] investigated the thermal performance of a direct contact thermal

energy storage container with erythritol and expanded graphite. The thermal conductivity is

reported as increased by about 2.5 times, with 4% mass fraction of EG, and the melting time is

reduced by 16.7%.

Comparing with the amount of porous materials in composite, it is also reported that the pore

structure is more important for composite. Lafdi et al. [6] investigated experimentally on the

effects of foam porosity and pore size on the melting rate of PCMs. Zhong et al. [7] reported

that small pore size and thick ligament in graphite foam leads to higher thermal diffusivity,

while large pore size and thin ligament leads to larger latent heat storage capacity. Since the

thermal diffusivity and latent heat storage density are both important factors, the pore size and

ligament should be optimized in the design of LHS unit. Wu and Zhao [8] reported that mixed

porous base is more effective than single porous base. Zhang et al. [9] studied the performance

of metal foam (copper) and paraffin composite. Gulfam et al. [10] investigated the enhance-

ment of thermal conductivity with expanded graphite in paraffin wax. Teppei et al. [11]

reported high thermal conductivity of erythritol enhanced with porous nickel. Similar works

are also reported by Nomura et al. with metal-stabilized carbon-fiber network [12] as well as

expanded perlite, diatom earth and gamma-alumina [13].

Besides expanded graphite and metal foams, ceramic is also adopted recently as enhancement

medium, as Li et al. [14] reported. With the development of material science, there should be

more materials with porous structure, such as graphene, aerogel, etc., under consideration for

the enhancement of thermal conductivity as well as other properties.

2.3.2. Dispersion of high conductive particles

The effect of addition of metal particles, especially with nano-size, on the enhancement of

thermal conductivity of PCMs is also reported widely. Different from the obvious and

established structure of compressed expanded graphite and metal foam, the distribution of

particles are more like to expanded graphite in composite. However, the effects are usually better

in the case of nano-particles addition. The reinforcement effect by the dispersion of nano-

particles in continuous PCMs should be attributed to the unique phenomenon at microscopic

Experimental and Numerical Studies on Phase Change Materials
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scale, for example, reduce the internal resistance for heat transfer, which is also reported for the

thermal conductivity enhancement of heat transfer fluid (HTF) in literatures.

Fan et al. [15], Qi et al. [16], Tao et al. [17], Kim et al. [18] and Shi et al. [19] investigated the effects

of several types of carbon-based nano-particles. It is found that disk carbon nano-particles can

improve the thermal conductivity by 10 times. Besides graphite or graphene, carbon nanotubes

(CNTs) are more typical nano-particles in composite. Zhang et al. [20] investigated on nanoscale

heat transfer in composite of sugar alcohol and carbon nanotubes. It is reported that specific

improvement of heat transfer depends on the material and the diameter of CNT. Carbon nano-

fibers (CNFs) are another common nano-particles in composite. Fereshteh et al. [21] analyses the

application of phase change material with carbon fibers for thermal management of a Li-ion

battery cell. It is concluded that the application of carbon fibers influences the temperature

distribution in cells. Higher concentration of carbon fibers leads to more uniform temperature

distribution. The maximum thermal conductivity enhancement degree is reported as 115% and

averaged at 105%. Nomura et al. [22] reported a significant reinforcement degree of thermal

conductivity for erythritol. Different CNFs groups and its mixture are adopted. It is found that

with the mixture of CNFs at different length, thermal conductivity is more enhanced, comparing

with the addition of single CNFs. To further construct the network for heat transfer inside

composite, low-melting metal, such as indium is added to help bridge CNFs nearby. In recent

studies, other carbon materials are under research.

Besides the carbon materials, the addition of nano-metal-particles, such as Cu, Ti and other

magnetic metals, in composite are also conducted by researchers Kibria et al. [23], Zhang et al.

[24], Luo et al. [25], etc. It is concluded that the thermal conductivity is enhanced, and some-

times the thermal capacity is also enhanced. Mettawee et al. [26] reported the effect of Al

powder on thermal conductivity enhancement of paraffin wax. Motahar et al. [27] reported

non-monotonic behavior of thermal conductivity, and optimum value of nano-particles occurs

in composite. Wang et al. [28] reported the increase of thermal conductivity with mass fraction

of CNTs. Similar result of MWCNTs is also reported by Zeng et al. [29] for palmitic acid. Oya

et al. [11] studied the thermal conductivity enhancement of erythritol with graphite and nickel

particles. The largest enhancement is reported as 6.4 times higher, comparing with the thermal

conductivity of pure phase change material, at 15% volume fraction of expanded graphite.

Khyad et al. [30] adopted 1% mass fraction of aluminum or copper to enhance thermal

conductivity of paraffin.

Since the nano-particle can enhance the thermal conductivity of PCMs with the similar mech-

anism, more research is expected on this scope, with the development of materials science on

materials as well as the manufacture method.

2.3.3. Using extended surface

Surface area for heat transfer is the most common method applied for the heat transfer enhance-

ment of LHS unit, mainly in the form of fin-structure. The adoption of fins increase the contact

surface between HTF and PCMs. Research is mainly focused on the selection of fin materials as

well as the configuration and number of fins in LHS unit. As far as fin materials are concerned,

thermal conductivity, density, cost and corrosion as well as mechanical performance are major

Phase Change Materials and Their Applications14



concerns. Recently, mostly metal, such as copper, bronze, steel, stainless steel, aluminum alloy,

etc., and sometimes graphite or ceramic are used as fin materials.

The core of fin-structure is its configuration, including shapes and orientation. The perfor-

mance of single structured-fin will lead to the number of fins in demand is influential to the

configuration of fins in LHS unit. The investigation of fin configuration is similar to heat

exchanger (HE) with almost constant temperature boundary. The typical structure of LHS unit

is tube-and-shell. So, there will be two forms of PCMs arrangement, that is, inside of tube and

outside of tube as well as annual space between tubes.

As far as the orientation of fins is concerned, there are two mainly forms, that is, alongside and

perpendicular to the axial direction. The fins can be arranged inside and outside of tubes

(Figure 2).

Sparrow et al. [31] experimentally investigated the solidification process of PCMs in a finned

vertical tube. It was concluded that conduction controls the process, when liquid temperature

is lower and at melting temperature. While convection is the controlling mode for temperature

above melting temperature. Tao et al. [32] investigated numerically with the performance of

LHS unit in a photo-thermal (PT) application. Velraj et al. [33] reported with numerical and

experimental analysis on vertical finned tube. The results show the reversal decrease of solid-

ification period with number of fins. Zhao and Tan [34] investigated the effects of HTF

temperature and flowrate as well as fin height on the charging rate of LHS unit. It is concluded

that with the increase of HTF inlet temperature and mass flowrate, as well as the increase of fin

height, the charging period is shortened, implying enhanced heat transfer process. Erek et al.

[35] analyzed the effects of fin parameters, such as fin size and fin space, as well as the effects

of HTF on the dimensionless energy storage value. Liu et al. [36] conducted similar experimen-

tal research on the melting of stearic acid in annual space. It is concluded that heat conduction

and natural convection are both the factors for heat transfer enhancement in LHS unit.

Hosseini et al. [37] concluded that with the increase of fin’s height, the reduction of melting

Figure 2. Sketch of fin configurations. (a) Perpendicular to the axial direction and (b) alongside the axial direction.
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time exhibits a descending trend. Comparing with the melting process, effects of increasing

fin’s height is more significant in solidification process.

Besides the shell-and-tube configuration, numerical investigation on plate-type LHS is also

conducted by Gharebaghi and Sezai [38] for rectangular heat sink. Sharifi et al. [39] developed

an analytic model to predict the melting period of PCMs. Mahmoud et al. [40] conducted

different arrangements for heat sink with PCMs at different melting temperature. It is con-

cluded that increasing fin number is good for heat distribution in LHS unit and leading to

lower the peak temperature of heat sink. Arshad et al. [41] studied the effects of pin thickness

as well as the volume fraction of PCMs on the cooling performance of heat sinks for electronic

devices. The volume fraction of PCMs is kept at 9%. The heating boundary is assumed as

uniform heat flux. Heat sinks are finned or not finned. The thickness of fins is ranging from

1 mm to 3 mm, with the interval of 1 mm. The volume fraction of PCMs is ranging from 0 to 1,

with the interval of 0.33. Rahimi et al. [42] investigated with the charging and discharging

processes of PCMs in finned-tube heat exchanger in experiments. The utilization of fins

reduces the melting and solidification periods. It is also reported that the increase of inlet

temperature is more effective for melting time reduction in the bare tube heat exchangers.

The variation of flow rate of HTF is also more intensely influential on the solidification time for

the bare tube heat exchangers.

As reported in the review paper contributed by Nasiru et al. [1], the presence of fins improve

the heat transfer during the phase change process, regardless of the make-up and geometry of

the LHTES systems. However, few studies considered the effects of fin numbers on thermal

response of the LHS unit. Although the trend is easy to find, the quantitative analysis will help

the optimal design in practice.

2.3.4. Using multi-PCMs

The increase of ΔTm should be expressed more precisely as the uniform distribution of the

temperature difference between PCMs and HTF in LHS unit, during charging and discharging

process. The benefits can be not only evaluated with the energy basis, but also with the exergy/

entropy basis as well as the entransy basis, which is proposed in the recent decade.

According to the demand of uniform temperature difference between PCMs and HTF, the

melting temperature of PCMs should decrease alongside the flow direction of HTF in charging

process and increase alongside the flow direction of HTF in discharging process. This is

usually realized by the transverse of flow direction of HTF in two processes.

Fang and Chen [43] numerically investigated the effects of multiple PCMs on the performance

of LHS unit. It is concluded that difference of melting temperature between multiple PCMs is

crucial for performance improvement. Wang et al. [44] proposed a new concept of homoge-

neous phase change process using multiple PCMs to significantly decrease the melting/solid-

ification periods. Cui et al. [45] numerically analyzed the structure with three types of PCMs

for solar receiver. It is reported that the fluctuation of HTF outlet temperature is better con-

trolled, comparing with single PCMs. More energy flowrate is also expected. Hu et al. [46]

proposed a thermal storage system with frustum-shape. Along the flow direction of HTF,

Phase Change Materials and Their Applications16



volume of PCMs change. Maximum five types of PCMs are adopted in the LHS unit. It is

found effective even at small temperature difference. However, there is also some report about

the asynchronous effects of multiple PCMs on the charging process and the discharging

process, by Kurnia et al. [47]. It is concluded that the arrangement of PCMs with high melting

temperature at the inlet of HTF would improve the heat transfer in discharging process, but

may slightly worsen the charging process.

Thus, the major factor for multiple PCMs design is the match of melting temperature of PCMs

in LHS unit. To better understand this issue and to provide guidance for the design of LHS

unit, optimization of multi-stage LHS unit with multiple PCMs is conducted. Since there is no

heat-and-work conversion during the operation of LHS unit, entransy theory is also adopted

for optimization, besides the traditional energy and exergy/entropy analysis.

Tao et al. [48] reported the melting temperature match for double-stage LHS unit in charging

process. Zhao et al. [49] reported the melting temperature match for multi-stage LHS unit in

charging process. Wang et al. [50–52] reported the optimized match of melting temperature

and surface for heat transfer of double- and multi-stage LHS unit in charging and cycle period.

However, less attention has been paid to the transient process optimization as well as other

factors influencing the operation of LHS unit. Moreover, the comparison between entransy

analysis and exergy analysis is important. Works are undergoing in our group. It is found that

the difference between optimum melting temperature of nearby PCMs is constant in entransy

analysis, while the ratio is constant in entropy analysis. The detailed discussion will be made.

However, still the reason lies there, not so easy to answer, although we know that is superfi-

cially due to the difference between the optimization goals.

2.3.5. Encapsulation

Encapsulation of PCMs is also an effectivemethod for heat transfer improvement in PCMs region.

The mechanism may be explained as the reduce of heat transfer path as well as the increase of

surface conducting heat transfer. Encapsulation of PCMs is to disperse PCMs in LHS unit into

groups of small-sized particles closed and surrounded by other materials or the derivatives of

PCMs itself after procedure of treatment. So, the direct property of PCMs is actually not changed,

and the benefits aremainly contributed to the performance improvement of LHS unit as discussed

later. The main research lies on the selection of raw-material and the method of encapsulation, as

reviewed by Jacob and Bruno [53], Liu et al. [54], Saman et al. [55], Liu et al. [56], etc.

Jamekhorshid et al. [57] and Su et al. [58] reviewed the microencapsulation methods of PCMs.

Milian et al. [59] reviewed on specific encapsulation techniques for inorganic phase change mate-

rials and the thermophysical properties. Sketch of encapsulatedPCMs is expressed inFigure3. The

shell can be single layered or multiple layered or linkedmatrix, and the core can be single zone or

several isolated zones. The shape could be regular, such as spherical, tubular or oval and irregular.

The methods of encapsulation are summarized in Table 2.

As far as the shell is concerned, Jacob and Bruno [53] reviewed on the shell materials in the

encapsulation for high temperature thermal energy storage. Steel, nickel, sodium silicate,
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Figure 3. Sketch of encapsulated PCMs shapes. (a) Mononuclear; (b) polynuclear; (c) multi-wall; (d) matrix.
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silicon dioxide, calcium carbonate and titanium dioxide are identified as shell materials. It is

better to further consider the corrosion between shell materials and PCMs encapsulated,

which is important for long-term stability as well as cost reduction. Ma et al. [60] reported

an encapsulated metallic phase change materials. The shell material is iron and the core

material is copper. The preparation is based on aerodynamic levitation method. It is con-

cluded that the morphology evolution is attributed to the combined effects of liquid phase

fraction of two not-miscible liquids, Stokes and Marangoni velocities of droplets, as well as

the rotation direction of particles in the solidification process. Chen et al. [61] reported the

preparation of nanocapsules. The core PCMs is n-dodecanol and the encapsulation method

is miniemulsion polymerization with polymerizable emulsifier. The diameter is measured as

150 nm and the phase change temperature is 18.2�C. Yang et al. [62] proposed a hybrid

elastomeric spherical structure. It is composed of foam core and solid shell. The performance

is predicted with numerical investigation.

2.3.6. Application of heat pipe

Heat pipe is a thermal carrier to transfer heat from hot medium to cold medium spatially

separated. Heat pipe has its own working fluid, flowing inside at closed or open mode. At the

end of hot medium, the liquid phase working fluid evaporates and flows to the end of cold

medium, where the gas phase working fluid condensates and flows back to the end of hot

medium and makes a cycle. Since phase change is involved, heat pipe usually can supply

better performance of heat transfer between hot medium and cold medium.

There are two operation modes of HP in LHS unit. The first is simultaneous heating for

discharging and cooling for charging, and the other is intermittent heating and cooling. To

some extent, the latter mode is easier to understand, and the former mode is better for the

power match and good for continuous operation. In the intermittent mode, PCMs operates as

the hot end of HP in discharging process of LHS unit and as the cold end of HP in charging

process.

Shabgard et al. [63] developed a thermal network model to investigate the performance of

cascaded PCMs and conducted exergy analysis. Shabgard et al. [64] considered the transient

response of HP-assisted LHTES system with a 2D model. It is concluded that HP spacing is the

key parameter for LHS unit design and controls the dynamic response of the system. Robak

Physical methods Chemical methods Physic-chemical methods

Pan coating Interfacial polymerization Ionic gelation

Air-suspension coating Suspension polymerization Coacervation

Centrifugal extrusion Emulsion polymerization Sol-gel

Vibration nozzle

Spray drying

Solvent evaporation

Table 2. Methods of encapsulation of PCMs.
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et al. [65] experimentally investigated the performance of HP-assisted LHTES system. It is

concluded that with the assistance of HP, heat transfer during discharging process is almost

twice improved. Bergman et al. [66] numerically investigated the performance of LHTES with

HP in solar thermal power plant and reported increased charging/discharging rate of PCMs

for two kinds of HTF flow pattern. Nithyanandam and Pitchumani [67] conducted a similar

computational analysis on 3D physical model. In another work of Nithyanandam and

Pitchumani [68], dynamic performance behavior of HP-assisted LHTES system is investigation

with the consideration of cyclic operation.

However, most of the research is based on gravity-assisted HP. With the development of HP

technology, other kinds of HP should also be considered for application in LHS unit. More-

over, it is found that most of the HP-assisted LHTES system is analyzed numerically and less

attention has been paid to the experimental analysis. This will be an open field for research in

the future.

2.3.7. Combined heat transfer enhancement techniques

With two or more techniques, such as the combination of fin-structure and heat pipe, or the

combination of multiple PCMs and heat pipe, it is expected possible to further improve

performance of LHS unit. Jung and Boo [69] numerically investigated the transient behavior

of a LHS unit with fin-structured heat pipe. They used a row-by-row analysis method to

estimate the layer necessary for system design. It is concluded that the increase of pitch would

help increase heat transfer rate. Khalifa et al. [70] compared the performance of bare heat pipe

and finned heat pipe. It is concluded that with fin-structure, energy efficiency is improved

significantly. Nithyanandam and Pitchumani [71] conducted numerical analysis on LHSTES

system with metal foam and embedded heat pipe. It is reported that the augmentation in heat

transfer rate during charging decreased with pore-density of metal foam, due to the restriction

in the formation of buoyancy-induced convection.

3. Numerical studies of PCMs

Although the results of numerical analysis are not always the case in practice, it offers an

important way to investigate the process as well as the performance of phase change materials

as well as latent heat storage units, characterized with less cost and short time occupation as

well as convenience of parameter adjustment. The focus and the core in numerical analysis rely

on the model used as well as the verification and modification of numerical models with

experimental results.

3.1. Numerical models

Esen et al. [72] applied two models to describe the diurnal transient behavior of energy storage

tanks. In the first model, HTF is flowing outside of pipe, the inside of which is filled with

PCMs. In the second model, HTF is flowing inside of pipe, the outside of which is surrounded
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with PCMs. Two-dimensional analysis is conducted with enthalpy-based method, coupled

with convective heat transfer between HTF and PCMs. The effects of properties of PCMs,

parameters of geometry, such as the radius and height of cylinder or pipe, and characters of

HTF, such as velocity and inlet temperature, on the melting time are discussed (Figure 4).

The expression of Nu is listed as:

For heat transfer inside tube:

Nup ¼ 3:66 Re ≤ 2200ð Þ (4)

Nup ¼ 0:023 � Re0:8 � Pr0:4 Re > 2200ð Þ (5)

For heat transfer outside tube:

Figure 4. Configuration of HTF passage. (a) Outside of tube; (b) inside of tube; (c) annual between tubes.
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Nuc ¼ 3:66þ 4:12 �
D

R

� �
� 0:205

� �0:569

Re ≤ 2200 (6)

Nuc

Nup
¼ 1:08� 0:794 � e�1:62�D

RRe > 2200 (7)

Xia et al. [73] analyzed the heat transfer of latent thermal energy storage (LTES) system based

on the effective packed bed model. The flow field is simplified as the flow through voids of a

bed packed with PCMs particles. The random packing model is proposed for better simula-

tion. The material properties and the thickness of encapsulation are two major factors for the

heat transfer performance of a LTES bed.

The porosity is listed as:

εr ¼ ε∞ � 1þ
0:87

ε∞
� 1

� �
� e

�5�
D

2
�r

d

� � !

(8)

ε3D ¼
n3D �

4
3 � π �

d

2

� �3

π �
D

2

� �2
�H

(9)

ε2D ¼
n2D � π �

d

2

� �3

π �
D

2

� �2
�H

(10)

Izquierdo-Barrientos et al. [74] presented a dimensionless numerical model for the evolution of

enthalpy with temperature, instead of constant phase change temperature assumption.

The dimensionless parameters include:

bT ¼
T � T0

Tmax � T0
(11)

bθ ¼
θ� T0

Tmax � T0
(12)

bψ ¼
ψ� T0

Tmax � T0
(13)

bt ¼ t �
u

H
(14)

bx ¼
x

H
(15)

Modi and Perez-segarra [75] developed a one-dimensional numerical model for a single-tank

thermocline thermal storage system in the concentrated solar power plant. The influence of

types of heat transfer fluid, the temperature difference stored in HTF as well as the cycle cut-off

on system performance is investigated. Two aspects are taken as criterion for comparison, that

is, cyclic behavior of the system and the time required for equilibrium state attainment.
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The heat transfer coefficient is expressed as:

h ¼
6 � 1� εð Þ � k � 2þ 1:1 � Re0:6 � Pr

1
3

� �

D2
(16)

Opitz and Treffinger [76] developed a general heterogeneous model of heat transfer in packed

beds. Lumped element formulation is implemented. The results are verified with two different

experiments cited from references. No necessary to calibrate theoretical model with experi-

ment results is reported.

The pressure drop for one layer of the packed bed is expressed as:

ΔP ¼ 150 �
1� εð Þ2

ε2
�
η

d2
� w �H þ 1:75 �

1� εð Þ

ε3
�
r

d
� w2 �H (17)

The heat transfer is summarized as:

With correlation of Coutier and Farber:

hfs ¼
700

6 � 1� εð Þ
�

m

A

� �0:76

� d0:24 (18)

With correlation of Gnielinski:

Nufs, i ¼ f a � 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nulam, ið Þ2 þ Nuturb, ið Þ2
q

� �

(19)

Nulam, i ¼ 0:644 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rebed, i
p

�
ffiffiffiffiffiffiffiffiffi

Prf, i
3
p

(20)

Nuturb, i ¼
0:037 � Rebed, ið Þ0:8 � Prf, i

1þ 2:443 � Rebed, ið Þ�0:1 � Prf, ið Þ
2
3 � 1

� � (21)

f a ¼ 1þ 1:5 � 1� εð Þ (22)

1

hfs,p, i
¼

1þ Bi
5

hfs, i
(23)

Bibed ¼ hfs �
dp

kbed
(24)

Amin et al. [77] developed an effectiveness-NTU model of a thermal storage system with

packed bed of encapsulated PCMs with the sphere shape. The two-dimensional representation

is proposed to predict the heat transfer during phase change, comparing with one-dimensional

phase change assumption in other configurations. A new definition of thermal resistance

between HTF and PCMs is developed, taking the phase change process into consideration.

The heat transfer is expressed as:
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Nu ¼ 7� 10 � ξþ 5 � ξ2
� �

� 1þ 0:7 � Re0:2 � Pr
1
3

� �

þ 1:33� 2:4 � ξþ 1:2 � ξ2
� �

� Re0:7 � Pr
1
3 (25)

Karthikeyan and Velraj [78] compared several mathematical models for numerical investiga-

tion of packed bed with encapsulated spherical PCMs. The enthalpy formulation technique is

used to accommodate the phase change behavior of paraffin. Fully explicit finite difference

method is adopted for solving numerical models. It is reported that the validity of model

depends on the kind of HTF.

The governing equations are listed as:

For model 1:

ε � rf � Ac � L � cf �
∂Tf

∂t
þ vmax �

∂Tf

∂x

� �

¼ hs � ap � Tp � Tf

� �

(26)

1� εð Þ � rp � Ac � L � cp �
∂Hp

∂t

� �

¼ hs � ap � Tf � Tp

� �

(27)

For model 2:

ε � rf � Ac � L � cf �
∂Tf

∂t
þ vmax �

∂Tf

∂x

� �

¼ kf �
∂
2
Tf

∂x2
þ hs � ap � Tp � Tf

� �

(28)

1� εð Þ � rp � Ac � L � cp �
∂Hp

∂t

� �

¼ kp �
∂
2
Tp

∂x2
þ hs � ap � Tf � Tp

� �

(29)

For model 3:

ε � rf � Ac � L � cf �
∂Tf

∂t
þ vmax �

∂Tf

∂x

� �

¼ hs � ap � Tp

	

	

r¼r0
� Tf

� �

(30)

rp �
∂Hp

∂t

� �

¼ kp �
∂
2
Tp

∂r2
þ
2

r
� kp �

∂Tp

∂r
(31)

3.2. Numerical simulation

Pakrouh et al. [79] present a numerical investigation on geometric optimization of heat sinks.

Paraffin is selected as PCMs and aluminum is adopted as materials for heat sink and fins. The

optimization parameters include the number of fins, the height of fins and the thickness of fins

as well as the base. Natural convection is also taken into consideration. It reported a complex

relation between PCMs and the volume percentage of thermal conductivity enhancers (TCEs).

Shmueli et al. [80] investigated numerically with melting of PCMs in a vertical cylindrical tube

and compared with experiments. The model is based on enthalpy-porosity formulation. The

effects of parameters, such as the term describing the mushy zone in the momentum equation

and the pressure-velocity coupling as well as pressure discretization schemes, are examined.

No difference between PISO and SIMPLE schemes is found, while there is considerable
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difference between PRESTO and Body-Force-Weighted schemes. Local heat transfer and melt-

ing are compared and verified for numerical results. It is concluded that at the beginning of

melting process, the heat transfer is mainly in the form of conduction in solid phase; while at

the end of this process, the heat transfer is dominated by convection in liquid phase. Cascetta

et al. [81] utilized FLUENT software to simulate the flow and heat transfer in an axisymmetric

tank of cylindrical shape. Incompressible turbulent flow and fully developed forced convec-

tion is adopted in two-phase transient (LTNE-local thermal non-uniform) model to calculate

the temperatures of fluid and solid phases. The porosity of filled bed is also considered

variable in the radial direction and the thermal properties of both phases are related to

temperature. The results agree well with experiments. Sciacovelli et al. [82] used enthalpy

method to analyze the phase change phenomenon. Natural convection is neglected, due to

the fully resolved fluid flow in the liquid phase. The evaluation of melting front as well as the

temperature and velocity fields is studied in details. However, it is concluded that natural

convection significantly affects the phase change process. Also in this paper, the effects of

enhancement of thermal conductivity with the adoption of highly conductive nano-particles

in PCMs are considered. Augment of thermal performance is found, due to the application of

nano-particles. The melting time is reduced by 15% with 4% volume fraction of nano-particles.

Similar results are also found for the heat transfer performance.

4. Conclusions

For the properties of PCMs under research, besides thermal conductivity and phase equilib-

rium, others such as supercooling [83], corrosion [84] and transportation [85] are also charac-

terized and discussed. However, less attention has been paid on the systematic discussion.

This is partly due to the diverse results in different research groups, and sometimes the

conclusions are contradictory. For instance, Teng et al. [86] reported the advantage of multi-

wall carbon nanotubes (MWCNTs) over graphite for effective enhancement of thermal con-

ductivity. However, Choi et al. [87] reported the contrary conclusion. Another case is the

reported results of the same method and the same materials at different ages or by different

groups are sometimes at significant variations. For instance, the heat of fusion for Paraffin Wax

is reported as 173.6 kJ/kg [88] and 266 kJ/kg [89]; the melting temperature of myristic acid is

reported as 49–51�C [90] and 58�C [91].

One of the reasons lies on the lackness of uniform standard or detailed information of prepa-

ration, manufacture and raw materials as well as the diversified methods of properties mea-

surements. As far as thermal conductivity is concerned, researchers can utilize stationary and

non-stationary methods to measure. Even in detailed non-stationary measurement, point-,

linear- or surface- heating source is available for choice. Therefore, it seems difficult to collect

the results in reference to obtain the regular of physical properties for theoretical estimation or

analysis.

In this section, we mainly introduce the progress of property enhancement of PCMs and

performance improvement of LHS unit. The detailed information of reported results is referred
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to cited references. It is found that lots of work has been done in the past decades and great

progress has been made. However, there is still some weakness in research. For PCMs, most

research is based on experimental measurement of properties, and less attention has been paid

on the regular summary for theoretical estimation in the future or optimal design of composite

material as well as energy storage unit. As far as LHS unit is concerned, it is the opposite

condition, where most research is based on numerical analysis and less experimental research

is conducted. This may lead to the deviation of the performance of LHS unit in application

from the designed values, especially when the properties of PCMs as well as its composite are

still not clear in details. What is more, the lackness of uniform standard and detailed report on

information of preparation, manufacture and raw materials makes it difficult to collect the

results of different groups and different ages all together.
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