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Abstract

Human breast milk is considered to be the perfect food for infants, specifically adapted to
their needs. Before birth, the mother transfers all the nutrients and bioactive components to
the fetus through the placenta. After birth, these substances have to be transferred through
colostrum andmilk. In particular, human breast milk is supposed to provide all the essential
trace elements that are required by the normal term newborn infant. Therefore, the compo-
sition of human breast milk and its changes during lactation is a topic of major importance
and has been the subject for intensive research. Conversely, human milk can also be a
transfer medium of undesirable (toxic) elements from the mother to the infant. An extensive
review of the most recent literature was carried out focusing on the current trace elements
levels and their changes during lactation. For several elements, there is a consistent knowl-
edge of their characteristic concentrations throughout the various stages of lactation, their
dependence on maternal nutritional status, inter-individual and geographical variability,
metabolic pathways, inter-elemental relationships, and effects on child development. For
many other elements, this knowledge does not exist or is quite limited.

Keywords: breast milk, breastfeeding, micronutrients, trace elements, temporal changes

1. Introduction

The nutritional requirements during breastfeeding are among the most important in human

development. The production of 750–1000 ml of human milk per day represents the transfer

from the mother to the infant of approximately 2100–2520 kJ, as energy-producing macronu-

trients (carbohydrates, proteins, and lipids) [1].

Likewise, all the vitamins and minerals (both macrominerals and trace elements) needed to

support the child’s growth and development are transferred in the same way.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



According to current recommendations, the newborn should whenever possible be exclusively

breastfed for the first 6 months of life [2]. Breast milk is then the only nutritional source of the

child at this stage. Among these nutrients, macrominerals and essential trace elements are

particularly noteworthy.

Maternal nutritional deficiencies in these elements may occur during lactation, affecting the

mother’s health. If this is reflected in the volume and quality of the milk, it will lead to

nutritional deficiencies in the child, consequently affecting its development and health status.

The characterization of the composition of the human milk, in relation to these elements, is

therefore of the utmost importance and has attracted much attention for many years.

On the other hand, breast milk can be a source of exposure of the child to various xenobiotics,

including toxic trace elements.

A systematization of the current knowledge about the typical (“normal”) levels of trace ele-

ments in human milk and the major factors responsible for their variability was the main

objective of the present review. It is expected to be a useful tool for future studies and in the

formulation of breast milk substitutes.

2. Human breast milk

Human milk is a complex secretion produced by the mammary glands of postpartum women

[3]. It is generally assumed that the average volume of breast milk ingested by a nursing infant

is about 600 ml/day.

2.1. Macronutrients

The composition of breast milk in terms of macronutrients varies during lactation. According

to a recent review [4], the mean concentration of main macronutrients in mature milk from

full-term women is estimated to be approximately 0.9–1.2 g/dL for protein, 3.2–3.6 g/dL

for lipids, and 6.7–7.8 g/dL for lactose. The total energy is estimated to be approximately

65–70 kcal/dL, and is highly correlated with the lipids content. These macronutrients have

three different sources: synthesis in the lactocyte, dietary origin, and maternal stores [4].

The nutritional quality of breast milk tends to be highly conserved for most of the macronutri-

ents, independently of the maternal diet [4].

2.2. Micronutrients

Micronutrients, usually considered as the vitamins and the minerals (both the macrominerals

and the trace elements), are fundamental for the proper development of the child. They are

essential in the formation and regeneration of tissues, as well as in regulating most of the

functions of the body’s systems, leading its deficiency to disease, and serious malformations in
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the baby and the child. Many of these micronutrients are also involved in the body’s defense

functions [1]. Minerals are closely related to the action of the remaining nutrients, affecting

their absorption, metabolism, and excretion [1].

Contrarily to the generality of the macronutrients, it is documented that when maternal

nutrition is inadequate, significant changes in milk composition may occur for some of its

micronutrients (e.g., some fatty acids and vitamins, sodium, potassium, chloride, phosphorus,

copper, zinc, manganese, and iron). The correlation between the levels of minerals in breast

milk and the mother’s diet is variable from element to element, being in some cases strongly

linked to the mother’s intake and body stores [4].

These changes have important implications for the growth and development of the breastfed

infants [5]. It is also documented that there are differences regarding the milk composition

between the different races [6].

3. Trace elements in human milk

3.1. Essential trace elements

3.1.1. Boron

Little is known about the biochemical function of boron in human tissues. Signs of boron

deficiency depend on the nutritional levels of aluminum, calcium, cholecalciferol, magnesium,

methionine, and potassium. It affects calcium and magnesium concentrations in plasma and

tissues, plasma alkaline phosphatase, and bone calcification [7]. The toxicity of boron is very

low orally. There is no clear definition of symptoms of chronic boron intoxication in humans

[7]. The levels of boron in breast milk seem to increase during lactation [8]. Average concen-

tration of 0.14 μg/L was observed in mature milk [8].

3.1.2. Chromium

Chromium, as trivalent chromium, is an essential nutrient that enhances the action of

insulin and, consequently, the metabolism of carbohydrates, lipids, and proteins. It has been

suggested that the active form of chromium, the so-called “glucose tolerance factor,” is a

complex of chromium, nicotinic acid, and the amino acids glycine, cysteine, and glutamic acid.

Biochemically, it affects the ability of the transmembrane insulin receptor to interact with

insulin [7]. Chromium deficiency causes glucose intolerance similar to diabetes mellitus, ele-

vated plasma free fatty acids levels, changes in nitrogen metabolism, weight loss, neuropathy,

and respiratory depression [7]. The toxicity of trivalent chromium is so low that no effects of

administering excessive amounts of this species could be observed. Hexavalent chromium, by

contrast, is extremely toxic [7]. The concentrations of chromium in breast milk are very low

and present a great variability [8, 9]. They may be increased during 21–89 and 90–180 days of

lactation [8, 9].
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Element Average or interval

(mg/L)

Time after

delivery1
Milk

type2
n Country3 Analytical

technique4
[Ref] year

B 0.000145 1–20 mo M 205 ARE ICP-MS [8] 2008

Co 0.00019b — — 27 AUT ICP-SFMS [45] 2000

0.0002–0.0007 — — — — — [20] 2001

0.00085 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

0.000009 1–20 mo M 205 ARE ICP-MS [8] 2008

0.00069 2 d C 34 PRT ICP-MS [12] 2008

0.00072 1 mo M 19

Cr 0.0243b — — 27 AUT ICP-SFMS [45] 2000

0.0009–0.0012 0–7 mo — 6–45 — — [20] 2001

0.0108 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

0.017–0.076 1–365 d — — JPN ICP-AES [9] 2005

0.000689 1–20 mo M 205 ARE ICP-MS [8] 2008

0.000173 1–191 d M 79 JPN ICP-MS [75] 2008

Cu 0.4b — — 27 AUT ICP-SFMS [45] 2000

0.11–0.62 1–293 d — 6–50 — — [20] 2001

0.54 1–7 d C 50 BRA TXRF [76] 2002

0.162 2 mo M 32 TUR FAAS [53] 2005

0.35 — M — JPN ICP-AES [9] 2005

0.066 1 mo M 41 IND ICP-AES [37] 2006

0.056 3 d C 41

0.41519 1–20 mo M 205 ARE ICP-MS [8] 2008

0.403 — — 120 ARE ICP-MS [54] 2008

0.760 2 d C 34 PRT ICP-MS [12] 2008

0.498 1 mo M 19

0.506 1 w C 44 KOR GFAAS

(Zeeman)

[14] 2012

0.489 2 w T 32

0.384 4 w M 22

0.356 6 w M 26

0.303 8 w M 22

0.301 12 w M 9

0.3 — — 27 IRN FAAS [77] 2015

0.587 5–17 d T 55 GTM ICP-MS [72] 2016

0.460 18–46 d M 73

0.262 4–6 mo M 100

0.220 — — 12 AUS ICP-MS [51] 2016
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Element Average or interval

(mg/L)

Time after

delivery1
Milk

type2
n Country3 Analytical

technique4
[Ref] year

0.16952 2–6 w M 20 USA ICP-MS [48] 2017

0.13094 1–7 w M 6 NAM

0.18687 2–6 w M 23 POL

0.21104 3–7 w M 21 ARG

Fe 0.38b — — 27 AUT ICP-SFMS [45] 2000

0.3–0.6 — — — — — [20] 2001

1.72 1–7 d C 50 BRA TXRF [76] 2002

1.19 — M — JPN ICP-AES [9] 2005

0.5 30–45 d M 31 USA (Texas) AAS [19] 2008

0.4 75–90 d 17

0.36 — — 27 IRN FAAS [77] 2015

0.558 5–17 d T 55 GTM ICP-MS [72] 2016

0.581 18–46 d M 73

0.320 4–6 mo M 100

0.047 — — 12 AUS ICP-MS [51] 2016

1.27 2–6 w M 20 USA ICP-MS [48] 2017

1.53 1–7 w M 6 NAM ICP-MS

1 2–6 w M 23 POL ICP-MS

0.99 3–7 w M 21 ARG ICP-MS

I 0.098–0.247 14 d–3.5 y — 14–24 — — [20] 2001

0.0478 30–45 d M 31 USA (Texas) NAA [19] 2009

0.0423 75–90 d 17

0.113 — — 12 AUS ICP-MS [51] 2016

Mn 0.003–0.01 — — — — — [20] 2001

0.000929 1–20 mo M 205 ARE ICP-MS [8] 2008

0.011 — M — JPN ICP-AES [9] 2005

0.0077 2 d C 34 PRT ICP-MS [12] 2008

0.0049 1 mo M 19

0.133 1 w C 44 KOR GFAAS

(Zeeman)

[14] 2012

0.127 2 w T 32

0.125 4 w M 22

0.123 6 w M 26

0.127 8 w M 22

0.108 12 w M 9

0.012 5–17 d T 55 GTM ICP-MS [72] 2016

Trace Elements in the Human Milk
http://dx.doi.org/10.5772/intechopen.76436

89



Element Average or interval

(mg/L)

Time after

delivery1
Milk

type2
n Country3 Analytical

technique4
[Ref] year

0.011 18–46 d M 73

0.0077 4–6 mo M 100

0.00137 — — 12 AUS ICP-MS [51] 2016

0.00271 2–6 w M 20 USA ICP-MS [48] 2017

0.0116 1–7 w M 6 NAM ICP-MS

0.00161 2–6 w M 23 POL ICP-MS

0.00762 3–7 w M 21 ARG ICP-MS

Mo 0.0002–0.017 1–293 d — 6–46 — — [29] 2000

0.00072 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

0.000348 1–20 mo M 205 ARE ICP-MS [8] 2008

0.000542 1–191 d M 79 JPN ICP-MS [75] 2008

0.00037 — — 12 AUS ICP-MS [51] 2016

Se 0.0056–0.08 1–869 d — 5–241 — — [29] 2000

0.017b — — 27 AUT ICP-SFMS [45] 2000

0.0163 2–3 mo M 31 ESP ICP-AES [28] 2003

0.017 — M — JPN ICP-AES [9] 2005

0.010623 1–20 mo M 205 ARE ICP-MS [8] 2008

0.0159 30–45 d M 31 USA (Texas) NAA [19] 2008

0.0157 75–90 d 17

0.0722 2 d C 34 PRT ICP-MS [12] 2008

0.0321 1 mo M 19

0.0118 1 w C 44 KOR GFAAS

(Zeeman)

[14] 2012

0.0114 2 w T 32

0.0127 4 w M 22

0.0114 6 w M 26

0.0108 8 w M 22

0.0105 12 w M 9

0.017 5–17 d T 55 GTM ICP-MS [72] 2016

0.017 18–46 d M 73

0.013 4–6 mo M 100

0.0143 — — 12 AUS ICP-MS [51] 2016

Zn 0.8–4.7 2 d–2 y — 6–71 — — [20] 2001

6.97 1–7 d C 50 BRA TXRF [76] 2002

1.2 2 mo M 32 TUR FAAS [53] 2005

1.45 — M — JPN ICP-AES [9] 2005
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Element Average or interval

(mg/L)

Time after

delivery1
Milk

type2
n Country3 Analytical

technique4
[Ref] year

0.255 3 d C 41 IND ICP-AES [37] 2006

0.276 1 mo M 41

2.1 30–45 d M 31 USA (Texas) FAAS [19] 2008

2 75–90 d 17

1.468 1–20 mo M 205 ARE ICP-MS [8] 2008

2.730 — — 120 ARE ICP-MS [54] 2008

12.137 2 d C 34 PRT ICP-MS [12] 2008

2.785 1 mo M 19

7.8 1 w C 44 KOR GFAAS

(Zeeman)

[14] 2012

9.1 2 w T 32

7.2 4 w M 22

8 6 w M 26

7.4 8 w M 22

6.6 12 w M 9

2.34 — — 27 IRN FAAS [77] 2015

4.36 5–17 d T 55 GTM ICP-MS [72] 2016

3.47 18–46 d M 73

1.44 4–6 mo M 100

1.390 — — 12 AUS ICP-MS [51] 2016

Ag 0.00041b — — 27 AUT ICP-SFMS [45] 2000

0.00078 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

0.000005 1–20 mo M 205 ARE ICP-MS [8] 2008

Al 0.067 — — 27 AUT ICP-SFMS [45] 2000

0.007056 1–20 mo M 205 ARE ICP-MS [8] 2008

0.05645 1–4 d C 45 TWN GFAAS [43] 2014

0.03657 5–10 d T 45

0.01811 30–35 d M 45

0.01344 60–65 d M 45

As 0.0067b — — 27 AUT ICP-SFMS [45] 2000

0.00025–0.003 — — — — — [20] 2001

0.000089 1–20 mo M 205 ARE ICP-MS [8] 2008

0.000196 — — 120 ARE ICP-MS [54] 2008

0.0078 2 d C 34 PRT ICP-MS [12] 2008

0.0058 1 mo M 19

0.00150 1–4 d C 45 TWN GFAAS [43] 2014
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Element Average or interval

(mg/L)

Time after

delivery1
Milk

type2
n Country3 Analytical

technique4
[Ref] year

0.00068 5–10 d T 45

0.00027 30–35 d M 45

0.00016 60–65 d M 45

0.00347 2–6 w M 20 USA ICP-MS [48] 2017

0.00668 1–7 w M 6 NAM ICP-MS

0.00386 2–6 w M 23 POL ICP-MS

0.00451 3–7 w M 21 ARG ICP-MS

0.00236 — — 74 LBN GFAAS [47] 2018

Au 0.00029b — — 27 AUT ICP-SFMS [45] 2000

0.0001–0.0021 — — — AUT ICP-SFMS [59] 2000

Ba 0.000017 1–20 mo M 205 ARE ICP-MS [8] 2008

Be 0.000008 1–20 mo M 205 ARE ICP-MS [8] 2008

Bi 0.000002 1–20 mo M 205 ARE ICP-MS [8] 2008

Br 0.812 — — 12 AUS ICP-MS [51] 2016

Cd <0.001 — — — — — [20] 2001

0.000097 2 mo M 32 TUR FAAS [53] 2005

0.000003 1–20 mo M 205 ARE ICP-MS [8] 2008

0.00027 — — 120 ARE ICP-MS [54] 2008

0.00137 1–4 d C 45 TWN GFAAS [43] 2014

0.00065 5–10 d T 45

0.00049 30–35 d M 45

0.00034 60–65 d M 45

0.00087 — — 74 LBN GFAAS [47] 2018

Ce 0.00012 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

0.0000154 — — 11 DEU ICP-MS [56] 2010

0.0000157 — — 51 DEU ICP-MS

0.0000139 — — 26 ESP ICP-MS

Cs 0.001–0.005 — — — — — [20] 2001

Ga 0.00052 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

Hg 0.000030–0.00062 — — 17 CAN CV-AFS [78] 1994

0.000146–0.000237 — — 33 CAN — [79] 1997

0.001–0.003 — — — — — [20] 2001

0.000008 1–20 mo M 205 ARE ICP-MS [8] 2008

0.000115 — — 120 ARE ICP-MS [54] 2008
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Element Average or interval

(mg/L)

Time after

delivery1
Milk

type2
n Country3 Analytical

technique4
[Ref] year

0.00289–0.01333 — — 10–15 IRN DC/Au-amal [80] 2012

0.000008 1–20 mo M 205 ARE ICP-MS [8] 2008

La 0.00007 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

0.000002 1–20 mo M 205 ARE ICP-MS [8] 2008

Li 0.000005 1–20 mo M 205 ARE ICP-MS [8] 2008

Nb 0.00004 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

Ni 0.00079b — — 27 AUT ICP-SFMS [45] 2000

0.010–0.020 — — — — — [20] 2001

0.48 2 mo M 32 TUR FAAS [53] 2005

0.0076 2 d C 34 PRT ICP-MS [12] 2008

0.0058 1 mo M 19

0.002581 1–20 mo M 205 ARE ICP-MS [8] 2008

Pb 0.001–0.005 — — — — — [20] 2001

0.000019 1–20 mo M 205 ARE ICP-MS [8] 2008

0.00151 — — 120 ARE ICP-MS [54] 2008

0.00155 2 d C 34 PRT ICP-MS [12] 2008

0.00094 1 mo M 19

0.01322 1–4 d C 45 TWN GFAAS [43] 2014

0.00892 5–10 d T 45

0.01172 30–35 d M 45

0.00293 60–65 d M 45

0.00077 2–6 w M 20 USA ICP-MS [48] 2017

0.00215 1–7 w M 6 NAM ICP-MS

0.00102 2–6 w M 23 POL ICP-MS

0.00059 3–7 w M 21 ARG ICP-MS

0.01817 — — 74 LBN GFAAS [47] 2018

Pt < 0.00001b — — 27 AUT ICP-SFMS [45] 2000

Rb 0.3–1.2 — — — — — [20] 2001

32.176a 2–15 d T 40 IRN NAA [71] 2014

1.12 5–17 d T 55 GTM ICP-MS [72] 2016

1.05 18–46 d M 73

0.810 4–6 mo M 100

Ru 0.00015 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002
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3.1.3. Cobalt

Cobalt is a constituent of vitamin B12 and has been linked to the synthesis of antibodies and

phagocytic activity in neutrophils and macrophages [10, 11]. Increased cobalt levels were

observed throughout lactation [10, 12]. It has been speculated that this increase would be

related to the increased needs arising from the infants’ production of humoral antibodies,

which starts during the third and fourth month of life, when the passage of the passive

acquired immunity to active acquired immunity occurs [13]. Another study reported no sig-

nificant changes in cobalt levels in breast milk throughout the various stages of lactation [8].

Plasma cobalt was higher in blood plasma of 12–14-week-old infants fed breast milk compared

to healthy adults [8]. Cobalt levels in maternal plasma have a negative correlation with their

concentration of breast milk [8].

3.1.4. Copper

Copper is present in biological tissues mainly in the form of organic complexes, most of them

being enzymatic systems. The metabolic processes in which copper dependent enzymes are

Element Average or interval

(mg/L)

Time after

delivery1
Milk

type2
n Country3 Analytical

technique4
[Ref] year

Sb 0.00014 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

0.000352 1–20 mo M 205 ARE ICP-MS [8] 2008

Sc 0.00019b — — 27 AUT ICP-SFMS [45] 2000

Sn <0.001- < 0.002 — — — — — [20] 2001

Sr 0.044 5–17 d T 55 GTM ICP-MS [72] 2016

0.046 18–46 d M 73

0.046 4–6 mo M 100

Ti 0.0063b — — 27 AUT ICP-SFMS [45] 2000

0.270 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

Th 0.00002 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

U 0.00003 2–8 w M 19 CZE DEU POL ICP-MS [46] 2002

V 0.00018b — — 27 AUT ICP-SFMS [45] 2000

1d: day(s); w: week(s); mo: month(s); y: year(s); t: term; pt: pre-term.
2C: colostrum; T: transition milk; M: mature milk.
3Countries according to ISO 3166-1 A3.
4ICP-MS: inductively coupled plasma mass spectrometry; ICP-SFMS: inductively coupled plasma sector field mass

spectrometry; TXRF: total reflection X-ray fluorescence; FAAS: flame atomic absorption spectroscopy; ICP-AES: induc-

tively coupled plasma atomic emission spectroscopy; GFAAS: graphite furnace atomic absorption spectroscopy; NAA:

neutron activation analysis; CV-AFS: cold vapor atomic fluorescence spectroscopy; DC/Au-amal: direct combustion/Au

amalgam.
amg/kg, as dry matter.
bmedian.

Table 1. Summary of available data on trace element levels in human milk.
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involved include the use of oxygen in cellular respiration and the synthesis of essential bio-

molecules such as the complex proteins of the skeleton and blood vessels connective tissues

and a variety of neuroactive compounds of the central nervous system. It is estimated that an

adult individual contains between 50 and 120 mg of copper in the whole body [7]. Copper in

the blood is distributed by plasma and erythrocytes, of which 60% is associated with

metalloenzyme Cu,Zn-superoxide dismutase (SOD), the rest being linked to other proteins

and amino acids [7]. Plasma copper levels in the adult range between 0.8 and 1.2 mg/L and are

not significantly influenced by feeding. In women, they are about 10% higher, and may be

three times higher during pregnancy [7]. In plasma, about 93% of copper is bound to cerulo-

plasmin, a protein with multiple functions, particularly involved in the metabolism of iron [7].

In adulthood, copper deficiency is associated with hypochromic anemia, neutropenia, hypop-

igmentation, deficient bone formation with osteoporosis, and vascular deficiencies [7]. The

deficiency of this element in the infant is related to identical symptoms [7, 14]. Copper is

mainly accumulated in the liver, especially during the third trimester of pregnancy. Premature

infants tend to have lower copper stores compared to full-term children [14]. There is a

decrease in copper concentration in milk during lactation, reaching a minimum of 0.08–

0.10 mg/L in mature milk between 6 months and 1 year [15]. This trend is consistent with the

majority of published results by other authors during this same period of lactation [8, 9, 12, 15].

One author reported a slight increase in copper concentration in breast milk in the first month,

from 0.25–0.29 mg/L in colostrum to 0.37–0.41 mg/L in mature milk [15]. The effect of iron

dietary supplementation of the mother in serum and milk cooper levels is not clear. Some

authors reported a decrease in cooper milk associated with iron supplementation [16, 17], but a

noncorrelation have also been reported [18].

3.1.5. Iodine

Iodine is an essential constituent of the thyroid hormones thyroxine (T4) and triiodothyronine

(T3). These hormones are involved in the regulation of various enzymes and metabolic pro-

cesses. The organs most subject to its regulation are the developing brain, muscles, heart,

pituitary gland, and kidneys [19, 20]. Iodine is thus absolutely essential for life in mammals

[20]. The increase in perinatal mortality associated with iodine deficiency and a reduction in

birth weight are described [7]. Since the newborn’s brain has only reached about one-third

of its size, continuing its accelerated growth until 2 years of age, thyroid hormones and

iodine keep playing a key role throughout this period. Populations with severe iodine

deficiencies present a high risk of mental retardation and cretinism [7, 19, 21]. Iodine ade-

quate intake is 110 and 130 μg/day for first and second semester of life, respectively [22].

The concentration of iodine in breast milk is strongly correlated with the dietary intake of the

mother [19]. The nutritional intake of iodine in the nursing woman (recommended dietary

allowance) should be of 220 μg/day [22]. Iodine content in breast milk as shown to be strongly

reduced by mother’s smoking habits [23].

3.1.6. Iron

Iron is an essential component of several proteins, including enzymes, cytochromes, myoglo-

bin, and hemoglobin. Nearly two-thirds of body iron is found in the hemoglobin of circulating

Trace Elements in the Human Milk
http://dx.doi.org/10.5772/intechopen.76436

95



red blood cells, involved in oxygen transport. About 25% is stored as rapidly mobilizable

reserves and the remaining 15% is in muscle myoglobin [22]. The individual iron reserves have

a great influence on its absorption. Elevated reserves inhibit the gastrointestinal absorption of

iron. Absorption occurs in the small intestine [22]. Iron deficiency results in anemia, which

represents the most frequent nutritional deficiency of essential elements. The main symptoms

are reduced work capacity and delayed psychomotor development in the child, with cognitive

deficit [22]. Anemia is also the most prevalent disease in children [24]. During the first 6

months after delivery, iron concentration in breast milk is relatively stable, ranging from 0.21

to 0.27 mg/L. Some authors have reported that, after this period, iron levels in breast milk tend

to fall very significantly to values between 0.08 and 0.10 mg/L [15]. Other authors observed

quite constant levels throughout lactation [9]. No differences were found associated with the

mother’s age, number of children, or number of previously breastfed infants [15]. Likewise, the

iron content in the maternal diet did not showed a significant correlation with iron concentra-

tion in breast milk [19, 25].

3.1.7. Manganese

Manganese is an essential nutrient, involved in the formation of bone tissue and in specific

reactions related to the metabolism of amino acids, cholesterol, and carbohydrates. Manga-

nese metalloenzymes include arginase, glutamine synthetase, phosphoenolpyruvate decar-

boxylase, and Mn-superoxide dismutase (Mn-SOD), the mitochondrial correspondent to

Cu,Zn-SOD (cytoplasmic) [7]. Only a small part of the manganese ingested is absorbed.

Absorption occurs through an active transport process [7]. Although there are symptoms

associated with manganese deficiency, it was not possible to clearly establish a relationship

between low dietary intakes and health problems. Manganese toxicity causes central ner-

vous system effects similar to those of Parkinson’s disease [14, 22]. In one study in Japanese

women, the concentrations of manganese in breast milk showed a very low variability

throughout the lactation period [9]. Other studies however reported that breast milk con-

centrations decrease throughout lactation [8]. Also, a direct correlation between maternal

plasma levels and breast milk concentration has been observed [8]. A significant reduction

in milk manganese content during lactation was also observed in a small study of 29 well-

nourished mothers in the United Arab Emirates [8, 12].

3.1.8. Molybdenum

Molybdenum is a cofactor of a small number of enzymes, such as sulfite oxidase, xanthine

oxidase, and aldehyde oxidase, involved in the catabolism of sulfur amino acids and heterocyclic

compounds such as purines and pyrimidines [20]. In all Mo-enzymes, functional molybdenum

is present in the form of an organic component, molybdopterin [20]. Dietary molybdenum

deficiencies are associated with growth problems, neurological disorders, and premature

death [26]. On the other hand, its excess is associated with an increase in susceptibility to gout,

hyperuricemia, and xanthuria [26]. Concentrations of molybdenum in breast milk increase

significantly during lactation [8].
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3.1.9. Selenium

The best known metabolic role of selenium in mammals was as a component of the enzyme

glutathione peroxidase, which, together with vitamin E, catalase, and superoxide dism-

utase, is a key player of the body’s antioxidant defense system. More recently, its role in P-

selenoprotein has been discovered, and there is also increasing evidence of the involvement

of a selenoprotein in the synthesis of the hormone triiodothyronine from thyroxine [20, 27].

Keshan’s disease is a cardiomyopathy associated with selenium deficiency, which mainly affects

children and women of childbearing age. Also, Kashin-Beck disease, an osteoarthropathy, is

associated with selenium deficiency in soils (and consequently in food), affecting children

between 5 and 13 years [7, 28, 29]. Chronic selenium toxicity is characterized primarily by hair

loss and changes in nail morphology. In some cases, there is the development of skin lesions

and central nervous system disturbances, being the biochemical mechanism unknown [20, 28].

There is evidence of a negative correlation between the supply of selenium and the prevalence

of breast, prostate, colon, pancreatic, lung, and bladder cancer [30]. The concentration of

selenium in breast milk is directly dependent on the mother’s selenium dietary intake [9, 31–

33]. In one study, the selenium breast milk concentrations were studied according to the region

of residence of the lactating mother. Two selenium-rich regions (Portuguesa) and one control

region (Yaracuy) were compared. A significant increase of selenium was observed, from

42.9 μg/L for the control region to 56.6 and 112.2 μg/L for the two seleniferous regions [31].

Other authors reported selenium levels in the first month between 12.7 and 32.1 μg/L [12, 14,

19]. There appears to be a significant inverse correlation between selenium and zinc concentra-

tions in breast milk. Also, mothers with higher dietary selenium intakes present lower concen-

trations of zinc in breast milk [31]. Studies of zinc binding compounds in breastmilk allowed

the identification of six compounds with affinity for selenium too. It was possible to identify

one of those compounds as the citrate, which is the main low molecular weight zinc binder. The

decrease in zinc concentration in breast milk is then related to the concentration of citrate,

which in turn depends on the concentration of selenium in plasma. High levels of selenium

observed in seleniferous regions induced reduction of citrate in milk, probably by the suppres-

sion of the mechanism of citrate production in the Golgi apparatus described by Linzell [31, 34].

In the case of premature infants, since their reserves of selenium at birth are low, it is of the

utmost importance the supply of this element in adequate concentrations through breast milk,

which is clearly dependent, as mentioned above, on geographical aspects, the nutritional intake

of the mother and the lactation phase [12, 28, 35].

3.1.10. Zinc

In the cell, zinc is involved in catalytic, structural, and regulatory functions [20]. The

biochemical role of zinc results from its presence in hundreds of enzymatic systems and

as a stabilizer of the molecular structure of cellular substructures. Examples of zinc

metalloenzymes are RNA polymerase, alcohol dehydrogenase, carbonic anhydrase, and

alkaline phosphatase [20]. Zinc is involved in the synthesis and degradation of carbohy-

drates, lipids, proteins, and nucleic acids. It plays an essential role in gene expression [7].

The skeletal muscle contains about 60% of the total zinc of the body, being the bone mass
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responsible for about 30% [36]. Severe zinc deficiency is associated with clinical symptoms

such as delayed growth, delayed sexual and skeletal maturation, dermatitis, diarrhea,

alopecia, poor appetite, behavioral changes, and increased susceptibility to disease, as

result of immune system malfunction [20, 37]. Generally, mild zinc deficiency occurs

without a convenient diagnosis. When detected, it is usually related to a reduced growth

rate and poor resistance to infections. Acute zinc poisoning is rare. The manifestations are

nausea, vomiting, diarrhea, fever, and lethargy. In the case of chronic exposure to zinc,

interference with other elements, particularly with copper, occurs. The zinc/copper inter-

action causes an excess of zinc to result in a reduction of copper levels (by decreasing its

absorption at the gastrointestinal tract) [7]. Zinc metabolism is still subject to interference

with other elements. For example, if iron is present at high levels in diet, it may decrease

the absorption of zinc, and this aspect should be considered when, during pregnancy and

lactation, the control of iron levels is attempted through the use of dietary supplements.

Other authors observed that dietary supplementation of the mother with iron did not

significantly interfere with their plasma zinc levels nor with zinc levels in breast milk

[18, 19, 38]. Also, calcium and phosphorus may interfere with the absorption of zinc, and

there are also contradictory studies of the effect of these two elements [20]. Due to the

abovementioned zinc/copper antagonism, high concentrations of zinc in breast milk may

result in copper deficiency, since zinc can competitively inhibit copper absorption in the

gastrointestinal tract of the child. Metallothionein appears to play a relevant role in this

process [39]. As for selenium, zinc is accumulated by the fetus during the third trimester

of pregnancy [14]. Zinc may be about 15 times more concentrated in breast milk than in

the mother’s plasma, evidencing an active transport mechanism, and its essential role for

the child’s development [12, 31]. There is a rapid and significant decrease in the concen-

tration of zinc in breast milk throughout the lactation period, significantly during the first

month [12]. This evidence is supported by several published studies [8, 14, 15, 40]. There

were no differences associated with the mother’s number of children or lactation history.

Regarding the age of the mother, it was found that the concentration of zinc tends to

increase (higher values for ages greater than 30 years) [15]. Significantly higher zinc values

were observed in breast milk between the third and seventh days in mothers with pre-

term infants, compared to those with full-term infants [37].

3.2. Non-essential/toxic trace elements

3.2.1. Aluminum

Brain function of children exposed to this metal can be seriously affected [41]. Relevant sources

of exposure are not only breast milk of mothers exposed to relevant levels of aluminum, but

also infant Al-adjuvanted vaccination, like hepatitis B [41, 42]. Aluminum milk levels decrease

significantly over the nursing, ranging from 0.056 mg/L in colostrum to 0.013 mg/L in mature

milk [43]. Older mothers’ (>25 years) milk present a higher aluminum concentration than the

younger ones [44]. There is no relevant data available related to aluminum exposure during

early life, and its correlation with brain function. Concentrations in human milk varying

between 7.056 and 67 μg/L are described [8, 43, 45].
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3.2.2. Antimony

The calculated transfer factor from food into human milk, calculated as the element concentra-

tion in food (g/kg) divided by the element concentration in milk (g/L), has been determined as

13.2 [46]. The reported concentration in human breast milk is between 0.14 and 0.35 μg/L.

3.2.3. Arsenic

Arsenic occurs in trivalent and pentavalent forms in food, water, and the environment. The

biological effects of arsenic strongly depend on the actual chemical specie it is present, with

inorganic forms being more toxic than most organic forms. Inorganic forms are methylated in

the human body, giving rise to less toxic compounds, which are then excreted through urine

[7]. Acute intoxication with arsenic is rare and is characterized by nausea, vomiting, diarrhea,

and acute abdominal pain. Chronic intoxication is caused by exposure to natural sources,

contaminated food, or water, or other accidental source [7]. In a recent study, presence of

arsenic was observed in 63.51% of samples, with an average concentration of 2.36 μg/L [47],

consistent with results from other authors [12, 20, 45, 48]. Arsenic presence in human milk is

associated with cereal and fish intake [47].

3.2.4. Barium

No nutritional requirements are set for barium in mammals, and its origin is probably associ-

ated with plant sources, following metabolic pathways similar to the elements of the same

group in the periodic table, such as calcium and strontium [11]. Barium levels in milk may be

dependent of mother diet [11]. Concentrations of 0.017 μg/L have been reported [8].

3.2.5. Beryllium

Beryllium compounds are very toxic [49], and chronic beryllium disease has been observed in

children living near a beryllium factory [50]. There is a high probability that this element can

be transferred from mother to child through breast milk [50]. Concentration of 0.008 μg/L has

been reported in breast milk [8].

3.2.6. Bismuth

This element has been reported in breast milk at a concentration of 0.002 μg/L [8].

3.2.7. Bromide

Described as having an important function in tissue development, cellular structure and

membrane integrity, its presence in breast milk was reported in a recent study at a concentra-

tion of 0.812 mg/L [51].

3.2.8. Cadmium

The main source of exposure to cadmium is tobacco smoke. It is estimated that about 10% of

mothers smoke during pregnancy, and the percentage of those who return to smoking during
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lactation is even higher [23]. Smoking contributes to increased levels of some metals in breast

milk. Cadmium is the one of highest concern because it is an IARC type 1 carcinogen, altering

the metabolism of other micronutrients, such as copper, iron, magnesium, selenium, and zinc.

Cadmium levels are about four times higher in the breast milk of smoking mothers compared

to non-smoking ones [23]. It has been reported that metallothionein levels are about half in

smoking mothers. This seems to indicate a protective mechanism to the child, since the toxicity

of the metallothionein-Cd complex is higher than that of inorganic cadmium [52]. Concentra-

tions of cadmium in human milk varying between 0.003 and 1.37 μg/L are described [8, 20, 43,

47, 53, 54].

3.2.9. Cerium

There is no evidence that it is an essential element [11], neither transport from mother to infant

through milk [55, 56]. Concentrations in human milk varying between 0.0139 and 0.12 μg/L are

described [46, 56].

3.2.10. Cesium

There is no evidence that it is an essential element [11]. It has been reported 137Cs in breast milk

after the reactor accident at Chernobyl [57]. Concentrations in human milk varying between 1

and 5 μg/L are described [20].

3.2.11. Gallium

The presence of 67Ga in human breast milk has been described [58]. A concentration of 0.52 μg/L

was reported [46].

3.2.12. Gold

Traces of gold have been found in breast milk, and it is assumed an association with the use of

jewelry or dental amalgams [59]. Concentrations varying between 0.1 and 2.1 μg/L are

described [45, 59].

3.2.13. Lanthanum

There is no evidence that it is an essential element [11]. The calculated transfer factor from food

into the human milk has been determined as 13.8 [46]. The reported concentration in human

breast milk is between 0.002 and 0.07 μg/L [8, 46].

3.2.14. Lead

Lead blood levels in the worldwide population have been decreasing significantly since the

1970s, largely due to the reduction of sources of environmental contamination, mainly the

virtual elimination of this element from automobile fuels, but also from other sources of

exposure such as paints, plumbing, ceramics, cosmetics, welding of food cans, etc. [60]. In

young American children, it is reported that the levels of lead above 100 μg/L will mainly be

related to exposure to particulate matter resulting from the degradation of paints used in

homes [60]. The relationship between elevated levels of lead in children’s blood and the
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occurrence of intellectual development deficits (decreased IQ) is well known [60, 61]. In the

human body, most of the lead is deposited in the bones (bones and teeth contain more than

90% of the body’s total lead load) [62]. Lead mobilization of the human skeleton during

pregnancy and lactation has been described [63, 64], resulting in a transgenerational transfer

from the mother to the child. The mother consumption of calcium-rich foods reduces the risk

of increased concentrations of lead in breast milk (>100 μg/L) [65, 66]. Iron also interferes with

the absorption and toxicity of lead in children, causing a reduction of lead absorption. The

hematological effects and intellectual deficit caused by lead are antagonized by an iron-rich

diet [60]. A great inter-individual variability was observed in the concentration of lead in

breast milk, which may be three orders of magnitude [67]. Concentrations varying between

0.019 and 18.17 μg/L are reported [8, 12, 20, 43, 47, 48, 54].

3.2.15. Lithium

Although clinical recommendations discourage the treatment of lactating mothers with

lithium for bipolar disorder, studies demonstrate a concentration reduction in half from

mother serum to milk, and also from milk to infant plasma, in the same proportions,

with no serious adverse effects [68]. Concentrations of 0.005 μg/L in human milk are

reported [8].

3.2.16. Mercury

Mercury is a highly toxic metal. Like lead, it causes depletion of glutathione as well as the

protein sulfhydryl binding groups, resulting in the production of reactive oxygen species, such

as superoxide anion and hydroxyl radicals [69]. Mercury levels in breast milk vary consider-

ably depending on the mother’s place of residence, lactation stage, age, and diet. An increase

in mercury levels in mother’s plasma and breast milk during lactation is described [8]. Con-

centrations varying between 0.008 and 3 μg/L are reported [70].

3.2.17. Nickel

Nickel role in some human physiological function is unknown [11]. However, it is reported

that in case of severe nickel depletion, growth and hematopoiesis are depressed [7]. Due to its

high homeostatic regulation, the symptoms of nickel poisoning are simply related to gastroin-

testinal irritation [7]. A decrease in nickel concentration throughout lactation is described [12].

Concentrations varying between 0.79 and 480 μg/L are reported [8, 12, 20, 45, 53].

3.2.18. Niobium

The calculated transfer factor from food into human milk was determined as 20.7 [46]. A mean

concentration of 0.04 μg/L in human milk was reported [46].

3.2.19. Platinum

Undetectable levels were reported for platinum in human milk [45].
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3.2.20. Rubidium

A relatively abundant element in body fluids and tissues, rubidium is also present in breast

milk, having a behavior similar to that of potassium, although no rubidium-dependent bio-

chemical functions are known [71]. Concentrations of rubidium in human milk ranging from

0.3 to 1.2 μg/L have been reported [20, 71, 72].

3.2.21. Ruthenium

The calculated transfer factor from food into human milk was determined as 4.1 [46]. Concen-

trations of 0.15 μg/L in human milk have been reported [46].

3.2.22. Scandium

Median concentrations of scandium in human milk of 0.19 μg/L are reported [45].

3.2.23. Silver

Silver has been found in breast milk, and it is speculated that it also originates from the use of

jewelry or dental amalgams [59]. Concentrations varying between 0.005 and 0.78 μg/L are

reported [8, 45, 46].

3.2.24. Strontium

There is no evidence of the nutritional importance of this element, although it is known that it

is concentrated in the bone mass [11]. Biokinetic model for strontium in the lactating woman

from bone to milk have been described [73]. Concentrations in human milk varying between

44 and 46 μg/L are reported [72].

3.2.25. Thorium

The calculated transfer factor from food into human milk was determined as 20.2 [46]. A

concentration of 0.2 μg/L in human milk was reported [46].

3.2.26. Tin

There is no evidence that tin is an essential element [11]. Signs of chronic exposure to inorganic

tin include decreased growth and anemia [7]. Also, organic tin compounds were studied and

no significant transport could be observed from mother diet to milk [74]. Undetectable levels

were reported [20].

3.2.27. Titanium

The calculated transfer factor from food into human milk for titanium was determined as 5.6

[46]. Concentrations in human milk varying between 6.3 and 270 μg/L are reported [45, 46].
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3.2.28. Uranium

The calculated transfer factor from food into human milk for uranium was determined as 21.3

[46]. A concentration of 0.03 μg/L in the human milk was reported [46].

3.2.29. Vanadium

No defined biochemical function has been identified for vanadium in the higher animals. Vana-

dium is a relatively toxic element, with the most frequent symptoms being intestinal distur-

bances and greenish tongue [7]. A concentration of 0.18 μg/L in human milk was reported [45].

4. Concluding remarks

Breast milk is for many children, in the first months of life, their unique source of nutrients,

including trace elements essential for their healthy growth and development.

Although by definition trace elements are present in breast milk at relatively low concentra-

tions, they play a crucial role in multiple physiological processes.

All of them show a great inter-individual variability in the breast milk, generally tending to

decrease during lactation.

The variability of trace element levels in breast milk related to geographic, environmental, and

dietary factors is well studied for several of them. For others, there is still insufficient knowl-

edge about these aspects.

The advances in sensitivity and specificity of the analytical instrumentation occurred in recent

years have made it possible to determine several elements which had not been studied until

then. On the other hand, the higher reliability of current analytical techniques and the higher

awareness about the importance of contamination control makes the more recently published

results much more reliable.

It should be noted that the nutritional value of breast milk regarding a particular trace element

does not depend on its total analytical concentration but on its bioavailable fraction; however,

studies on this topic are very scarce.

Knowing to what extent the mother’s supplementation can adequately correct any deficiencies

in milk quality in terms of trace element levels is another important issue that should be studied.
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