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Shanghai 200240, China 

1. Introduction 

Various gender classification methods have been reported in the literature. These existing 
methods fall into two categories. The first kind of method is the appearance-based approach. 
Golomb et al. [1] used a two-layer neural network with 30 × 30 inputs and directly fed the 
scaled image pixels to the network without dimensionality reduction. Their database 
contains only 90 images with half male and half female facial images. Gutta et al. [2] used the 
mixture of experts combining the ensembles of radial basis functions (RBF) networks and a 
decision tree. Xu et al. [3] applied Adaboost to gender classification problem with the feature 
pools composed of a set of linear projections utilizing statistical moments up to second 
order. Wu et al. [4] also adopted Adaboost. Instead of using threshold weak classifiers, they 
used looking-up table weak classifiers, which are more general and better than simple 
threshold ones due to stronger ability to model complex distribution of training samples. 
Moghaddam and Yang [5] demonstrated that support vector machines (SVMs) work better 
than other classifiers such as ensemble of radial basis function (RBF) networks, classical RBF 
networks, Fisher linear discriminant, and nearest neighbor. In their experiments, the 
Gaussian kernel works better than linear and polynomial kernels. However, they did not 
discuss how to set the hyper-parameters for Gaussian kernel, which affect the classification 
performance. Kim et al. [6] applied Gaussian process technique to gender classification. The 
advantage of this approach is that it can automatically determine the hyper-parameters.Wu 
et al. [7] presented a statistical framework based on the 2.5D facial needle-maps which is a 
shape representation acquired from 2D intensity images using shape from shading (SFS). 
Saatci and Town [8] used an active appearance model (AAM) of faces to extract facial 
features and developed a cascaded structure of SVMs for gender classification. Lian and Lu 
applied min-max modular support vector machine to gender classification and developed a 
method for incorporating age information into task decomposition [9]. They also proposed a 
multi-resolution local binary pattern for dealing with multi-view gender classification 
probelms [10]. 
The second kind of approach is the geometrical feature based approach. The idea is to 
extract from faces geometric features such as distances, face width, and face length. Burton 
et al. [11] extracted point-to-point distances from 73 points on face images and used 
discriminant analysis as a classifier. Brunelli and Poggio [12] computed 16 geometric O
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features, such as pupil to eye brow separation and eye brow thickness, from the frontal 
images of a face and used HyperBF network as a classifier. 
 

 

Fig. 1. Illustration of the important role of hair information for gender classification. The 
upper row denotes three facial images of female, whose hair regions have been discarded, 
and the lower row denotes the same three images with hair. 

Most of the existing methods mentioned above, however, use only facial information. As we 
know, external information such as hair and clothing, also provide the discriminant 
evidence. Fig. 1 illustrates the benefit of incorporating hair information in gender 
classification task. The upper row shows the facial images whose hair regions were 
discarded. The lower row shows the corresponding original pictures. It is difficult for us to 
judge the gender when we only see the images in the upper row since their neutral-like 
faces. But, when both the facial information and the external information of hair as shown in 
the lower row are presented, we can easily make the decision. 
Although external features are useful, their detection, representation, analysis, and 
application have seldom been studied in the computer vision community. Considering the 
important role of hair features in gender classification, we study hair feature extraction and 
the combination of hair classifier and face classifier in this Chapter. Given a facial image 
containing both hair and face, we first locate hair region and face region. We construct a 
geometric hair model (GHM) to extract hair features and use local binary pattern (LBP) to 
extract facial features. After performing these feature extraction, we train two different 
classifiers for each kind of features and then apply a classifier fusion model. The key issue of 
classifier fusion is to determine how classifiers interact with each other. In this study, we 
adopt fuzzy integral [13], which has the advantage of its automatical adaptation of degree of 
classifier interaction. 
We conduct experiments on three popular facial image databases: AR, FERET and CAS-
PEAL. The experimental results demonstrate that the combination of hair and face classifiers 
achieves much higher classification rate than hair classifier or face classifier along. 
The rest of this Chapter is organized as follows: Section 2 describes the feature extraction 
process of hair and face. Section 3 introduces the fuzzy integral method. Section 4 gives 
experimental details. Section 5 is the conclusions. 
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2. Feature extraction 

2.1 Hair feature extraction 
Hair is a highly variable feature of human appearance. It perhaps is the most variant aspect 
of human appearance. Until recently, hair features have often been discarded in most of the 
gender classification systems. To our best knowledge, there are two different algorithms in 
the literature about hair feature representation. Yacoob et al. [14] developed a computational 
model for measuring hair appearance. They extracted several attributes of hair including 
color, split location, volume, length, area, symmetry, inner and outer hairlines, and texture. 
These attributes are organized as a hair feature vector. Lapedriza et al. [15] learned a model 
set composed by a representative set of image fragments corresponding to hair zones called 
building blocks set. The building blocks set is used to represent the unseen image as it is a 
set of puzzle pieces and the unseen image is reconstructed by covering it with the most 
similar fragments. By using this approach, the hair information is encoded and used for 
classification. We adopt the former method and modify it in this study. The overall process 
of hair feature extraction is illustrated in Fig. 2. 
 

 

Fig. 2. The overall process of hair feature extraction. 

Geometric Hair Model The basic symbols used in the geometric hair model are depicted in 
Fig. 3. Here G is the middle point between the left eye point L and the right eye point R, I is 
the point on the inner contour, O is the point on the outer contour, and P is the lowest point 
of hair region. 
Hair Detection In this work, we assume that the facial images used are in frontal view. The 
hair detection process is illustrated in Fig. 4. The detection algorithm consists of the 
following four steps: 
1. Locate three landmarks on each facial image shown in the second picture of Fig. 4. Two 

are centers of eyes and the other one is middle of hair. These three points facilitate hair 
region extraction. Currently we label them manually. These points can be easily located 
in an automated manner, providing that the locations of the eyes are given. 

2. Obtain binary facial image. The pixels around the landmark in hair region form the 
seeds to separate hair from face and background. 

3. Get the edge image of the hair by Laplace operator to hair edge detection. The 2D 

Laplace operator is  , and the edge extraction result is shown in the 

lower right image of Fig. 4. 
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Fig. 3. Some key parameters in geometric hair model. 

 

Fig. 4. The process of hair detection. 

4. Extract the inner and outer contour of the hair. Given an edge image from step 3), a ray 
denoted by the lines (yellow) in Fig. 3 is emitted from the mid-point of left and right 
eyes. In the ideal situation, the ray will meet exactly two edge points, I and O depicted 
in Fig. 3, respectively. By making a full rotation of the ray, we can determine the 
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contours of hair. In practice, however, step 2) may produce some holes in hair region, 
which make the detected contour inaccurate. To overcome this problem, we notice that 
the holes that will greatly affect the contour accuracy are those far away from the real 
contour and the distance between points I and O of consecutive rays will not change 
sharply. Based on this observation, we select the last edge point that the ray meets as 
the outer contour point. By using this technique, the holes can be removed. As a result, 
the detected contour of hair becomes more accurate. This improvement is illustrated in 
Fig. 5. 

 

 

Fig. 5. The original detected contour of hair (left) versus the detected contour in which the 
holes have been removed (right). 

Hair Length and Area We define the largest distance between a point on the outer contour 
and P as the hair length. The normalized distance Lhair is defined as 

 (1) 

where Girthface is the girth of the face region. 
We define the area covered by hair as the hair surface. Based on the hair model, the 
normalized hair area is defined as 

Areahair=R_Areahair/R_Areaface (2) 

where R_Areahair is the real area of hair and R_Areaface is the area of face. 
Hair Color To obtain the color in the hair region, we follow the method described in [16]. 
Based on this color model depicted in Fig. 6, the measured color results from the brightness 
and surface spectral reflectance. The averaged color distortion is calculated by 

 

(3) 

where H is the pixel set of hair region, and Ii and Ei denote the actual RGB color and the 
expected RGB color at pixel i, respectively, as follows: 

 (4) 
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 (5) 

 

 

Fig. 6. Color model of hair. 

According to the definitions mentioned above, the color distortion CDi at pixel i can be 
computed by 

 

(6) 

where αi represents the current brightness with respect to the brightness of the model 

 

(7) 

and (μr, μg, μb) and (r, g, b) are the mean and standard deviation of color in the training 
set, respectively. 
Hair Texture We employ Gabor wavelets to compute the hair feature attributes that 
characterize hair texture. The following two-dimensional Gabor function g(x, y) under 6 
directions and 4 scales and its Fourier transform G(u, v) are used, 

 
(8) 

and 

 
(9) 

where 
 
and . 

The discrete form of Gabor wavelet transformation is defined as 

www.intechopen.com



Gender Classification by Information Fusion of Hair and Face 

 

221 

 
(10)

where  represents the conjugate operation in complex area of the m-th orientation and 

n-th scale. 
We use the mean value and standard deviation of Gabor parameters to represent the texture 
shown in Fig. 7. The mean value and standard deviation are, respectively, calculated by 

 
(11)

and 

 

(12)

 

Fig. 7. Extracting hair texture using wavelet transformation with 4 scales and 6 orientations. 
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From Eqs. 11 and 12, we have the following feature attributes of hair texture: 

 (13)

Hair-Split Location The hair split location is commonly accompanied by a concavity point 
at the outer hairline. The split angle is defined as the angle of the concavity point with 
respect to the horizontal axis. Whether a point P is a concavity point can be judged by 

 

(14)

We define concavity[P] as the concavity of point P, which can be calculated by 

 

(15)

With this definition, we scan all the edge points on the outer contour, compute the average 
concavity and select the one with largest concavity[P] as the split point. 
By concatenating all the hair feature attributes mentioned above, we obtain a feature vector 
of hair as follows: 

 

(16)

2.2 Face feature extraction 
We use LBP [17] to characterize the face feature. The overall process is illustrated in Fig. 8. 

LBP is a simple and efficient approach for texture description. The operator labels the pixels 

of an image by thresholding 3 × 3-neighbourhoods of each pixel with the center value and 

considering the result as a binary number. The histogram of the labels is used as a texture 

descriptor. The basic LBP operator is illustrated in Fig. 9. 

To achieve rotation invariance, An extension to the original operator is to use so called 
uniform pattern. A local binary pattern is called a uniform pattern if it contains at most two 
bitwise transitions from 0 to 1 or vice versa when the binary string is considered circular. 
For example, 00000000, 00011110, and 10000011 are three uniform patterns. 
We use the notation of LBP

 
 for the LBP operator. Here, LBP 

 
means using the operator 

in a neighborhood of P sampling points on a circle of radius R, and the superscript u2 
represents using uniform patterns and labeling all remaining patterns with a single label. In 

our experiment, LBP  operator is used to quantify the total of 256 LBP values into the 

histogram of 59 bins according to the uniform strategy. 
This histogram contains information about the distribution of the local micro-patterns over 

the whole image such as edges, spots and flat areas. For efficient face representation, one 

should also retain spatial information. For this purpose, an image is spatially divided into m 

small regions, R1,R2,...,Rm, and the spatially enhanced histogram for region Rj is defined as 
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(17)

where L is the number of different labels produced by LBP operator, m is the number of 
blocks of the divided image, and I{A} is 1 or 0 depending on whether A is true or false. 
According to Eq. 17, we obtain the following face feature vector: 

 (18)

 

 

Fig. 8. The overall process of LBP feature extraction. 

 
Fig. 9. The 3 × 3-neighborhood LBP operator. 

3. Fuzzy integral fusion of support vector machine classifiers 

The ultimate goal of gender classification systems is to achieve the best possible 
classification performance. This objective traditionally led to the development of different 
classification schemes. Although the common way then is to choose one of the design that 
would yield the best performance, the sets of patterns misclassified by the different 
classifiers would not necessarily overlap. This suggested that different classifier designs 
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potentially offered complementary information about the patterns to be classified which 
could be harnessed to improve the performance of the selected classifier [18]. 
Here, we introduce a classifier fusion method based on fuzzy integral proposed by Sugeno 
[13]. The distinguish characteristic of fuzzy integral is that it is able to represent a certain 
kind of interaction between criteria, which is always avoided by making classifiers 
independent. Given a set of classifiers and their importance, fuzzy integral evaluates the 
interaction of these classifiers by computing fuzzy measure, a real function defined on the 
power set of classifiers. Based on such function and considering each classifier’s decision, 
fuzzy integral will give a final decision. 

Before describing the proposed fusion method, we present a note on notation. Let  

C = {c1, . . . , cM} be the set of classes and we have K classifiers, f1, . . . , fK. Each of the K 

classifiers provides for an unknown sample X a degree of confidence in the statement ‘X 

belongs to class cj’, for all cj .We denote by  (X) the confidence degree delivered by the 

classifier i of X belonging to cj . 

3.1 Probabilistic output of SVMs 
We choose support vector machine as the basic classifier. Two SVMs are trained on hair and 
face features, respectively. Since fuzzy integral requires each classifier to give confidence 
value, we need to convert the binary output to probabilistic output. As the task of gender 
classification is a two-class problem, we assume that the training set is 

 (19)

where xi ∈ Rn, yi ∈ {−1, 1}, and i = 1, 2, · · · ,N. 
A classifier f(x) in the margin form of SVMs is equivalent to solving the following convex 
quadratic programming problem [19–21] 

 

(20)

and its dual form: 

 

(21)

SVM classifier f(x) finds the optimal hyperplane that correctly separates the training data 
while maximizing the margin. Therefore, there is the following discriminant hyperplane: 

 

(22)
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where K(·, ·) is a kernel function and b is a bias. 
Now f(x) can be projected onto [0, 1] by sigmoid function 

 

(23)

The parameters A and B [22] can be estimated by solving the following maximum likelihood 
problem [23]: 

 

(24)

where N+ is the number of training samples with y = 1 and N− is the number of training 
samples with y = −1. 

3.2 Fuzzy integral theory 
Fuzzy measures are the generalization of classical measures. The notion of a measure in an 
Euclidean space is a natural generalization of such elementary notions as the length of a line 
segment, the area of a rectangle and the volume of a parallelepiped. Still a more general 
concept of a measure in an arbitrary abstract set can be defined [24–26] as 
Definition 1: By a measurable space we mean a pair(X,Ω) consisting of a set X and a -
algebra of subsets of X. A subset A of X is called measurable (or measurable with respect to 

Ω) if A ∈ Ω. 
Definition 2: A measure μ on a measurable space (X,Ω) is a real non-negative set function 

defined for all sets of Ω such that μ(Ø) = 0, and if  is a disjoint family of sets with A 

∈ Ω, i ≥ 1, then 

 

(25)

It can be shown that a measure μ has the following properties [24]: 

1. μ(A) ≤ μ(B) if A ⊂ B. 

2. If  is an increasing sequence of measurable sets, then 

 
(26)

An important example of such a measure is the probability measure P, where P(X) = 1. 
In the seventies of the twentieth century, alternative models were proposed by different 
researchers [27–30], who all share the following intuitively reasonable axioms: 
Definition 3: Let g : Ω [0, 1] be a set function with 
1. g(Ø) = 0, g(X) = 1, 
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2. g(A) ≤ g(B) if A ⊂ B, 
3. If  is an increasing sequence of measurable sets, then 

 
(27)

Such a function is called a fuzzy measure [29]. 
By the nature of the definition of a fuzzy measure g, the measure of the union of two disjoint 
subsets cannot be directly computed from the component measures. In light of this, Sugeno 

[29] introduced the so-called gλ-fuzzy measures satisfying the property as follows: 

 
(28)

A gλ-fuzzy measure is indeed a fuzzy measure, and the gλ-fuzzy measure for λ = 0 is a 
probability measure [26, 31]. 

The constant λ can be determined by solving the following equation: 

 

(29)

In which, for a fixed set of {gi = gλ(si), 0 < gi < 1} where si is the ith classifier and gi is a fuzzy 

density, there exists a unique root of λ > −1, λ ≠ 0. 
Let S = {s1, s2, · · · , sK} be a finite set of individual SVM classifiers and 0 ≤ h(s1) ≤ h(s2) ≤ · · · ≤ 
h(sK) ≤ 1, where h(si) is the probabilistic output of SVM classifier si (1 ≤ i ≤ K) and the 
Choquet integral can be computed by 

 

(30)

where Ai = {s1, s2, ..., si}, i = 1, 2, ...,K, (h(s0) = 0). Therefore, the value of gλ(Ai) can be 
computed recursively by 

 
(31)

3.3 Fusion of SVM classifiers 
Now for each fk, the degree of importance gk, of how important fk is in the recognition of the 

class ci must be determined. Hence λ can be calculated using Eq. (29) and the gλ-fuzzy 
measure can be determined by a confusion matrix (CM) in Eq. (32) of the SVM classifier sk 

which can be computed by means of n-flod validation method, 

 

(32)
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where  is the number of the samples which are the class ci assigned to the class cj by the 

classifier sk. Therefore, the gλ-fuzzy measure can be calculated by the following formulation: 

 
(33)

and 

 

(34)

where gk is the fuzzy density for the SVM classifier sk and  represent the fuzzy density for 
the class ci and the SVM classifier sk. According to the above statement, we conclude the 
following algorithm for fuzzy integral fusion of SVM (FIF-SVM) classifiers. 
 

 

4. Experiments 

4.1 Databases 
In this work, a total number of 2608 frontal facial images were selected from three popular 
face databases. Among them, 481 male and 161 female images were selected from the AR 
database randomly; 595 male and 445 female frontal facial images are chosen from the CAS-
PEAL face database [32]; and 583 male and 406 female facial images are selected from the 
FERET face database. These facial images are described in Table 1. 
 

 

Table 1. The data set. 

4.2 Fuzzy measure values 
In Table 2, the fuzzy measure values of all the classes based on face feature are larger than 
those of hair feature. However, in our experiments, the fuzzy measure depends on the 
confusion matrix which can be acquired by 5-fold validation after training. The classifier 
which takes on good classification performance after cross validation can achieve a high 
fuzzy measure for each class. The reason is that the confusion matrix is a detailed 
description form of classification accuracy. Because the classification precision of the gender 
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classifier based on face feature is higher than hair feature in the course of cross validation, 
the fuzzy measure favors the SVM (face) classifier. Generally speaking, there are different 
mapping parameters, A and B in Eq. (23), for different classifiers, which are independent in 
the process of training and test mutually. At the same time, there is λ > −1 in most 
situations. However, there exists λ = −1 in Table 2 because of some classification accuracy 
values equal to 100% after cross validation. Therefore, if the classification precision is less 
than 100%, there exists λ > −1. 
 

 
Table 2. Values of gλ-fuzzy measure, parameter A (B = 0) and λ. 

4.3 Classification results 
In our experiments, both the proposed geometric hair model and the LBP approach are used 
to extract hair and face features, respectively, from all the training samples. Two kinds of 
SVM classifiers, namely hair classifier and face classifier, are trained on the given data sets 
shown in Table 1. The results of five-fold validation are employed to calculate the confusion 
matrix, which determines the gλ-fuzzy measure values of these two SVM classifiers. The 
classification accuracy of three different classifiers on the test data is described in Table 3. 
 

 

Table 3. Accuracy ( %) of three different classifiers: face SVM-classifier along, hair SVM-
classifier along, and fuzzy integral fusion of face and hair SVM-classifiers. 

From Table 3, we can see that the proposed fuzzy integral fusion method achieves the best 
classification accuracy in all the cases. It should be noted that when the classification 
accuracy of both hair classifier and face classifier are relatively lower, the proposed fusion 
method can dramatically improve the classification accuracy. At the same time, we can see 
that the face classifier has higher classification accuracy than that of the hair classifier. This 
indicates that internal features such as face feature are more critical to gender classification 
than external features such as hair feature. On the other hand, hair features play a good 
complementary role for gender classification. 
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5. Conclusions 

We have presented a modified geometric hair model for extracting hair features for gender 
classification. By using this model, hair features are represented as length, area, color, split-
location, and texture. In order to integrate the outputs of both hair classifier and face 
classifier that use hair features and face features, respectively, we have proposed a classifier 
fusion approach based on fuzzy integral theory. The experimental results on three popular 
face databases demonstrate the effectiveness of the modified geometric hair model and the 
proposed classifier fusion method. From the experimental results, we can obtain the 
following observations. a) Hair features play an important role in gender classification; b) 
Face features are more critical than hair features to gender classification; c) Implementing 
the fusion of hair and face classifiers can achieve the best classification accuracy in all of the 
cases; d) The proposed fusion method can improve the classification accuracy dramatically 
when the performance of all the single classifier is not good. From this study, we believe 
that more external features such as hair and clothes should be integrated into face features 
to develop more reliable and robust gender classification systems. 
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