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Abstract

For complex objects, condition assessment is usually based on indirect symptoms related
to residual processes such as vibration, noise, heat generation, etc. The number of avail-
able symptoms is often large, and it is necessary to select those which are most represen-
tative (i.e., sensitive to condition parameters). Such selection may be based on singular
value decomposition (SVD). An alternative approach is proposed that employs informa-
tion content measures. In order to obtain a reliable condition assessment and prognosis of
its evolution (in particular, remaining useful life estimation), certain preprocessing of
experimental data is necessary. This involves, among others, issues such as life cycle
normalization or identification and removal of outliers. Suitable procedures are proposed
and discussed. Example is presented for vibration-based symptoms of steam turbine
technical condition.

Keywords: diagnostic symptom, technical condition, prognosis, information content

1. Introduction

Terms like condition assessment (which is basically equivalent to diagnosis) and prognosis are

commonly used in technical sciences and have been defined in several ways. For any given

class of diagnostic objects, there is a logical sequence of activities which may be summed up

including four consecutive stages [1, 2]:

• Measurement (acquisition of data that contain information on object condition)

• Qualitative diagnosis (or recognition-identification and localization of failures and

malfunctions)

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



• Quantitative diagnosis (estimation of damage advancement)

• Prognosis (forecast for object operation in future)

In structural health monitoring and condition-based maintenance, the third and fourth steps

are of particular importance. Quantitative diagnosis is in fact an estimation of the current

object condition. Once this has been accomplished, a prognosis may follow, which basically

means remaining useful life (RUL) estimation on the basis of certain criteria. This is extremely

important for proper and safe operation and cost-effective maintenance of complex and critical

machinery.

Evolution of object condition may be described in terms of the hazard function [3, 4], which

typically takes the form of the bathtub curve (Figure 1). Initially hazard function decreases

with time; this may be interpreted as “running-in.” During normal operation period, hazard

function increase is so weak that it may be treated as constant. Finally, during the final stage of

the object service life, hazard function increases with time—in theory to infinity and in practice

until the highest acceptable value is attained. For a wide range of objects, reliability is well

described by three-parameter Weibull distribution. In such case, hazard function in its classic

form is given by [5, 6]

h θ;β;η;γ
� �

¼

β

η

θ� γ

η

� �β�1

, (1)

where θ denotes time and β, η, and γ are parameters; γ is the location parameter (set to zero if

θ = 0 corresponds to the beginning of object life—in such case, two-parameter distribution is

obtained); η denotes characteristic life; and β is the shape factor. Cases β < 1, β = 1, and β > 1

correspond to three consecutive periods shown in Figure 1.

Figure 1. Typical shape of the hazard function (bathtub curve).
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For many objects it is impracticable or inconvenient to describe condition evolution in terms of

the hazard function (or failure density). An alternative approach is based on the analysis of

energy transformation and dissipation mechanisms, which leads to the energy processor

model [1, 7]. This model implies that object condition is estimated in an indirect manner, from

measurable physical quantities referred to as diagnostic symptoms. Each symptom is related to

the power V(θ) of residual processes that accompany the principal process of energy transfor-

mation. In the simplest case, the ith symptom Si(θ) is given by

Si θð Þ ¼ Φ
V0

1� θ=θb

� �

(2)

where V0 = V(θ = 0) and Φ is the symptom operator and θb denotes time to breakdown.

Detailed description can be found in literature; several modifications have been proposed [1, 8],

but basic principles have remained unchanged. The Si(θ) given by Eq. (2) and referred to as

symptom life curve is a monotonically increasing function with a vertical asymptote at θ = θb. As

for the symptom operator, Weibull and Fréchet functions have been shown to give consistent

results; they yield Si(θ) in the forms of

Si θð Þ ¼ Si0 ln
1

1� θ=θb

� �1=γ

(3)

for the former and

Si θð Þ ¼ Si0 �lnθ=θbð Þ�1=γ (4)

for the latter; in both cases, Si0 = Si(θ = 0) and γ is the shape factor. For a given object, if sufficient

database is available, it is possible to estimate θb by relatively simple fitting procedure. This, in

turn, allows to estimate RUL. It has to be kept in mind that θb is obviously not equivalent to

RUL, unless the most primitive “run-to-breakdown” operational policy is employed.

Large and complex objects usually generate many diagnostic symptoms, and their number in

fact has no upper limit. It has to be kept in mind that values of these symptoms depend not

only on condition parameters. If all symptoms Si are expressed in the form of a vector S(θ),

then the following general relation holds [1, 9]:

S θð Þ ¼ F X θð Þ;R θð Þ;Z θð Þ½ �, (5)

where X, R, and Z denote vectors of condition parameters, control parameters, and interference,

respectively. Obviously individual symptoms differ in their sensitivity to the components of all

these vectors; it is thus necessary to select those which can be regarded “the best.” The problem

of selection was addressed at early stages of technical diagnostic development (see, e.g., [9]).

Initially, at the stage of qualitative diagnosis, the principal criterion was symptom sensitivity

to condition parameters. Quantitative diagnosis and prognosis imply a need to follow object

condition evolution with time; thus, the symptom which best represents this process should be

considered the most suitable one.
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This chapter is devoted mainly to symptom evaluation and selection methods based on the

analysis of information content measures. Some attention shall, however, also be paid to the

method employing the singular value decomposition, the first that has been used for this

purpose.

Suitability of symptom evaluation methods has been verified for a number of vibration-based

symptoms generated by steam turbines operated at utility power plants. Details on symptom

generation mechanisms may be found, e.g., in [1, 10, 11]. Absolute vibration velocity was

recorded in the form of 23% constant percentage bandwidth (CPB) spectra, at points located

at bearings and low-pressure turbine casings. Piezoelectric accelerometers were used with

magnetic mountings, which allows for a frequency range well above 10 kHz. This implies that

both “harmonic” (i.e., resulting directly from rotational motion) and “blade” (i.e., generated by

the fluid flow system) components are recorded. Vibration amplitudes in frequency bands

determined from turbine vibrodiagnostic models [1, 11] are the diagnostic symptoms to be

evaluated. It has to be stressed here that presented methods are valid for a broad class of

various diagnostic symptoms, irrespective of their physical origin.

2. Singular value decomposition

Singular value decomposition (SVD) is well known from linear algebra; concise description

can be found, e.g., in [12]. To the author’s best knowledge, the idea to employ this method in

technical diagnostics goes back to the late 1990s [13]. Application for vibration-based symp-

toms has shown this method to give consistent results [14].

The first step is to represent symptom value database in the form of an m � n matrix O, where

m denotes the number of symptoms and n is the number of symptom value readings. In

principle, symptoms of different physical origins are compared, so all are normalized with

respect to their values at θ = 0; moreover, 1 is subtracted from all normalized values, so they

start from zero and are dimensionless. In accordance with general SVD rules, matrix O can be

expressed as the following product:

O ¼ U∗Σ∗VT (6)

where U and V are orthogonal matrices (n � n and m � m, respectively) and Σ is a diagonal

m � n matrix, Σ = diag(σi). If σi components are arranged in the descending order, which is

conventionally accepted, the representation given by Eq. (6) is unique. Components σi corre-

spond to generalized faults, so that the sum given by

F θð Þ ¼
Xp

i¼1

σi θð Þ, (7)

where p = min(m, n) represents the total damage advancement or lifetime consumption degree.

Columns ofU andVmatrices are left-singular and right-singular vectors, denoted by ut and vt,

respectively, with 1 ≤ t ≤ n. Eq. (6) can thus be rewritten as
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O ¼

X

p

t¼1

σi∙ ut∗vt
T

� �

(8)

According to [15] and following notation used herein, the tth fault can be described by two

discriminants, namely

SDt ¼ O∗vt ¼ σt∙ut (9)

ALt ¼ uT
t ∗O ¼ σt∙v

T
t (10)

This means that this fault can be expressed in terms of left-singular or right-singular vectors,

which are generally interpreted as “input” and “output” [13, 15]. In the case of system

condition evolution, “input” represents condition parameters and “output” represents symp-

toms. Obviously, the second discriminant, given by Eq. (10), is of practical use here, as condi-

tion parameters are typically nonmeasurable.

SVD analysis may be performed using one of available software packages. In practical appli-

cations the first step is to analyze individual singular values. For a comparatively new object,

the descent of consecutive singular values is rather slow; this means that dominant failure

mode has not yet appeared. On the other hand, with considerable lifetime consumption

degree, the first singular value dominates. Examples are shown in Figure 2. They refer to

vibration-based symptoms generated by steam turbine fluid flow systems. In both cases

illustrated in Figure 2, there are six such symptoms. For a turbine with a few dozen thousand

hours logged (Figure 2a), contributions of the first three singular values into generalized

damage are 36, 29, and 17%, respectively. For the second turbine (Figure 2b), which has logged

well over 200,000 hours, corresponding values are 48, 24.5, and 10%—the difference is clearly

seen. The second step is to calculate contributions of individual symptoms into several (e.g.,

three) first singular values. Corresponding graphs are shown in Figure 3. For the first turbine,

Figure 2. Contributions of singular values into generalized damage; (a) 260 MW unit, low-pressure turbine casing, rear

part left; (b) 200 MW unit, low-pressure turbine casing, front part right (see main text for details).
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dominant symptoms cannot be identified, although we may infer that symptom numbers 1

and 5 can be skipped. For the second turbine, however, dominance of symptom numbers 5 and

6 is clearly seen, and they may be judged most sensitive to the fluid flow system lifetime

consumption.

3. Information content measures

3.1. The idea

The abovementioned energy processor model is, by its very nature, deterministic. From Eq. (5),

however, it is clearly seen that symptom values depend not only on deterministic condition

parameters Xi(θ) but also on control parameters Ri(θ) and interferences Zi(θ), which are

random variables. Therefore, any symptom Si(θ) should in principle be treated as a random

variable with time-dependent parameters.

For a given object operated at a given location, it is reasonable to assume that Ri(θ) and Zi(θ)

are characterized by statistical distributions with time constant parameters. At the same time,

from Eq. (2) it is clearly seen that the influence of lifetime consumption θ/θb (or, more gener-

ally, of deterministic condition parameters) will increase as θ ! θb. This means that Si(θ) will

become more deterministic or, to put it in a different way, more predictable. As pointed out in

[16], this corresponds to information content decrease, in the sense of Shannon entropy [17].

Therefore, a symptom with the highest rate of an information content measure which

decreases with time is the one that is most sensitive to lifetime consumption mechanisms.

Investigations of information content and its measures were pioneered by Claude E. Shannon.

In his fundamental work [17], he introduced an information content measure H(p1, p2,…, pn),

later termed Shannon entropy, where pi is the probability of the ith event, and showed it to have

the following form:

Figure 3. Contributions of individual symptoms into the first three singular values: (a) as in Figure 2a and (b) as in

Figure 2b.
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H ¼ �K
Xn
i¼1

pilogbpi, (11)

where K is a constant depending on units used (irrelevant if only decrease rate is of interest).

Logarithm base b is typically set at 2, Euler constant, or 10, H being expressed in bits, nats, and

dits, respectively. Obviously
^
i

0 ≤ pi ≤ 1, (12)

Xn
i¼1

pi ¼ 1: (13)

Shannon entropy was originally introduced for verbal communication; hence, a discrete ran-

dom variable is involved. A diagnostic symptom in the sense of the energy processor model is

in general continuous, so a derivative of H known as continuous or differential entropy should be

used. It is given by (see, e.g., [18])

h ¼ �K

ð∞

�∞

p Sið Þlogbp Sið ÞdSi, (14)

where p(Si) is the probability density function. Despite formal similarity, Eq. (14) is not just a

limiting case of Eq. (11) for n ! ∞. Contrary to H, continuous entropy is not invariant under

change of variables [19]. Moreover, h can be negative, although a satisfactory physical expla-

nation of the negative information content is still lacking. From the practical point of view,

continuous entropy is very convenient, as for widely employed statistical distributions it is

given by relatively simple analytical expressions.

It may be added here that several other entropy types have been proposed, e.g., by Hartley

[20], Rényi [16], or Tsallis [21]. Their use, however, has been limited. Hartley entropy is a

specific case of the Shannon entropy, while Rényi entropy may be viewed by its generalization.

Both Rényi and Tsallis entropies involve certain adjustable parameters of rather unclear phys-

ical meanings, which are generally difficult to estimate.

For the purpose of condition symptom evaluation, the time window procedure may be

employed. A window containing sufficient number of Si(θ) readings is moved along the time

axis; for each position, statistical distribution parameters within it are determined, and in this

way the h(θ) curve is obtained. This in turn allows for estimation of the information content

measure (ICM) decrease rate. In practice this involves certain problems which shall be

discussed in the following section.

3.2. Shortcomings

3.2.1. Distribution type

Obviously, in order to employ the abovementioned procedure, symptom distribution type has

to be determined. In general, distributions of diagnostic symptom values are of the right-hand
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tailed type [1]. Weibull and gamma distributions are commonly used, with the probability

density functions given by

fW xð Þ ¼ k

λk
xk�1exp � xk

λk

� �

(15)

and

f G xð Þ ¼ xk�1exp � x
λ

� �

λk
Γ kð Þ

, (16)

respectively, where k is the shape factor, λ denotes the scale factor, and Γ is the gamma

function. It has been shown for a number of cases [1, 22, 23] that results obtained with these

two distributions are quantitatively similar. Moreover, although this might seem strange,

normal distribution given by

fN xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp � x� μ

� �2

2σ2

 !

(17)

(μ and σ denote mean value and standard deviation, respectively) yields very similar results;

this greatly simplifies calculations. Continuous entropy for these three distributions is given by

the following relations [24]:

hW xð Þ ¼ k� 1ð ÞγE

k
þ ln

λ

k
þ 1, (18)

hG xð Þ ¼ ln λΓ kð Þ þ 1� kð Þψ kð Þ þ k,ð (19)

hN xð Þ ¼ ln σ
ffiffiffiffiffiffiffiffi

2πe
p� �

, (20)

where γE is the Euler-Mascheroni constant and ψ(x) is the digamma function. An example of

comparison of results obtained with gamma, and Weibull and normal distributions is shown

in Figure 4.

3.2.2. Outliers

Diagnostic symptom time histories often exhibit a considerable number of outliers. According to

[25], “an outlying observation, or outlier, is one that appears to deviate markedly from other

members of the sample inwhich it occurs”; there is no generally accepted precise definition. From

the point of view of information theory, outliers are equivalent to noise. As with the definition,

there is no universal method for removing outliers. The “three-sigma rule,” which is often used

for this purpose, is not applicable to distributions with long right-hand tails [26]. Three-point

averaging [27] merely flattens outliers instead of removing them. The author has suggested a

procedure referred to as “peak trimming” [1], based on comparison of a data point with two

adjacent points. If for the Si(θk) symptom value reading one of the following criteria is met:
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Si θkð Þ

Si θk�1ð Þ
> ch and

Si θkð Þ

Si θkþ1ð Þ
> ch, (21)

Si θkð Þ

Si θk�1ð Þ
< cl and

Si θkð Þ

Si θkþ1ð Þ
< cl, (22)

then Si(θk) is considered as an outlier and replaced by the average of two adjacent readings.

Upper and lower thresholds, ch and cl, are adjusted experimentally and depend on the object.

In practice, situation described by Eq. (21) is much more frequent, mainly as a result of the

influence of control parameters and/or interference (cf. Eq. (5)). Very low symptom value

readings, as in Eq. (22), are usually caused by plain measurement errors. Effect of peak

trimming is illustrated in Figure 5.

3.2.3. Stationarity

Fitting continuous distributions to experimental symptom value histograms within the time

window limits require at least weak stationarity. This implies that for every symptom Si mean

value and autocovariance must not change with time. In view of the fact that Si(θ) has a

vertical asymptote at θb, this may be considered valid only for θ < < θb. As already mentioned,

it may be assumed that control and interference (Eq. (5)) are represented by stationary stochas-

tic processes. Therefore, Si(θ) may be viewed a trend stationary process, and, if the determin-

istic trend is removed, what is left is a stationary process [28]. In fact over a hundred years ago,

it was pointed out that, in time series analysis, a measure of deviation from trend and not from

Figure 4. Comparison of distribution fitting results (260 MW steam turbine, vibration component generated by high-

pressure fluid flow system—after [23], © JVE Journals).
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some “mean” or “average” should be taken into account [29]. In other words, trend normali-

zation should be performed prior to ICM analysis.

Trend may be determined by fitting a suitable function to experimental symptom time history.

Weibull and Fréchet functions may be used for this purpose; for low values of θ, exponential

function may be a good approximation. An obvious prerequisite is lack of abrupt (stepwise)

changes; this issue shall be discussed in detail in the following section. Once this is performed,

a procedure may be employed wherein each symptom value reading Si(θ) is replaced by trend-

normalized value given by [23]

S
0
i θð Þ ¼ Si θð Þ

Sit 0ð Þ

Sit θð Þ
, (23)

where subscript t denotes value determined from the estimated trend. An example of trend

normalization (Weibull function fitting) is shown in Figure 6.

Figure 5. Effect of peak trimming: raw (a) and peak-trimmed (b) symptom time histories. Data refer to the intermediate-

pressure turbine of a 260 MWunit.

Figure 6. An example of standard peak-trimmed (a) and trend-normalized (b) time histories; data refer to the high-

pressure turbine of a 230 MWunit.
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3.2.4. Abrupt changes

Complex and costly machines like, for example, power-generating units are usually designed

for long service life. During the period between commissioning and final withdrawal from use,

they are usually subject to various processes of maintenance, repair, and overhaul. Each of

them introduces changes of object properties, which influence both diagnostic symptom gen-

eration mechanisms and their propagation from origin to measurement points. So far, it has

been assumed (tacitly) that each Si(θ) function, or symptom life curve, is a superposition of a

monotonic and continuous trend Sit(θ) and random fluctuations. In general this is not the case.

Deterministic trend is in fact a sequence of symptom life curves, each being characterized by

some specific values of Si(0) and θb. Of course repair or overhaul is performed before the

breakdown, so of each curve is represented by a section of the length of θ0 < θb. This is shown

schematically in Figure 7.

Figure 7 clearly shows that, if fitting continuous function to experimental data is expected to

yield consistent results, abrupt changes should be eliminated. In principle this is relatively

simple. Each life cycle and hence each symptom life curve are characterized by the so-called

logistic vector [7], which describes its “quality.” This vector may be replaced by its scalar

measure L, which influences both Si(0) and θb. For a sequence such as shown in Figure 7, one

cycle is chosen as a reference; it may be convenient to use the one with the lowest initial value

for this purpose, but this is not mandatory. Its value for θ = 0 is taken as a reference Sr(0). Then,

for each other cycle, a normalizing factor Fi = Si(0)/Sr(0) is determined, and normalization is

obtained by simple multiplication of all symptom readings in this cycle by 1/Fi.

This idea may seem simple, but precise determination of the moment of transition from a

life cycle to the next one may be problematic. Sufficient operational documentation is not

always available, and transitions are often masked by random fluctuations. A method for their

Figure 7. Schematic representation of the symptom life curve sequence.
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detection is thus necessary. Such method may be based on techniques originally developed for

statistical process control.

In the 1920s Walter A. Shewhart developed a tool for determining whether a process (e.g.,

manufacturing) is under control, known as the process control chart. If that was the case, no

modifications of process or control were needed; otherwise, an intervention was necessary, in

order to restore stable and controlled operation [30]. In 1954 E.S. Page proposed a more

sensitive process control chart, employing cumulative sum and consequently named CUSUM

[31]. His approach consisted in introducing a quantity originally referred to as a “quality

number,” developing an algorithm to estimate its changes and establishing a quantitative

criterion. In general this quality number is a statistical parameter. If this procedure is employed

for mean value, it can be used for detecting abrupt changes [32].

Let us assume that a variable x characterizes the process under consideration; its consecutive

readings are x1, x2, …, xN. Each sample 〈x1, …, xi〉 has a probability density function given by

pi(xi, φ); φ is a parameter which changes from φ0 to φ1 when an abrupt change occurs. The log-

likelihood ratio ci given by

ci ¼ ln
p xi; φ1

� �

p xi;φ0

� � (24)

defines the figure of merit. Cumulative sum Cm is then defined by

Cm ¼

X

m

i¼1

ci (25)

If φ is sample mean, then Cm time history can be used for abrupt change detection. If there is no

continuous trend, i.e., the process is stationary, Cm will fluctuate around zero and exhibit an

upward or downward drift when an abrupt increase or decrease, respectively, has occurred.

As already mentioned, in the case of a diagnostic symptom, there will always be such trend

which can be neglected only for θ < < θb. Thus, Cm does not fluctuate around zero, but exhibits

a continuous trend. An abrupt change, if sufficiently large, will then be indicated by a reversal

of the Cm(θ) trend. This method can be employed for detecting transitions between consecutive

life cycles. For normal distribution which, as noted earlier, is often a good approximation, Cm is

given by a simple expression:

Cm ¼

X

m

i¼1

xi � μ0

� �

, (26)

where μ0 denotes sample mean. It is easily understood by intuition that, in order to obtain a

reliable result, removal of outliers is mandatory [33]. Examples are shown in Figures 8 and 9.

3.2.5. Representativeness factor

It may be said, in a descriptive manner, that ICM is a measure of the degree of process organiza-

tion around a monotonically increasing trend. However, the rate of this increase should also be
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Figure 8. Example of CUSUMmethod application: normalized symptom (1) and cumulative sum (2) plotted against time.

Data refer to vibration generated by high-pressure fluid flow system of a 200 MW steam turbine.

Figure 9. Cumulative sum time history obtained without (solid line) and with (dotted line) outlier removing (after [33], ©

British Institute of Non-Destructive Testing).
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taken into account in symptom evaluation. Organization may take place around a weakly

increasing curve; such symptom is only weakly sensitive to object condition evolution and

as such is of little use, despite marked ICM decrease. A measure is thus required that would

combine both sensitivity to condition parameters and a degree of process organization [23, 33].

Such measure, termed representativeness factor R, is proposed in the following manner. Linear

approximation is used for continuous entropy:and Weibull approximation for normalized

symptom:

h θð Þ ≈ h θ ¼ 0ð Þ � A∙θ A > 0ð Þ (27)

si θð Þ ≈ ln
1

1� θ=θb

	 
1=γ

; (28)

representativeness factor is then defined as

R ¼
A

γ
: (29)

Obviously, R should be positive: the larger the R, the more representative is the symptom

under consideration. Alternative approach may be adopted for Fréchet approximation; the

choice of either of these approximations does not influence qualitative results of symptom

assessment.

4. Examples

Measurement data for the first example were obtained with the intermediate-pressure turbine

of a 260 MW power-generating unit; the first measurement was performed shortly after

commissioning, and available data cover the period of almost 10 years. Vibration velocity was

recorded at the front and rear bearings, in three mutually perpendicular directions. Compo-

nents generated by turbine fluid flow system are contained in four 23% CPB bands, which give

24 available symptoms. Of these, as many as 13 symptoms have revealed no increasing trend;

this may be attributed to comparatively short period of operation, as evolution of the fluid

flow system condition is usually rather slow. For the remaining 11 symptoms, measured

values were normalized, and peak trimming was performed (Eqs. (21) and (22), with ch = 1.5

and cl = 0.7). It was followed by CUSUM analysis, which revealed an abrupt change at about

2200 days (see Figure 10). Normalization was thus performed according to the procedure

outlined in Section 3.2.4. Trend normalization was based on the Weibull function assumption.

Data processed in this manner were used for ICM analysis, with time window length of 25

points and normal distribution assumption (cf. Section 3.2.1).

Continuous entropy time histories are in some cases rather irregular, but nonetheless six of them

exhibit a decreasing trend; an example is shown in Figure 11. For these six cases, representative-

ness factor was calculated in accordance with Eq. (29). Results are shown in Table 1. It is easily

seen that the values of R vary within broad limits. Without doubt symptoms numbered 1 and 2
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Figure 10. Cumulative sum time history: 260 MWunit, front intermediate-pressure turbine bearing, axial direction, 4 kHz

band.

Figure 11. Examples of continuous entropy time histories: for symptoms 1 and 16, entropy is decreasing, while for

symptom 9, there is an increasing trend accompanied by large irregularities.
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are the most representative ones. Symptoms 16, 18, and 24 are certainly inferior, while represen-

tativeness of symptom 5 is weak. In this manner, symptoms may be identified that are most

suitable for fluid flow system condition assessment.

Figure 12 shows contributions of all 11 symptoms that exhibit an increasing trend into the first

three singular values. It may be noted that results are basically consistent with those shown in

Table 1. The main differences are:

Symptom number Symptom description (kHz) Value of γ Entropy decrease rate Representativeness factor

1 FB-V 3.15 11.24 0.960 85.44 � 10�3

2 FB-V 4 10.64 0.905 85.07 � 10�3

5 FB-H 3.15 500.0 0.010 0.02 � 10�3

16 RB-V 6.3 52.63 0.775 14.73 � 10�3

18 RB-H 4 52.63 0.497 9.44 � 10�3

24 RB-A 6.3 55.56 0.637 11.47 � 10�3

FB and RB denote the front and rear bearings, respectively; V, H, and A correspond to measurement directions (vertical,

horizontal, and radial) (260 MW unit, intermediate-pressure turbine).

Table 1. Results of calculations for six symptoms; γ is dimensionless, and entropy decrease rate and representativeness

factor are given in arbitrary units.

Figure 12. Contributions of individual symptoms into the first three singular values (260 MWunit, intermediate-pressure

turbine (only symptoms that reveal an increasing trend have been included)).
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• Comparatively high contributions of symptom number 5, which has a low representative-

ness factor

• Better result for symptom number 18

• Comparatively high contributions of symptom number 9, which is absent in Table 1 (lack

of entropy decreasing trend)

Before commenting on these findings, a second example will follow, this time for a compara-

tively old 200 MW unit with over 200,000 hours logged; available database covers over

16 years. Fluid flow system of the high-pressure turbine generates vibration components that

are contained in ten 23% CPB frequency bands. Given two bearings and three directions, this

means that as many as 60 symptoms have to be analyzed. In order to simplify the picture, a

two-stage procedure was employed [33]. First, for every measurement point and direction, two

dominant symptoms were selected using the SVD approach. Twelve symptoms selected in this

manner were then analyzed with both SVD and ICM methods. Results are shown in Figure 13

and Table 2.

In Table 2, cases with R < 0 have been deliberately included, in order to demonstrate that

symptoms with comparatively good rating based on the SVD analysis—in this case, symptom

No. 2—sometimes have to be rejected. On the other hand, symptoms with rather high values of

R—e.g., numbers 5, 10, and 12—are poorly rated by the SVD method. In fact, only symptom

numbers 3 and 4 are chosen on the basis of both methods.

Figure 13. Contributions of individual symptoms into the first three singular values (200 MWunit, high-pressure turbine

(after [33], © JVE journals)).
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In order to comment on these two examples, it has first to be noted that neither SVD nor ICM

approach can be considered a reference one. It seems that discrepancies between the results

obtained with both may be attributed to at least two possible causes. First, preprocessing of

measurement data is based on relatively simple procedures, and their inherent deficiencies—

such as inadequate robustness—may influence the final result. Second, the SVD method does

not disqualify cases with entropy increase, which are rejected within the ICM approach. This

question requires further study. As pointed out in [33], it seems justified to state that symptoms

selected on the basis of both methods can be safely labeled as the most suitable ones for object

condition assessment and prognosis.

5. Conclusions

In this chapter, a relatively straightforward and simple method is presented for evaluation of

diagnostic symptoms from the point of view of their suitability for assessment and prognosis of

technical condition evolution. For this purpose, the proper choice of symptoms is of prime

importance. This is particularly important for complex objects that generate a large numbers of

various symptoms. In most cases it is very difficult, or even impossible, to make such choice in

a direct manner, even with extensive knowledge on object layout and operation. The proposed

method is based on an analysis of an information content measure as a function of time, and the

basic assumption is that the greater is general damage advancement, the more deterministic, and

hence predictable the symptom becomes. It turns out, however, that in order to obtain reliable

results certain preprocessing of measurement data is mandatory. Results of this method have been

compared with those obtained from singular value analysis, which had been earlier proposed

Symptom number Symptom description (KHz) Representativeness factor

1 FB-V 6.3 �0.63 � 10�3

2 FB-V 8 �15.30 � 10�3

3 FB-H 5 6.97 � 10�3

4 FB-H 6.3 5.57 � 10�3

5 FB-A 6.3 8.84 � 10�3

6 FB-A 8 3.77 � 10�3

7 RB-V 5 �1.93 � 10�3

8 RB-V 8 1.17 � 10�3

9 RB-H 6.3 0.20 � 10�3

10 RB-H 8 4.14 � 10�3

11 RB-A 2 �2.52 � 10�3

12 RB-A 8 5.69 � 10�3

Table 2. Representativeness factor values calculated for 12 symptoms from Figure 13 (after [33], © JVE Journals).
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and tested. This approach has been applied for vibration-based symptoms of steam turbines

operated by power plants and shown to give consistent results. In general it can be applied to

any symptom, irrespective of its physical origin, as well as for other machines or structures. In the

author’s view, possible further development should be concentrated on the preprocessing of

measurement data and improvement of the representativeness factor. Other information content

measures might also be worth considering; however, the best results have so far been obtained

with continuous entropy.
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