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Abstract

This chapter presents a class of distributionally robust optimization problems in which a
decision-maker has to choose an action in an uncertain environment. The decision-maker
has a continuous action space and aims to learn her optimal strategy. The true distribution of
the uncertainty is unknown to the decision-maker. This chapter provides alternative ways to
select a distribution based on empirical observations of the decision-maker. This leads to a
distributionally robust optimization problem. Simple algorithms, whose dynamics are
inspired from the gradient flows, are proposed to find local optima. The method is extended
to a class of optimization problems with orthogonal constraints and coupled constraints
over the simplex set and polytopes. The designed dynamics do not use the projection
operator and are able to satisfy both upper- and lower-bound constraints. The convergence
rate of the algorithm to generalized evolutionarily stable strategy is derived using a mean
regret estimate. Illustrative examples are provided.

Keywords: distribution robustness, gradient flow, Bregman divergence, Wasserstein
metric, f-divergence

1. Introduction

Robust optimization can be defined as the process of determining the best or most effective

result, utilizing a quantitative measurement system under worst case uncertain functions or

parameters. The optimization may occur in terms of best robust design, net cash flows, profits,

costs, benefit/cost ratio, quality-of-experience, satisfaction, end-to-end delay, completion time,

etc. Other measurement units may be used, such as units of production or production time, and

optimization may occur in terms of maximizing production units, minimizing processing time,
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production time, maximizing profits, or minimizing costs under uncertain parameters. There are

numerous techniques of robust optimization methods such as robust linear programming,

robust dynamic programming, robust geometric programming, queuing theory, risk analysis,

etc. One of the main drawbacks of the robust optimization is that the worst scenario may be too

conservative. The bounds provided by the worst case scenarios may not be useful in many

interesting problems (see the wireless communication example provided below). However,

distributionally robust optimization is not based on the worst case parameters. The distribu-

tional robustness method is based the probability distribution instead of worst parameters. The

worse case distribution within a certain carefully designed distributional uncertainty set may

provide interesting features. Distributionally robust programming can be used not only to

provide a distributionally robust solution to a problem when the true distribution is unknown,

but it also can, in many instances, give a general solution taking into account some risk. The

presented methodology is simple and reduces significantly the dimensionality of the distribu-

tionally robust optimization. We hope that the designs of distributionally robust programming

presented here can help designers, engineers, cost–benefit analyst, managers to solve concrete

problems under unknown distribution.

The rest of the chapter is organized as follows. Section 2 presents some preliminary concepts of

distributionally robust optimization. A class of constrained distributionally robust optimiza-

tion problems are presented in Section 3. Section 4 focuses on distributed distributionally

robust optimization. Afterwards, illustrative examples in distributed power networks and in

wireless communication networks are provided to evaluate the performance of the method.

Finally, prior works and concluding remarks are drawn in Section 5.

Notation: Let R, Rþ, denote the set of real and non-negative real numbers, respectively, Ω; dð Þ

be a separable completely metrizable topological space with d : Ω�Ω ! Rþ a metric (dis-

tance). Let P Ωð Þ be the set of all probability measures over Ω:

2. Distributionally robust optimization

This section introduces distributionally robust optimization models. We will first present a

generic formulation of the problem. Then, individual components of the optimization and

their solvability issues via equivalent formulations will be discussed.

2.1. Model

Consider a decision-maker who wants to select an action a∈A⊂R
n in order to optimize her

objective r a;ωð Þ, where ω is an uncertain parameter. The information structure is the following:

• The true distribution of ω is not known to the decision-maker.

• The upper/lower bound (if any) of ω are unknown to the decision-maker.

• The decision-maker can measure/observe realization of the random variable ω:
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The decision-maker chooses to experiment several trials and obtains statistical realizations of ω

from measurements. The measurement data can be noisy, imperfect and erroneous. Then, an

empirical distribution (or histogram) m is built from the realizations of ω: However, m is not

the true distribution of the random variable ω, and m may not be a reliable measure due to

statistical, bias, measurement, observation or computational errors. Therefore, the decision-

maker is facing a risk. The risk-sensitive decision-maker should decide action that improves

the performance of E~mr a;ωð Þ among alternative distributions ~m within a certain level of

deviation r > 0 from the distribution m: The distributionally robust optimization problem is

therefore formulated as

supa∈A
inf ~m ∈Br mð ÞEω�~mr a;ωð Þ: (1)

where Br mð Þ is the uncertainty set of alternative admissible distributions from m within a

certain radius r > 0: Different distributional uncertainty sets are presented: the f -divergence

and the Wasserstein metric, defined below.

2.1.1. f -divergence

We introduce the notion of f� divergence which will be used to compute the discrepancy

between probability distributions.

Definition 1. Let m and ~m be two probability measures over Ω such that m is absolutely continuous

with respect to ~m: Let f be a convex function. Then, the f -divergence between m and ~m is defined as

follows:

Df m∥~mð Þ �

ð

Ω

f
dm

d~m

� �

d~m � f 1ð Þ,

where dm
d~m is the Radon-Nikodym derivative of the measure m with the respect the measure ~m:

By Jensen’s inequality:

Df m∥~mð Þ ¼

ð

Ω

f
dm

d~m

� �

d~m � f 1ð Þ

≥ f

ð

Ω

dm

d~m
d~m

� �

� f 1ð Þ

¼ f

ð

Ω

dm

� �

� f 1ð Þ

¼ f 1ð Þ � f 1ð Þ ¼ 0:

(2)

Thus, Df m∥~mð Þ ≥ 0 for any convex function f : Note however that, the f� divergence Df m∥~mð Þ

is not a distance (for example, it does not satisfy the symmetry property). Here the distribu-

tional uncertainty set imposed to the alternative distribution ~m is given by
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Br mð Þ ¼ ~mj~m :ð Þ ≥ 0;

ð

Ω

d~m ¼ ~m Ωð Þ ¼ 1; Df ~mkmð Þ ≤ r

� �

:

Example 1. From the notion of f� divergence one can derive the following important concept:

• α-divergence for

f að Þ ¼

4

αþ 1ð Þ 1� αð Þ
1� a

αþ1
2

� �

if α∉ �1;þ1f g,

a log a if α ¼ 1,

� log a if α ¼ �1,

8

>

>

>

<

>

>

>

:

• In particular, Kullback–Leibler divergence (or relative entropy) is retrieved as α goes to 1:

2.1.2. Wasserstein metric

The Wasserstein metric between two probability distributions ~m and m is defined as follows:

Definition 2. For m, ~m ∈P Ωð Þ, let Π ~m;mð Þ be the set of all couplings between m and ~m: That is,

π∈P Ω�Ωð Þ j π A�Ωð Þ ¼ m Að Þ; π Ω� Bð Þ ¼ ~m Bð Þ; A;Bð Þ∈B
2
Ωð Þ

� 	

:

B Ωð Þ denotes the measurable sets of Ω: Let θ∈ 1;∞½ �: The Wasserstein metric between ~m and m is

defined as

Wθ ~m;mð Þ ¼ inf
π∈Π ~m;mð Þ

∥d∥Lθ
π

¼ inf
π∈Π ~m;mð Þ

ð

a;bð Þ

dθ a; bð Þπ da; dbð Þ,

It is well-known that for every θ ≥ 1, Wθ ~m;mð Þ is a true distance in the sense that it satisfies the

following three axioms:

• positive-definiteness,

• the symmetry property,

• the triangle inequality.

Note that ~m is not necessarily absolutely continuous with respect to m: Now the distributional

uncertainty/constraint set is the set of all possible probability distributions within a Lθ-Wasser-

stein distance below r:

~Br mð Þ ¼ ~mj

ð

Ω

d~m ¼ ~m Ωð Þ ¼ 1; Wθ ~m;mð Þ ≤ r

� �

,

Note that, if m is a random measure (obtained from a sampled realization), we use the

expected value of the Wasserstein metric.
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Example 2. The Lθ-Wasserstein distance between two Dirac measures δω0
and δ~ω0

is Wθ δω0
; δ ~ω0

ð Þ ¼

d ω0; ~ωoð Þ: More generally, for K ≥ 2, the L2-Wasserstein distance between empirical measures

μK ¼ 1
K

PK
k¼1 δωk

and νK ¼ 1
K

PK
k¼1 δ~ωk

is W2
2 μK; νK

 �

≤
1
K

PK
i¼1 ωk � ~ωk½ �2:

We have defined Br mð Þ and ~Br mð Þ: The goal now is to solve (1) under both f� divergence and

Wasserstein metric. One of the difficulties of the problem is the curse of dimensionality. The

distributionally robust optimization problem (1) of the decision-maker is an infinite-

dimensional robust optimization problem because Br is of infinite dimensions. Below we will

show that (1) can be transformed into an optimization in the form of supinfsup: The latter

problem has three alternating terms. Solving this problem requires a triality theory.

2.2. Triality theory

We first present the duality gap and develop a triality theory to solve equivalent formulations

of (1). Consider uncoupled domains Ai, i∈ 1; 2; 3f g: For a general function r2,one has

sup
a2 ∈A2

inf
a1 ∈A1

r2 a1; a2ð Þ ≤ inf
a1 ∈A1

sup
a2 ∈A2

r2 a1; a2ð Þ

and the difference

min
a1 ∈A1

max
a2 ∈A2

r2 a1; a2ð Þ � max
a2 ∈A2

min
a1 ∈A1

r2 a1; a2ð Þ,

is called duality gap. As it is widely known in duality theory from Sion’s Theorem [1] (which is

an extension of von Neumann minimax Theorem) the duality gap vanishes, for example for

convex-concave function, and the value is achieved by a saddle point in the case of non-empty

convex compact domain.

Triality theory focuses on optimization problems of the forms: sup infsup or infsup inf: The

term triality is used here because there are three key alternating terms in these optimizations.

Proposition 1. Let a1; a2; a3ð Þ↦ r3 a1; a2; a3ð Þ∈R be a function defined on the product space
Q3

i¼1 Ai:

Then, the following inequalities hold:

supa2 ∈A2
infa1 ∈A1,a3 ∈A3

r3 a1; a2; a3ð Þ ≤

infa3 ∈A3
supa2 ∈A2

infa1 ∈A1
r3 a1; a2; a3ð Þ ≤

infa1 ∈A1,a3 ∈A3
supa2 ∈A2

r3 a1; a2; a3ð Þ,

(3)

and similarly

supa1 ∈A1,a3 ∈A3
infa2 ∈A2

r3 a1; a2; a3ð Þ ≤

supa3 ∈A3
infa2 ∈A2

supa1 ∈A1
r3 a1; a2; a3ð Þ ≤

infa2 ∈A2
supa1 ∈A1,a3 ∈A3

r3 a1; a2; a3ð Þ:

(4)
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Proof. Define

ĝ a2; a3ð Þ≔ inf
a1 ∈A1

r3 a1; a2; a3ð Þ:

Thus, for all a2, a3, one has ĝ a2; a3ð Þ ≤ r3 a1; a2; a3ð Þ: It follows that, for any a1, a3,

sup
a2 ∈A2

ĝ a2; a3ð Þ ≤ sup
a2 ∈A2

r3 a1; a2; a3ð Þ:

Using the definition of ĝ, one obtains

sup
a2 ∈A2

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ sup
a2 ∈A2

r3 a1; a2; a3ð Þ, ∀a1, a3:

Taking the infimum in a1 yields:

sup
a2 ∈A2

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ inf
a1 ∈A1

sup
a2 ∈A2

r3 a1; a2; a3ð Þ, ∀a3 (5)

Now, we use two operations for the variable a3:

• Taking the infimum in the inequality (5) in a3 yields

inf
a3 ∈A3

sup
a2 ∈A2

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ inf
a3 ∈A3

inf
a1 ∈A1

sup
a2 ∈A2

r3 a1; a2; a3ð Þ

¼ inf
a1;a3ð Þ∈A1�A3

sup
a2 ∈A2

r3 a1; a2; a3ð Þ,

which proves the second part of the inequalities (3). The first part of the inequalities (3) follows

immediately from (5).

• Taking the supremum in inequality (5) in a3 yields

sup
a2;a3ð Þ∈A2�A3

inf
a1 ∈A1

r3 a1; a2; a3ð Þ ≤ sup
a3 ∈A3

inf
a1 ∈A1

sup
a2 ∈A2

r3 a1; a2; a3ð Þ,

which proves the first part of the inequalities (4). The second part of the inequalities (4) follows

immediately from (5).

This completes the proof.

2.3. Equivalent formulations

Below we explain how the dimensionality of problem (1) can be significantly reduced using a

representation by means of the triality theory inequalities of Proposition 1.

2.3.1. f -divergence

Interestingly, the distributionally robust optimization problem (1) under f -divergence is equiv-

alent to the finite dimensional stochastic optimization problem (when A are of finite

Optimization Algorithms - Examples6



dimensions). To see this, the original problem need to be transformed. Let us introduce the

likelihood functional L ~ωð Þ ¼ d~m
dm

~ωð Þ, and set

Lr mð Þ ¼ Lj

ð

~ω

f L ~ωð Þð Þdm� f 1ð Þ ≤ r;

ð

~ω

L ~ωð Þdm ~ωð Þ ¼ 1

� �

:

Then, the Lagrangian of the problem is

~r a; L;λ;μ

 �

¼

ð

~ω

r a; ~ωð ÞL ~ωð Þdm ~ωð Þ

� λ r þ f 1ð Þ �

ð

~ω

f L ~ωð Þð Þdm ~ωð Þ

� �

� μ 1�

ð

~ω

L ~ωð Þdm ~ωð Þ

� �

,

where λ ≥ 0 and μ∈R: The problem becomes

supainfL∈ Lr mð Þsupλ ≥ 0,μ∈R
~r a; L;λ;μ

 �

:

n

(6)

A full understanding of problem 6ð Þ requires a triality theory (not a duality theory). The use of

triality theory leads to the following equation:

supa∈A
inf ~m ∈Br mð ÞE~m r½ � ¼ supa∈A,λ ≥ 0,μ∈R

Emh,
n

(7)

where h is the integrand function �λ r þ f 1ð Þð Þ � μ� λf ∗
rþμ
�λ


 �

, where f ∗ is Legendre-Fenchel

transform of f defined by

f ∗ ξð Þ ¼ sup
L

L; ξh i � f Lð Þ½ � ¼ � inf
L

f Lð Þ � L; ξh i½ �: (8)

Note that the righthand side of (7) is of dimension nþ 2, which reduces considerably the

dimensionality of the original problem (1).

2.3.2. Wasserstein metric

Similarly, the distributionally robust optimization problem under Wasserstein metric is equiv-

alent to the finite dimensional stochastic optimization problem (when A is a set of finite

dimension). If the function ω↦ r a;ωð Þ is upper semi-continuous and Ω; dð Þ is a Polish space

then the Wasserstein distributionally robust optimization problem is equivalent to

supa∈A
inf

~m ∈ ~Br

mð ÞE~m r½ � ¼ supa∈A
supλ ≥ 0Em

~h
h i

,

~h ¼ λrθ þ μþ supω̂ ∈Ω
r a;ωð Þ � μ� λdθ ω; ω̂ð Þ
� 

;

8

<

:

(9)

The next subsection presents algorithms for computing a distributionally robust solution from

the equivalent formulations above.

Distributionally Robust Optimization
http://dx.doi.org/10.5772/intechopen.76686

7



2.4. Learning algorithms

Learning algorithms are crucial for finding approximate solutions to optimization and control

problems. They are widely used for seeking roots/kernel of a function and for finding feasible

solutions to variational inequalities. Practically, a learning algorithm generates a certain trajec-

tory (or a set of trajectories) toward a potential approximate solution. Selecting a learning

algorithm that has specific properties such as better accuracy, more stability, less-oscillatory

and quick convergence is a challenging task [2–5]. From the calculus of variations point of

view, however, a learning algorithm generates curves. Therefore, selecting an algorithm

among the others leads to an optimal control problem on the spaces of curves. Hence, it is

natural to use optimal control theory to derive faster algorithms for a family of curves.

Bergman-based algorithms and risk-aware version of it are introduced below to meet specific

properties. We start by introducing the Bregman divergence.

Definition 3. The Bregman divergence dg : A�A ! R is defined on a differentiable strictly convex

function g : A ! R: For two points a; bð Þ∈A
2, it measures the gap between g að Þ and the first-order

Taylor expansion of g around a evaluated at b

dg a; bð Þ≔ g að Þ � g bð Þ � ∇g bð Þ; a� bh i:

Example 3. From the Bregman divergence one gets other features by choosing specific functions g :

• If g að Þ ¼
Pn

i¼1 a
2
i then the Bregman divergence dg a; bð Þ ¼

Pn
i¼1 ai � bið Þ2 is the squared standard

Euclidean distance.

• If g að Þ ¼
Pn

i¼1 ai log ai is defined on the relative interior of the simplex, i.e., a∈ b j b∈f

0; 1ð Þn;
Pn

i¼1 bi ¼ 1g then the Bregman divergence dg a; bð Þ ¼
Pn

i¼1 ai log
ai
bi

� �

, is the

Kullback–Leibler divergence.

We are now ready to define algorithms for solving the righthand side of (7) and (9). One of the

key approaches for error quantification of the algorithm with respect to the distributionally

robust optimum is the so-called average regret. When the regret vanishes one gets close to a

distributionally robust optimum.

Definition 4. The average regret of an algorithm which generates the trajectory a tð Þ ¼ ~a tð Þ;λ tð Þ;ð

μ tð ÞÞ within t0;T½ �, t0 > 0 is

regretT ≔
1

T � t0

ðT

t0

max
b∈A�Rþ�R

Emh b;ωð Þ

� �

� Emh a tð Þ;ωð Þdt

2.4.1. Armijo gradient flow

Algorithm 1. The Armijo’s gradient pseudocode is as follows:

1: Procedure ARMIJO GRADIENT a 0ð Þ; e;T; g;m; hð Þ⊳ The Armijo’s gradient starting from a 0ð Þ within

0;T½ �

Optimization Algorithms - Examples8



2: a a 0ð Þ

3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (10)

5: Compute regrett

6: end while

7: return a tð Þ, regrett ⊳ get a(t) and the regret

8: end procedure

Proposition 2. Let a↦Emh a;ωð Þ : R
nþ2 ! R be a concave function that has a unique global

maximizer a∗: Assume that a∗ be a feasible action profile, i.e., a∗ ∈A: Consider the continuous time

analogue of the Armijo gradient flow [6], which is given by

d

dt
a tð Þ ¼ ∇

2g
� �1

:∇aEmh a tð Þ;ωð Þ,

a 0ð Þ ¼ a0 ∈R
nþ2,

(10)

where a 0ð Þ ¼ a0 is the initial point of the algorithm and g is a strictly convex function on a: Let

a tð Þ be the solution to (10).

Then the average regret within t0;T½ �, t0 > 0 is bounded above by

regretT ≔
1

T � t0

ðT

t0

Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ �dt ≤ dg a∗; a0ð Þ
log T

t0

T � t0
:

Proof. Let

W a tð Þð Þ ¼ tEm h a∗;ωð Þ � h a tð Þ;ωð Þ½ � þ dg a∗; a tð Þð Þ,

where a is solution to (10). The function W is positive and d
dtW ¼ Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ ��

t Em∇ah a;ωð Þ; g�1aa Em∇ah a tð Þ;ωð Þ
� �

þ d
dt dg a∗; a tð Þð Þ: By concavity of Emh a;ωð Þ one has

Em∇ah a;ωð Þ; a∗ � að Þh i ≥Em h a∗;ωð Þ � h a;ωð Þ½ �, ∀ a:

On the other hand,

d

dt
dg a∗; a tð Þð Þ ¼ � _aga að Þ � gaa _a; a� a∗

� �

þ ga _a

¼ � gaa _a; a� a∗
� �

¼ � Em∇ah a;ωð Þ; a∗ � ah i:
(11)

Hence,

d

dt
W ≤ Em∇ah a;ωð Þ; a∗ � að Þh i

�t Em∇ah a;ωð Þ; g�1aa Em∇ah a;ωð Þ
� �

� Em∇ah a;ωð Þ; a∗ � ah i

¼ �t Em∇ah a;ωð Þ; g�1aa Em∇ah a;ωð Þ
� �

≤ 0,

(12)

Distributionally Robust Optimization
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where the last inequality is by convexity of g: It follows that d
dtW a tð Þð Þ ≤ 0 along the path of the

gradient flow. This decreasing property implies 0 ≤W a tð Þð Þ ≤W a 0ð Þð Þ ¼ dg a∗; a 0ð Þð Þ: In particu-

lar, 0 ≤ tEm h a∗;ωð Þ � h a;ωð Þ½ � ≤W a 0ð Þð Þ < þ∞: Thus, the error to the value Emh a∗;ωð Þ is

bounded by

0 ≤Em h a∗;ωð Þ � h a;ωð Þ½ � ≤
W a 0ð Þð Þ

t
:

The announced result on the regret follows by integration over t0;T½ � and by averaging. This

completes the proof.

Note that the above regret-bound is established without assuming strong convexity of

a↦ � Emh a;ωð Þ: Also no Lipschitz continuity bound of the gradient is assumed.

2.4.2. Bregman learning algorithms

Algorithm 2. The Bregman learning pseudocode is as follows:

1: procedure BREGMAN a 0ð Þ; e;T; g;α; β;m; h

 �

⊳ The Bregman learning starting from a 0ð Þ within

0;T½ �

2: a a 0ð Þ

3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (13)

5: Compute regrett

6: end while

7: return a tð Þ, regrett ⊳ get a tð Þ and the regret

8: end procedure

Proposition 3. Let a↦Emh a;ωð Þ : R
nþ2 ! R be a concave function that has a unique global

maximizer a∗: Assume that a∗ be a feasible action profile, i.e., a∗ ∈A: Let α and β be two functions such

that _β tð Þ ≤ eα tð Þ: Consider the following Bregman learning algorithm

d

dt
ga a tð Þ þ e�α tð Þ

_a tð Þ
� �h i

¼ eα tð Þþβ tð Þ
∇aEmh a tð Þ;ωð Þ,

a 0ð Þ∈R
nþ2, _a 0ð Þ∈R

nþ2,

(13)

where a 0ð Þ is the initial point of the algorithm and g is a strictly convex function on a: Let a tð Þ

be the solution to (13). Then the average regret within t0;T½ �, t0 > 0 is bounded above by

regretT ≤
c0

T � t0

ðT

t0

e�β sð Þds, (14)

where c0 ≔ dg a∗; a 0ð Þð Þ þ e�α 0ð Þ _a 0ð ÞÞ þ eβ 0ð Þ
Em h a∗;ωð Þ � h a 0ð Þ;ωð Þ½ � > 0:

Optimization Algorithms - Examples10



Proof. Let W a; _a; t; a∗ð Þ ¼ dg a∗; a tð Þ þ e�α tð Þ _a tð Þ

 �

þ eβ tð Þ
Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ �: It is clear that W

is positive. Moreover, d
dtW a tð Þ; _a tð Þ; t; a∗ð Þ ≤ 0 for _β ≤ eα: Thus W a tð Þ; _a tð Þ; t; a∗ð Þ ≤W a 0ð Þ;ð

_a 0ð Þ; 0; a∗Þ ¼ c0: By integration between t0;T½ � it follows

1

T � t0

ðT

t0

Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ �dt ≤
c0

T � t0

ðT

t0

e�β sð Þds:

This completes the proof.

In particular, for β sð Þ ¼ �sþ es, one obtains an error bound to the minimum value as

c0
t

ðt

0

e�β sð Þds ¼
c0
t

ðt

0

ese�esds ¼
c0

1
e � e�et

 �

t
,

and for β sð Þ ¼ s, the regret bound becomes

c0
t

ðt

0

e�β sð Þds ¼
c0 1� e�tð Þ

t
:

Figure 1 illustrates the advantage of algorithm (13) compared with the gradient flow (10). It

plots the regret bound c0
T�t0

Ð T
t0
e�β sð Þds for β ¼ s and dg a∗; a0ð Þ

log T
t0

T�t0
with an initial gap of c0 ¼ 25:

The advantage of algorithms (10) and (13) is that it is not required to compute the Hessian of

Emh a;ωð Þ as it is the case in the Newton scheme. As a corollary of Proposition 2 the regret

vanishes as T grows. Thus, it is a no-regret algorithm. However, Algorithm (10) may not be

sufficiently fast. Algorithm (13) provides a higher order convergence rate by carefully design-

ing α; β

 �

: The average regret decays very quickly to zero [7]. However, it may generate an

Figure 1. Global regret bound under Bregman vs. gradient. The initial gap is c0 ¼ 25:

Distributionally Robust Optimization
http://dx.doi.org/10.5772/intechopen.76686

11



oscillatory trajectory with a big magnitude. The next subsection presents risk-aware algo-

rithms that reduce the oscillatory phase of the trajectory.

2.4.3. Risk-aware Bregman learning algorithm

In order to reduce the oscillatory phase, we introduce a risk-aware Bregman learning algo-

rithm [7] which is a speed-up-and-average version of (13) called mean dynamics m of a given by

m⃛ ¼ �
3

t
€m� eα � _αð Þ €mþ

2

t
_m

� �

þ
e2αþβ

t
g�1mm mþ tþ 2e�α½ � _mþ te�α €m


 �

Ehm t _mþm;ω

 �

,

(15)

with starting vector m 0ð Þ ¼ a 0ð Þ, _m 0ð Þ, €m 0ð Þ:

Algorithm 3. The risk-aware Bregman learning pseudocode is as follows:

1: procedure RISK-AWARE BREGMAN m 0ð Þ; e;T; g;α; β;m; h

 �

⊳ The risk-aware Bregman learning

starting from m 0ð Þ within 0;T½ �

2: m m 0ð Þ ¼ a 0ð Þ, _m 0ð Þ, €m 0ð Þ

3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute m tð Þ solution of (15)

5: Compute regret

6: end while

7: return m tð Þ, regrett ⊳ get m tð Þ and the regret

8: end procedure

Proposition 4. The time-average trajectory of the learning algorithm (13) generates the mean dynamics

(15).

Proof.We use the average relation m tð Þ ¼ 1
t

Ð t
0 a sð Þ ds where a solves Eq. (13). From the definition

ofm, and by Hopital’s rule, m 0ð Þ ¼ a 0ð Þ: Moreover, m tð Þ and a tð Þ share the following equations:

a tð Þ ¼ m tð Þ þ t _m tð Þ,

_a tð Þ ¼ 2 _m tð Þ þ t €m tð Þ,

€a tð Þ ¼ 3 €m tð Þ þ tm⃛ tð Þ:

(16)

Substituting these values in Eq. (13) yields the mean dynamics (15). This completes the proof.
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The risk-aware Bregman dynamics (15) generates a less oscillatory trajectory due to its averag-

ing nature. The next result provides an accuracy bound for (15).

Proposition 5. The risk-aware Bregman dynamics (15) satisfies

0 ≤Em h a∗;ωð Þ � h m tð Þ;ωð Þ½ � ≤
c0
t

ðt

0

e�β sð Þds:

Proof. Let m tð Þ ¼ 1
t

Ð t
0 a sð Þds: Then, m tð Þ ¼

Ð

R
a sð Þ 1

t 1l 0;t½ � sð Þ

 �

ds: Thus, m tð Þ ¼ Eμ tð Þa where μ tð Þ is

the measure with density dμ tð Þ s½ � ¼ 1
t 1l 0;t½ � dsð Þ: By convexity of �Emh a;ωð Þ we apply the

Jensen’s inequality:

Emh
1

t

ðt

0

a sð Þds;ω

� �

¼ Emh m tð Þ;ωð Þ ¼ Emh Eμ tð Þa;ω

 �

≥Eμ tð ÞEmh a;ωð Þ ¼
1

t

ðt

0

Emh a sð Þ;ωð Þds:

In view of (14) one has

0 ≤Emh a∗;ωð Þ � Emh
1

t

ðt

0

a sð Þds;ω

� �

≤
1

t

ðt

0

Emh a∗;ωð Þ � Emh a sð Þ;ωð Þ½ �ds

≤ c0
1

t

ðt

0

e�β sð Þds,

0 ≤Emh a∗;ωð Þ � Emh m tð Þ;ωð Þ ≤
c0
t

ðt

0

e�β sð Þds:

This completes the proof.

Definition 5. (Convergence time). Let δ > 0 and a tð Þ be the trajectory generated by Bregman

algorithm starting from a0 at time t0: The convergence time to be within a ball B Emh a∗;ωð Þ; δð Þ of

radius δ > 0 from the center r a∗ð Þ is given by

Tδ ¼ inf t j Em h a∗;ωð Þ � h a tð Þ;ωð Þ½ � ≤ δ; t > t0f g:

Proposition 6. Under the assumptions above, the error generated by the algorithm is at most (14)

which means that it takes at most Tδ ¼ β�1 log c0
δ

� 

time units to the algorithm to be within a ball

B r a∗ð Þ; δð Þ of radius δ > 0 from the center Emh a∗;ωð Þ.

Proof. The proof is immediate. For δ > 0 the average regret bound of Proposition 5,
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regretT ≤
c0

T � t0

ðT

t0

e�β sð Þds ≤ δ, (17)

provides the announced convergence time bound. This completes the proof.

See Table 1 for detailed parametric functions on the bound Tδ:

Convergence Error bound Time-to-reach Tδ

Triple exponential e�ee
t

c0 log log log c0
δ


 �� 

α tð Þ ¼ tþ et , β tð Þ ¼ ee
t

Double exponential rate e�et c0 log log c0
δ


 �

α tð Þ ¼ t, β tð Þ ¼ et

Exponential rate e�tc0 log c0
δ

α tð Þ ¼ 0, β tð Þ ¼ t

Polynomial order k c0
tk

c
1=k
0

δ1=k

α tð Þ ¼ log k� log t, β tð Þ ¼ k log t

Table 1. Convergence rate under different set of functions.

Figure 2. Gradient ascent vs. risk-aware Bregman dynamics for r ¼ � 1þ
P2

k¼1 ω
2
ka

2
k

� �

:
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Example 4. Let f yð Þ ¼ y log y defined on R
∗
þ: Then, f 1ð Þ ¼ 0, and derivatives of f are

f 0 yð Þ ¼ 1þ log y, f 0
0
yð Þ ¼ 1

y > 0: The Legendre-Fenchel transform of f is f ∗ ξð Þ ¼ y∗ ¼ eξ�1: Let

a1; a2ð Þ↦ g að Þ ¼ ∥a∥22, and a1; a2;ωð Þ↦ r a1; a2;ωð Þ ¼ � 1þ
P2

k¼1 ω
2
ika

2
k

� �

: The coefficient ω distri-

bution is unknown but a sampled empirical measure m is considered to be similar to uniform distribu-

tion in 0; 1ð � with 104 samples. We illustrate the quick convergence rate of the algorithm in a basic

example and plot in Figure 2 the trajectories under standard gradient, Bregman dynamics and risk-

aware Bregman dynamics (15). In particular, we observe that risk-aware Bregman dynamics (15)

provides very quickly a satisfactory value. In this particular setup, we observe that the accuracy of the

risk-aware Bregman algorithm (15) at t ¼ 0:5 will need four times (t ¼ 2) less than the standard

Bregman algorithm to reach a similar level of error. It takes 40 times more t ¼ 20ð Þ than the gradient

ascent to reach that level. Also, we observe that the risk-aware Bregman algorithm is less oscillatory and

the amplitude decays very fast compared to the risk-neutral algorithm.

3. Constrained distributionally robust optimization

In the constrained case i.e., when A is a strict subset of Rnþ2, algorithms (10) and (13) present

some drawbacks: The trajectory a tð Þ may not be feasible, i.e., a tð Þ∉A� Rþ � R even when it

starts in A: In order to design feasible trajectories, projected gradient has been widely studied

in the literature. However, a projection into A at each time t involves additional optimization

problems and the computation of the projected gradient adds extra complexity to the algo-

rithm. We restrict our attention to the following constraints:

A ¼ a∈Rn j al ∈ al; al
� 

; l∈ 1;…; nf g;
X

n

l¼1

clal ≤ b

( )

:

We impose the following feasibility condition: al < al, l∈ 1;…; nf g, cl > 0,
Pn

l¼1 clal < b:

Under this setting, the constraint set A is non-empty, convex and compact.

We propose a method to compute a constrained solution that has a full support (whenever

it exists). We do not use the projection operator. Indeed we transform the domain

al; al
� 

¼ ξ 0; 1½ �ð Þ where ξ xlð Þ ¼ alxl þ al 1� xlð Þ ¼ al: ξ is a one-to-one mapping and

xl ¼ ξ
�1 alð Þ ¼

al � al
al � al

∈ 0; 1½ �:

X

n

l¼1

cl al � al

 �

xl ≤ b�
X

n

l¼1

clal≕b̂:

The algorithm (18)
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_y ¼ ∇
2g

� �1
∇aEmh a;ωð Þ≕f̂ að Þ,

al ≔ alxl þ al 1� xlð Þ,

xl ¼ min 1;
eyl

Pn
k¼1 e

yk

b̂

cl al � al

 �� 

 !

,

l∈ 1;…; nf g,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(18)

generates a trajectory a tð Þ that satisfies the constraint.

Algorithm 4. The constrained learning pseudocode is as follows:

1: procedure CONSTRAINED GRADIENT a 0ð Þ; e;T; g;m; hð Þ⊳ The constrained learning algorithm starting

from a 0ð Þ within 0;T½ �

2: a a 0ð Þ

3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (18)

5: Compute regret

6: end while

7: return a tð Þ, regrett ⊳ get a(t) and the regret

8: end procedure

Proposition 7. If b̂ ≤minlcl al � al

 �

then Algorithm (18) reduces to

al ≔ alxl þ al 1� xlð Þ,

_xl ¼ xl el; f̂ að Þ
D E

� 1b̂
X

l

el; f̂ að Þ
D E

xl cl al � al

 �� 

" #

,

l∈ 1;…; nf g

8

>

>

>

>

<

>

>

>

>

:

(19)

Proof. It suffices to check that for b̂ ≤minlcl al � al

 �

, the vector z defined by zl ¼
eyl

Pn

k¼1
eyk

solves

the replicator equation,

_zl ¼ zl _yl � z; _yh i
� 

:

Thus, xl ¼
eyl

Pn

k¼1
eyk

b̂
cl al�alð Þ½ �

solves _xl ¼ xl el; f̂ að Þ
D E

� 1b̂
P

l el; f̂ að Þ
D E

xl cl al � al

 �� 

h i

: This com-

pletes the proof.

Note that the dynamics of x in Eq. (19) is a constrained replicator dynamics [8] which is widely

used in evolutionary game dynamics. This observation establishes a relationship between

optimization and game dynamics and explains that the replicator dynamics is the gradient

flow of the (expected payoff) under simplex constraint.
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The next example illustrates a constrained distributionally robust optimization in wireless

communication networks.

Example 5 (Wireless communication). Consider a power allocation problem over n medium access

channels. The signal-to-interference-plus-noise ratio (SINR) is

SINRl ¼

al ωllj j2

d2 sr lð Þ;st lð Þð Þþε
2ð Þ

o
2

N0 sr lð Þð Þ þ Il sr lð Þð Þ
,

where

• N0 > 0 is the background noise.

• The interference on channel l is denoted Il ≥ 0: One typical model for Il is

Il ¼
P

k6¼l
ak ωklj j2

d2 sr lð Þ;st kð Þð Þþε
2ð Þ

o
2
:

• e > 0 is the height of the transmitter antenna.

• ωll is the channel state at l: The channel state is unknown. Its true distribution is also

unknown.

• sr lð Þ is the location of the receiver of l

• st lð Þ is the location of the transmitter of l

• o∈ 2; 3; 4f g is the pathloss exponent.

• al is the power allocated to channel l: It is assumed to be between al ≥ 0 and al with

0 ≤ al < al < þ∞: Moreover, a total power budget constraint is imposed
Pn

l¼1 al ≤ a where

a >
Pn

l¼1 al ≥ 0:

It is worth mentioning that the action constraint of the power allocation problem are similar to the ones

analyzed in Section 3. The admissible action space is

A≔ a∈Rn
þ : al ≤ al ≤ al;

X

n

l¼1

al ≤ a

( )

:

Clearly, A is a non-empty convex compact set. The payoff function is the sum-rate r a;ωð Þ ¼
Pn

l¼1 W l log 1þ SINRlð Þ where W l > 0: The mapping a;ωð Þ↦ r a;ωð Þ is continuously differentiable.

• Robust optimization is too conservative: Part of the robust optimization problem [9, 7] consists of

choosing the channel gain ωllj j2 ∈ 0;ωll½ � were the bound ω need to be carefully designed. However

the worst case is achieved when the channel gain is zero: inf
ω∈

Q

l
0;ωll½ �r a;ωð Þ ¼ 0: Hence the

robust performance is zero. This is too conservative as several realizations of the channel may give

better performance than zero. Another way is to re-design the bounds ωll and ωll: But if ωll > 0 it

means that very low channel gains are not allowed, which may be too optimistic. Below we use the

distributional robust optimization approach which eliminates this design issue.

• Distributional robust optimization: By means of the training sequence or channel estimation

method, a certain (statistical) distribution m is derived. However m cannot be considered as the
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true distribution of the channel state due to estimation error. The true distribution of ω is unknown.

Based on this observation, an uncertainty set Br mð Þ with radius r ≥ 0 is constructed for alternative

distribution candidates. Note that r ¼ 0 means that B0 mð Þ ¼ mf g: The distributional robust opti-

mization problem is supainf ~m ∈Br mð Þ E~mr a;ωð Þ: In presence of interference, the function r a;ωð Þ is

not necessarily concave in a: In absence of interference, the problem becomes concave.

4. Distributed optimization

This section presents distributed distributionally robust optimization problems over a direct

graph. A large number of virtual agents can potentially choose a node (vertex) subject to

constraint. The vector a represents the population state. Since a has n components, the graph

has n vertices. The interactions between virtual agents are interpreted as possible connections

of the graph. Let us suppose that the current interactions are represented by a directed graph

G ¼ L; Eð Þ, where E ⊆L
2 is the set of links representing the possible interaction among the

proportion of agents, i.e., if l; kð Þ∈ E, then the component l of a can interact with the k�th

component of a. In other words, l; kð Þ∈ E means that virtual agents selecting the strategy l∈L

could migrate to strategy k∈L:Moreover, Λ∈ 0; 1f gn�n is the adjacency matrix of the graph G,

and whose entries are λlk ¼ 1, if l; kð Þ∈ E; and λlk ¼ 0, otherwise.

Definition 6. The distributionally robust fitness function is the marginal distributionally robust

payoff function. If a↦Emh a;ωð Þ is continuously differentiable, the distributionally robust fitness

function is Em∇ah a;ωð Þ:

Definition 7. The virtual population state a is an equilibrium if a∈A and it solves the variational

inequality

a� b,Em∇ah a;ωð Þ ≥ 0, ∀b∈A:h

Proposition 8. Let the set of virtual population state A be non-empty convex compact and

b↦Em∇h b;ωð Þ be continuous. Then the following conditions are equivalent:

• a� b,Em∇h a;ωð Þ ≥ 0, ∀b∈A:h

• the action a satisfies a ¼ proj
A
aþ ηEm∇h a;ωð Þ½ �

Proof. Let a be a feasible action that solves the variational inequality:

a� b,Em∇h a;ωð Þ ≥ 0, ∀b∈A:h

Let η > 0: By multiplying both sides by η, we obtain

a� b, ηEm∇h a;ωð Þ ≥ 0, ∀b∈A:h
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We add the term a; b� ah i to both sides to obtain the following relationships:

a� b; ηEm∇h a;ωð Þh i ≥ 0 ∀b∈A,

⇔ a� b; ηEm∇h a;ωð Þh i þ a� b;�ah i ≥ a; b� ah i ∀b∈A,

⇔ b� a;� aþ ηEm∇h a;ωð Þ½ �h i þ a� b;�ah i ≥ 0 ∀b∈A,

⇔ b� a; a� aþ ηEm∇h a;ωð Þ½ �h i ≥ 0 ∀b∈A,

(20)

Recall that the projection operator on a convex and closed set A is uniquely determined by

z∈R
n, z0 ¼ proj

A
z½ �⇔ z0 � z; b� z0h i ≥ 0, ∀b∈A:

Thus

b� a; a� aþ ηEm∇h a;ωð Þ½ �h i ≥ 0, ∀b∈A

⇔ a ¼ proj
A
aþ ηEm∇h a;ωð Þ½ �:

(21)

This completes the proof.

As a consequence we can derive the following existence result.

Proposition 9. Let the set of virtual population states A be a non-empty convex compact and the

mapping b↦Em∇h b;ωð Þ be continuous. Then, there exists at least one equilibrium in A:

Proof. A direct application of the Brouwer-Schauder’s fixed-point theorem which states that if

ϕ : A ! A is continuous and A non-empty convex compact then ϕ has at least one fixed-

point in A: Here we choose ϕ að Þ ¼ proj
A
aþ ηEm∇h a;ωð Þ½ �: Clearly ϕ Að Þ⊆A and ϕ is continu-

ous on A as the mapping b↦Em∇h b;ωð Þ and the projection operator b↦ proj
A
b½ � are both

continuous. Then the announced result follows. This completes the proof.

Note that we do not need sophisticated set-valued fixed-point theory to obtain this result.

Definition 8. The virtual population state a is evolutionarily stable if a∈A and for any alternative

deviant state b 6¼ a there is an invasion barrier eb > 0 such that

a� b,Em∇h aþ e b� að Þ;ωð Þ > 0, ∀e∈ 0; ebð Þ:h

The function ϱ : A� R
n � R

n�n
þ ! R

n�n is the revision protocol, which describes how virtual

agents are making decisions. The revision protocol ϱ takes a population state a, the

corresponding fitness ∇Emh, the adjacency matrix Λ and returns a matrix. Therefore, let

ϱlk a; h;Λð Þ be the switching rate from the lth to kth component. Then, the virtual agents selecting

the strategy l∈L have incentives to migrate to the strategy l∈L only if ϱlk a; h;Λð Þ > 0, and it is

also possible to design switch rates depending on the topology describing the migration

constraints, i.e., λlk ¼ 0 ) ϱlk a; h;Λð Þ ¼ 0: The distributed distributionally robust optimization

consists to perform the optimization problem above over the distributed network that is
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subject to communication restriction. We construct a distributed distributionally robust game

dynamics to perform such a task. The distributed distributionally robust evolutionary game

dynamics emerge from the combination of the (robust) fitness h and the constrained switching

rates ϱ: The evolution of the portion al is given by the distributed distributional robust mean

dynamics

_al ¼
X

k∈L

akϱkl a; h;Λð Þ � al
X

k∈L

ϱlk a; h;Λð Þ, l∈L, (22)

Since the distributionally robust function h is obtained after the transformation from payoff

function r by means of triality theory, the dynamics (22) is seeking for distributed distribu-

tionally robust solution.

Algorithm 5. The distributed distributional robust mean dynamics pseudocode is as follows:

1: procedure POPULATION-INSPIRED ALGORITHM a 0ð Þ; e;T; ϱ; g;m; h;Λð Þ⊳ The population-inspired

learning starting from a 0ð Þ within 0;T½ �

2: a a 0ð Þ

3: while regret > e and t ≤T do ⊳ We have the answer if regret is 0

4: Compute a tð Þ solution of (22)

5: Compute regrett

6: end while

7: return a tð Þ, regrett ⊳ get a tð Þ and the regret

8: end procedure

The next example establishes evolutionarily stable state, equilibria and rest-point of the

dynamics (22) by designing ϱ:

Example 6. Let us consider a power system that is composed of 10 generators, i.e., let L ¼ 1;…; 10f g.

Let al ∈Rþ be the power generated by the generator l∈L. Each power generation should satisfy the

physical and/or operation constraints al ∈ al; al
� 

, for all l∈L. It is desired to satisfy the power demand

given by d∈R, i.e., it is necessary to guarantee that
P

l∈Lal ¼ d, i.e., the supply meets the demand.

The objective is to minimize the generation quadratic costs for all the generators, i.e.,

Maximize r a;ωð Þ ¼
X

l∈L

rl alð Þ ¼ �
X

l∈L

c0l þ c1lal þ c2la
2
l


 �

,

s:t:
X

l∈L

al ¼ d, al ≤ al ≤ al, l∈L,

where r : R
n ! R is concave, and the parameters are possibly uncertain and selected as

c0l ¼ 25þ 6l, c1l ¼ 15þ 4lþ ω1l, c2l ¼ 5þ lþ ω2l, and d ¼ 20þ ω3l. Therefore, the fitness
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functions for the corresponding full potential game are given by f l að Þ ¼ �2alc2l � c1l, for all

l∈L, and action space is given by

A ¼ a∈R
n
þ :

X

l∈L

al ¼ d; al ∈ al; al
� 

( )

:

The distributed revision protocol is set to

ϱlk a; h;Λð Þ ¼
λlk

al
max 0; ak � akð Þmax 0; al � al


 �

max 0;Em hk � hlð Þð Þ,

for al 6¼ 0: We evaluate four different scenarios, i.e.,

1. a ¼ 0n and a ¼ d1ln,

2. al ¼ 0, for all l∈L 9; 10f g, a9 ¼ 1:1, and a10 ¼ 1; and al ¼ d, for all l∈L 1; 2f g, a1 ¼ 3, and

a2 ¼ 2:5,

3. Case 1 constraints and with interaction restricted to the cycle graph G ¼ L; Eð Þ with set of links

E ¼ ∪l∈L nf g l; lþ 1ð Þ
� 	

∪ n; 1ð Þf g,

4. Case 2 constraints and with interaction restricted as in Case 3.

Figure 3 presents the evolution of the generated power, the fitness functions corresponding to

the marginal costs and the total cost. For the first scenario, the evolutionary game dynamics

converge to a standard evolutionarily stable state in which f̂ a⋆ð Þ ¼ c1n. In contrast, for the

second scenario, the dynamics converge to a constrained evolutionarily stable state.

4.1. Extension to multiple decision-makers

Consider a constrained game G in strategic-form given by

• P ¼ 1;…;Pf g is the set of players. The cardinality of P is P ≥ 2:

• Player p has a decision space Ap ⊂R
np , np ≥ 1: Players are coupled through their actions

and their payoffs. The set of all feasible action profiles isA⊂R
n, with n ¼

P

p∈Pnp: Player

p can choose an action ap in the set Ap a�p


 �

¼ ap ∈Ap : ap; a�p


 �

∈A
� 	

:

• Player p has a payoff function rp : A ! R:

We restrict our attention to the following constraints:

Ap ¼ ap ∈R
np j apl ∈ apl; apl

h i

; l∈ 1;…; np
� 	

;

X

np

l¼1

cplapl ≤ bp

( )

The coupled constraint is

A ¼ a∈
Y

p

Ap;

X

p∈P

cp; ap
� �

≤ b

( )

:
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Feasibility condition: If apl < apl, l∈ 1;…; np
� 	

, cpl > 0,
Pnp

l¼1 cplapl < bp, cp ∈R
np
>0 and

P

p∈P

cp; ap

D E

< b, the constraint set A is non-empty, convex and compact.

We propose a method to compute a constrained equilibrium that has a full support (whenever

it exists). We do not use the projection operator. Indeed we transform the domain

apl; apl

h i

¼ ξ 0; 1½ �ð Þ where ξ xpl

 �

¼ aplxpl þ apl 1� xpl

 �

¼ apl: ξ is a one-to-one mapping and

Figure 3. Economic power dispatch. Evolution of the population states (generated power), fitness functions

f̂ að Þ ¼ ∇Eh a;ωð Þ, and the costs �Er a;ωð Þ. Figures (a)-(c) for case 1, (d)-(f) for case 2, (g)-(i) for case 3, and (j)-(l) for case 4.
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xpl ¼ ξ
�1 apl

 �

¼
apl � apl

apl � apl
∈ 0; 1½ �:

X

np

l¼1

cpl apl � apl

� �

xpl ≤ bp �
X

np

l¼1

cplapl≕b̂p:

The learning algorithm (23) is

_yp ¼ ∇
2
pg

h i�1
∇aprp a;ωð Þ,

apl ≔ aplxpl þ apl 1� xpl

 �

,

xpl ¼ min 1;

eypl
Pnp

k¼1 e
ypk

b̂p

cpl apl � apl

� �h i

0

@

1

A,

l∈ 1;…; np
� 	

,

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(23)

generates a trajectory ap tð Þ ¼ apl tð Þ

 �

l
that satisfies the constraint of player p at any time t:

5. Notes

The work in [10] provides a nice intuitive introduction to robust optimization emphasizing the

parallel with static optimization. Another nice treatment [11], focusing on robust empirical risk

minimization problem, is designed to give calibrated confidence intervals on performance and

provide optimal tradeoffs between bias and variance [12, 13]. f -divergence based performance

evaluations are conducted in [11, 14, 15]. The connection between risk-sensitivity measures

such as the exponentiated payoff and distributionally robustness can be found in [16].

Distributionally robust optimization and learning are extended to multiple strategic decision-

making problems i.e., distributionally robust games in [17, 18].
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