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Abstract

In this chapter, techniques and application of multinuclear (1H, 13C, and 31P) in vivo mag-
netic resonance spectroscopy (MRS) for the assessment of skeletal muscle metabolism in 
health and disease are described. Studies focusing on glucose transport and utilization, 
lipid storage and consumption, handling of energy rich phosphates, and measurements 
of newly emerging noninvasive biomarkers, i.e., acetylcarnitine and carnosine are sum-
marized. Muscle metabolism connections to exercise physiology and the development as 
well as possible treatment of metabolic diseases, such as obesity and diabetes are also dis-
cussed. Taken together, multinuclear in vivo MRS on humans helped to uncover defects 
in skeletal muscle metabolic pathways in insulin-resistant conditions; and to discover 
links between defects in mitochondrial activity/capacity and lipid metabolism, as well as 
defects in whole-body and/or muscle glucose metabolism. There is also to mention that 
several of the MR-derived readouts are affected by both training status and metabolic 
disease in a specific way, and thus could serve as potential markers of training status and 
metabolic flexibility.

Keywords: magnetic resonance spectroscopy, skeletal muscle, energy metabolism, 
training status, pathophysiology, glucose, lipids, diabetes mellitus, obesity, exercise

1. Introduction

Skeletal muscle is the key human tissue responsible for the body weight bearing and movement 

and plays a central role in whole-body energy metabolism. Even in the resting conditions  
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skeletal muscle accounts for ~30% of metabolic rate of human body [1]. In particular, as the 

main target of insulin activity, skeletal muscle effectively regulates the glucose uptake, while 
serving also as a glycogen storage [2]. The extent to which skeletal muscle fulfills these roles is 
affected by many physiological and pathophysiological factors, which can change over time. 
Several diseases largely manifesting in skeletal muscle pathology have a rapidly increasing 

socioeconomic impact, as they start to affect not only the elderly, e.g., sarcopenia, but also 
young productive, population, e.g., insulin resistance and type 2 diabetes mellitus (T2DM). 

Insulin resistance and T2DM are rapidly reaching epidemic proportions worldwide and the 

associated treatment costs of T2DM also continue to grow. The cost of diabetes (with over 

85% attributable to T2DM) was in 2012 over £1.5 milion an hour or 10% of the entire National 
Health Service budget for England and Wales [3]. In order to improve the understanding 

and clinical management of such disorders, it is vital to be able to assess muscle function and 

metabolism in vivo noninvasively, to support their diagnosis, monitor changes in tissue status 

during disease progression and interventions, and above all, to establish robust markers that 

can be used in disease prevention [4].

Magnetic resonance spectroscopy (MRS) represents an advanced noninvasive technology 

that allows for assessment of tissue metabolism in the healthy as well as diseased condi-

tions [5]. In particular, MRS techniques are able to noninvasively monitor intramyocellular 

storage and turnover of important energy storage pools, namely lipids and glycogen. In 

addition, MRS is uniquely suited to quantitatively assess adenosine-triphosphate (ATP) 

production reactions in the muscle, i.e., mitochondrial oxidative phosphorylation, glycoly-

sis, and creatine kinase activity. Among other things, proton (1H) MRS is best suited to 

quantify intramyocellular lipid (IMCL) storage, carbon (13C) MRS is optimal for glycogen 

reserves measurements and phosphorus (31P) is ideal for investigations of ATP metabolism. 

This chapter briefly describes the basic principles and availability of these measurements, 
and further focuses on applications of MRS techniques for studying functional properties 

of skeletal muscle in health and disease. Obesity, type 2 diabetes mellitus, and skeletal 

muscle insulin resistance serve as good model for pathologic conditions, while the sum-

mary of MRS observable adaption to training is brought as positive control or contrast to 

aforementioned circumstances.

While most of the described methods and measurements have been introduced at lower field 
strengths 20–30 years ago [6–8], recent development in MR technology, namely the transition 

towards ultra-high field MR systems (B
0
 ≥ 7 T), meant significant improvements to in vivo 

MRS [9–13]. Next to the linear gain in signal-to-noise ratio (SNR), which can be translated to 
significantly shorten data acquisition time [12] or improved signal localization [14], higher 

field strength also provides improved spectral resolution, reducing metabolite overlapping, 
and thus, improving quantification accuracy. The increase in SNR is of particular importance 
to nonproton MRS, which is limited mainly by SNR in its applicability [15]. 31P MRS benefits 
from additional increase in SNR per unit of time due to shortening of the T

1
 relaxation of 31P 

metabolites at 7 T [11]. MR systems (B
0
 ≥ 7 T) equipped with multinuclear broadband capa-

bilities hold great potential for investigations of the not yet well-understood mechanisms of 

tissue metabolism.
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2. Methods of magnetic resonance spectroscopy

2.1. 1H MRS

The main application of 1H MRS that is used in exercise and nutrition research, just as often as 

in studying the etiology of insulin resistance and T2DM, is the quantification of intramyocel-
lular lipids (IMCL) [16–18]. Among other typical uses of 1H MRS belong: (a) detection of lac-

tate (Lac) formation during exercise [8, 19–21]; (b) measurement of total creatine (Cr) content 

[22–24]; (c) assessment of muscle fiber orientation using dipolar coupling [25]; (d) measure-

ment of intramyocellular metabolite diffusion [26]; and (e) the dynamic measurement of tissue 

(de)oxygenation using the signal of deoxymyoglobin (DMb) [27–29]. Furthermore, detection 

of resting muscle carnosine [30, 31] and acetylcarnitine (AcC) [32, 33] has been recently pro-

moted as a promising use of 1H MRS. An example of high resolved in vivo acquired 1H MR 

spectrum of skeletal muscle is given in Figure 1.

2.1.1. Static examinations by 1H MRS

Next to water, lipid accounts for the strongest signals in a 1H spectrum of skeletal muscle at rest. 

However, even with optimal tissue selection, not all lipid signals in the spectrum are intramyo-

cellular (IMCL). Fortunately, it is possible to differentiate between IMCL and extramyocellular 

Figure 1. A representative 1H-MRS spectrum from an athlete acquired from the vastus lateralis muscle at 7 T showing 
intramyocellular (IMCL) and extramyocellular (EMCL) lipids [0.9 and 1.1 ppm (CH

3
 groups) 1.5 and 1.3 ppm (CH

2
 

groups)], AcC at 2.13 ppm, Cr at 3.03 and 3.9 ppm, trimethyl ammonium (TMA) groups of carnitine, AcC, and choline 

at 3.20 ppm, residual water peak at 4.7 ppm, removed in postprocessing, and carnosine spectral lines at 7 and 8 ppm.
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lipids (EMCL). Inside myocytes, lipids form small droplets in the cytoplasm, whereas EMCLs 

are found layered between myocytes along the main muscle orientation, and are tubular in 

shape. This difference in spherical versus cylindrical geometry influences the bulk magnetic 
susceptibility of these lipid compartments making the differentiation possible [34, 35]. The 

IMCL/EMCL peak separation depends on the angular orientation of EMCL to the external 

magnetic field as a result of anisotropy effects [36] which results into maximum of 0.2 ppm 

frequency shift in case of fully parallel orientation [4], as is the case in tibialis anterior [25, 37].

In general, to maximize the acquired signal, MRS sequences with short echo time (TE) are 

often used for IMCL quantification [38–40]. This requires suppression of water signal and can 

also lead to broad resonances of various shapes and strong IMCL/EMCL overlap, which can 

cause inaccurate quantification of IMCLs [41, 42]. Contamination from subcutaneous adipose 

tissue or bone marrow can make this even more challenging. Moreover, if the water signal 

is to be used as an internal concentration reference, additional acquisition of water signal is 

necessary. Better separation of EMCLs and IMCLs and improved fitting of lipid resonances 
was suggested and observed when using an MRS acquisition with longer TEs [10, 42, 43]. 

This improved separation is a result of the different T
2
 relaxation times of IMCL and EMCL 

resonances and the line width narrowing effect [10]. Thus, the long-TE acquisition has a major 

advantage in increased spectral resolution [10, 34] and provides the possibility to omit water 

suppression, reducing energy deposition in tissues. On the other hand, absolute quantifica-

tion from the long-TE MR spectra requires precise T
2
 relaxation correction, which can be inac-

curate especially for signals with short T
2
, i.e., water signal [10, 44]. Thus, an ideal acquisition 

combines a short TE measurement of water signal with long-TE detection of lipids [14].

Another muscle metabolite that greatly benefits from long-TE acquisition is acetylcarnitine 
(AcC). This relatively low concentrated metabolite fulfills a major role in translocation of long-
chain fatty acids from cytosol to the mitochondrial matrix [45] and in maintaining pyruvate 

dehydrogenation activity [46], and is, therefore, of high interest in skeletal muscle research. 

The straight forward detection and quantification of AcC is challenging, due to the strong 
overlap of the 2.13 ppm line with lipid resonances, and the fact that the line at 3.20 ppm repre-

sents a combination of the trimethylammonium (TMA) groups of carnitine, AcC, and choline. 

Fortunately, the differences in T
2
 relaxation times of AcC and lipids allow the detection of the 

2.13 ppm line at rest, using long-TE 1H MRS [32, 33].

The downfield region of the 1H spectrum, i.e., left to the water signal, gets often overlooked 

as the detectable signals belong to low concentrated metabolites, e.g., carnosine, and can be 

easily mistaken for noise. This is very unfortunate, as carnosine is a pH-buffering metabolite 
that can be manipulated externally [47, 48]. The concentration of carnosine is mainly deter-

mined by muscle fiber type composition, with fast-twitch glycolytic fibers containing up to 
twice as much carnosine as slow-twitch oxidative fibers [49, 50]. In addition, chemical shift of 

carnosine is sensitive to pH, and thus, carnosine signal can be also used to assess intramyocel-

lular pH [51, 52]. While it is possible to detect carnosine using clinical systems [30, 51], the 

increased SNR of ultra-high fields, provides high repeatability [31].

2.1.2. Dynamic examinations by 1H MRS

While most of the metabolite signals can be observed in basal resting conditions, metabolic 

adaption to stress induces by exercise and/or ischemia may alleviate the visibility of specific 
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resonance lines. Of particular interest has been the formation of lactate (Lac) during exer-

cise challenge or ischaemia [8, 19, 20, 53, 54], because lactate is the end-product of anaerobic 

metabolism and a source of free H+, and thus, it plays an important role in skeletal muscle 

metabolism and pH regulation. Although 1H MRS measurements of Lac were shown to be 

in good agreement with tissue extracts analysis [53], due to overlapping lipid signals, dipo-

lar coupling and relaxation effects, quantification of Lac levels in skeletal muscle in vivo is 

extremely challenging, and thus, prone to inaccurate estimation [4].

It can often be unclear whether the measured results reflect real change in skeletal muscle 
metabolism or just manifest inadequate oxygenation state of the muscle. This query can be 

also answered by 1H MRS, which can serve to noninvasively monitor the (de)oxygenation 

state of human skeletal muscle under stress through the measurement of deoxymyoglobin 

(DMb) [29]. Very low concentration of DMb is not an obstacle, as DMb resonates substantially 

downfield away from the typical spectral range, securing no overlap with other metabolites 
and has extremely short T

1
 [55].

Formation of AcC during strenuous exercise and its slow decay after exercise has also been 

under investigation using 1H MRS [56, 57]. While at lower fields, it is only the 2.13 ppm reso-

nance line that gets resolved after strenuous exercise [56], 7T allows direct observation of split 
in resonance lines of AcC and carnitine in the TMA region, providing the option to quantify 

their ratio. Besides, the 1H signal of AcC at this resonance is twice as strong, improving sensi-

tivity of the measurement [57].

On the longer time scale of few 10 minutes during prolonged submaximal exercise and fol-

lowing recovery decrease and replenishment of IMCL pool can be observed [58, 59].

2.2. 13C MRS

The presence of carbon nuclei in almost every organic structure, the nonzero spin of car-

bon-13 (13C) nuclei, and a very wide chemical shift range of up to 200 ppm have made 13C MRS 

well-suited for studies of molecular structure and biochemistry in cellular and animal models 

since the early days of biochemical MRS. The dynamic assessment of biochemical pathways 

in particular, forms the basis for the current application of 13C MRS in humans.

Due to the different magnetic properties of 13C compared to protons, the resonance frequency 

of 13C at a given magnetic field is approximately one-quarter that of 1H MRS. Although 

the natural abundance of carbon nuclei is very high in living tissues, i.e., almost matching 

the abundance of protons, the ratio of MR visible 13C to MR invisible 12C is extremely low 

(approx. 1:99). Lower gyromagnetic ratio and consecutively lower intrinsic sensitivity of 13C 

MRS, together with lower natural abundance of 13C nuclei leads to inherently low SNR, and 
thus, hampers the spatial and temporal resolution of 13C MRS experiments. Techniques to 

increase low SNR of 13C MRS include: (a) increased volume of interests and/or averaging of 

the MRS signal using a high number of repetitions, (b) elimination of the spin-spin coupling 

interaction between 13C-nuclei and its coupled protons by the 1H decoupling pulses in the 

period of 13C signal acquisition; (c) the utilization of the 1H-13C magnetic interaction with 

polarization transfer techniques; (d) the use of a higher field-strength MR apparatus; and (e) 
increasing the abundance of the 13C isotope by systemic infusion of 13C-enriched metabolic 

substrates.
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2.2.1. 13C MRS natural abundance studies

The use of 13C MRS for in vivo studies of skeletal muscle without artificial isotope enrich-

ment is essentially limited to measurements of metabolites present at high concentrations, 

in particular glycogen and triglycerides [4]. Despite its high molecular weight, the glycogen 

C-1 resonance line is 100% MR visible [60, 61] due to the high intramolecular mobility of its 

glucose residues. Skeletal muscle glycogen is present at approximately 80–120 mM concentra-

tions, depending on the muscle and physiological conditions [62–64]. Good reproducibility of 

natural abundance muscle glycogen measurements by 13C MRS [65] favors the use of dynamic 

experimental protocols to assess the depletion of glycogen during exercise (Figure 2) and its 

resynthesis over the course of several hours during post-exercise recovery [58, 59, 66, 67].

2.2.2. 13C MRC labeling studies

To overcome the low SNR due to low natural abundance of 13C nuclei and increase the mea-

surement sensitivity, it is common to use an isotope enriched infusion in 13C MRS studies [4]. 

After an infusion of 13C-labeled glucose under steady-state conditions, glycogen synthesis in 

skeletal gastrocnemius muscle has been quantified and correlated with whole-body carbohy-

drate consumption [7, 69, 70].

Another exciting use of 13C MRS in vivo is the quantification of the flux through the tricar-

boxylic acid (TCA) cycle, which serves as a surrogate for the rate of mitochondrial oxygen 

consumption by the cellular respiration that is vital for skeletal muscle function. The label-

ing of substrates in the TCA by infusing [2-13C]-acetate and observing the enrichment of the 

C4 position of glutamate, has been performed in muscle. These measurements can easily be 

combined with experiments in which undirectional flux through the skeletal muscle ATP-
synthase is measured by means of 31P saturation transfer [4].

Alternative approach for further improvement of signal-to-noise and localization is the appli-

cation of so called indirect 13C measurements, where high sensitivity and low chemical shift 

displacement of 1H MRS is used for signal excitation and detection and chemical specificity 
is introduced exploiting magnetic interaction with coupling 13C atoms. Proof of the princi-

ple for this approach has been demonstrated the measurements of fatty acid composition of 
human subcutaneous tissue [71], while application of similar methodology with the sensitivity 

enhancement by concomitant 13C label infusion has been demonstrated in the study focused on 

postprandial lipid partitioning in liver and skeletal muscle in prediabetic and diabetic rats [72].

2.3. 31P MRS

Skeletal muscle was the first human tissue studied by 31P MRS in vivo, mainly because of its 

high metabolic activity, physiological importance, and relatively simple access [6, 73, 74]. 31P 

MR spectra of skeletal muscle typically depict five major resonances from inorganic phos-

phate (Pi), phosphocreatine (PCr), and adenosine-triphosphate (ATP).

Other detectable 31P metabolites include cell membrane precursors, i.e., phosphomonoes-

ters (PMEs) combined from—phosphocholine (PC) and phosphoethanolamine (PE) and 

cell membrane degradation products, i.e., phosphodiesters (PDEs) in particular  

Muscle Cell and Tissue - Current Status of Research Field38



glycerolphosphocholine (GPC) and glycerol-phosphoethanolamine (GPE) [11] (Figure 3).  

Besides, using the chemical shift between PCr and Pi, intramyocellular pH can be calculated 
noninvasively [75].

Next to the analysis of resting 31P MR spectra, for metabolite concentration determination, it 

is very frequent to obtain the 31P MR spectra during exercise and consecutive recovery [6, 77]. 

Such dynamic 31P MR experiments provide a measure of skeletal muscle oxidative metabo-

lism, through quantification of mitochondrial capacity.

Figure 2. Transversal MRI of calf muscle (a) and natural abundance 13C MR spectra acquired at 7T depicting glycogen 
signals from soleus and gastrocnemius muscle (b) (pulse-acquire block pulse MRS, acquisition time approx. 4 min). The 

glycogen signal is decreased after 90 s of toe raising exercise by approx. 30%. Adapted from Goluch et al. [68].
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Figure 3. (A) A representative highly spectrally resolved static 31P-MRS spectra acquired at 7T. (B) Time course of a 31P 

MR spectra during a knee extension exercise with depicted depletion of the PCr signal and its subsequent resynthesis 

during the recovery period. (C) Saturation transfer spectra showing the effect of γ-ATP saturation, at approximately 
−2.48 ppm (solid line) on the Pi signal compared to the control experiment with saturation at approximately 12.52 ppm 
(dashed line). Adapted and reproduced from Klepochová et al. [76].
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Alike 13C MRS, 31P MRS also has a lower gyromagnetic ratio in comparison to protons, and 

thus, suffers from lower intrinsic sensitivity. Therefore, SNR enhancing approaches, e.g., 1H 

decoupling, at lower fields, or benefit from the SNR boost of higher magnetic fields are uti-
lized [11, 12, 78].

2.3.1. 31P MRS of resting muscle

The quantification of static 31P-MR spectra was repeatedly exploited in the past to gather infor-

mation about skeletal muscle fiber composition using the PCr/Pi ratio, however, the observed 
scattering in metabolite content is large and the final conclusions vary [79–83], thus severely 

limiting the reliability of these measurements [15].

On the other hand, 31P MRS of skeletal muscle can provide valuable information about whole-

body training status, metabolic health, and/or muscle integrity. In particular, the concentra-

tion of phospholipids-phosphodiesters seems to provide a valuable surrogate of metabolism 

or systemic muscle damage [82, 84–90]. At ultra-high fields (i.e., 7 T), or by using 1H decou-

pling, the signal of main PDE in human skeletal muscle—GPC—can be separated and used 

directly rather than the total PDE signal [86]. Another very recent approach for the determi-

nation of skeletal muscle oxidative metabolism from resting 31P MR spectra that profits from 
the increased spectral resolution of the ultra-high field systems (i.e., 7 T), is the assessment 
of alkaline pool of Pi signal (Pi

2
) [91]. Based on its chemical shift (~5.1 ppm), relatively short 

T
1
, and small contribution of extracellular space to skeletal muscle signal, the mitochondrial 

matrix has been recognized as the likely origin of this pool [91]. As such, it should be able to 

provide direct information about changes in mitochondrial density in response to training or 

defects of mitochondrial metabolism [15]. Thus far, Pi
2
/Pi ratio was showed to be increased 

in the quadriceps of the trained subjects [92] and decreased in sedentary subjects [86] in com-

parison to normals, thus, supporting this hypothesis.

31P MRS can also assess the reaction kinetics of energy metabolism through a technique called 

saturation transfer (ST). ST exploits the transfer of magnetization between nuclei that are in 

direct chemical exchange, thus estimating the unidirectional exchange rates and fluxes under 
steady-state conditions [4]. Unfortunately, ST experiment in skeletal muscle does not yield a 

net oxidative flux, as the measured flux contains a major glycolytic component and both turn-

over reactions operate close to equilibrium, i.e., the net rates of both glycolytic and oxidative 

ATP synthesis are low at rest [93]. On the other hand, the resting fluxes were correlated with 
parameters of oxidative metabolism [94, 95], and follow changes of oxidative metabolism 

observed in disease [96].

2.3.2. Dynamic 31P MRS during exercise-recovery challenge

31P MRS measured during muscle contraction and recovery, i.e., dynamic 31P-MRS, can be used 

to observe the kinetics of intramyocellular pH and of the cytosolic concentrations of PCr, Pi, and 

ADP during perturbations of metabolic equilibrium. These measurements offer understanding 
of pH homeostasis, as well as insight into the oxidative ATP synthesis regulation driven by 

ATP demand. In short, to preserve stable ATP concentration, hydrolyzed ATP is resynthesized 

from PCr, causing PCr levels to decrease and Pi levels to increase during exercise. After the 
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challenge, the PCr buffer is restored primarily through oxidative phosphorylation allowing 
assessment of mitochondrial function [97]. The fitted PCr time recovery rate constant provides 
a good estimate on its own, however, it is pH dependent [98]. Using the calculated intracellular 

pH and consecutively the free ADP concentration [99], maximal oxidative capacity can be esti-

mated providing a more robust parameter of mitochondrial capacity [15].

Unlike in static investigations, it is common to use only single spectral transient in dynamic 

examinations due to the high temporal resolution required (on the order of seconds) to suf-

ficiently sample the PCr recovery time course. To boost the SNR for these experiments, highly 
sensitive surface receive coils are deployed and 31P signal is “localized” by their restricted sen-

sitivity volume. However, this type of localization does not allow to differentiate signals that 
originate from different anatomic and/or morphologic compartments, nor between muscle 
groups that are recruited differently in the performed exercise (e.g., soleus and gastrocnemius 
during plantar flexion [100–103]). Quantification of combined signal from differently active 
muscles significantly skews the measurement of mitochondrial capacity [103–105]. Over the 

last few years, many different localization techniques have been developed for dynamic 31P 

MRS [103, 105–107], but as localization decreases available tissue volume and consecutively 

SNR, they are mainly used at ultra-high fields, i.e., 7T.

Examinations of skeletal muscle metabolism provide not only important information about 

muscle physiology, but can also be used to observe the effects of aging [108, 109] and/or to 

help define the training status [86, 110]. In addition, dynamic 31P MR examinations can iden-

tify mitochondrial defects in muscular diseases and can uncover decreased oxidative metabo-

lism of skeletal muscle.

3. Muscle MRS and training

Skeletal muscle demonstrates remarkable plasticity in functional adaptation and remodeling 

in response to contractile activity, i.e., exercise. Training-induced adaptations are reflected by 
changes in metabolic regulation, intracellular signaling, transcriptional responses and con-

tractile protein and function [111]. Muscle mitochondrial density increases along with con-

comitant changes in organelle composition in just after 6 weeks of exercise training. Overall, 

the major metabolic consequences of the adaptations of muscle to endurance exercise are a 

slower utilization of muscle glycogen and blood glucose, a greater reliance on fat oxidation, 

and less lactate production during exercise of a given submaximal intensity [112]. Many of 

the named changes in skeletal muscles caused by exercise may be explored, identified, and 
potentially quantified by MRS (Figure 4). The effect of exercise can be studied from three 
angles: (i) direct comparison of differently trained subjects; (ii) exploration of acute exercise 
challenge effects; and (iii) longitudinal studies involving exercise intervention. The effect of 
dietary interventions on muscle metabolism and the role of MRS will also be discussed.

3.1. Metabolic differences in training status

Increased IMCL content has been reported in endurance-trained muscle indicating the switch to 

higher utilization and efficiency of fat oxidation, as during long-lasting exercise, IMCL stores are 
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utilized as an energy source, similarly to glycogen [113, 114]. The use of these substrates depends 

heavily on the exercise intensity, and both are replenished in the recovery phase post-exercise. 

Similarly to IMCL, glycogen levels are also elevated in endurance-trained subjects, which pro-

mote their fatigue resistance [115, 116]. The phenomenon of increased IMCL was also termed 

athlete’s paradox, because increased IMCL observed in obese, sedentary subjects are indicative 

of insulin resistance [17]; however, insulin sensitivity is not impaired in endurance-trained peo-

ple [18]. IMCL content differs between individual muscle groups, depending on muscle fiber 
composition. In particular, lower IMCL content has been found in predominantly glycolytic, 

fiber type II-tibialis anterior, gastrocnemius, and vastus lateralis compared to the predominantly 
oxidative, fiber type I-soleus and vastus intermedius muscles [117–119]. As the concentration of 

carnosine is also fiber composition dependent [48, 49], it is no surprise that explosive athletes 

have 30% higher carnosine levels in gastrocnemius muscle compared to a reference population, 

whereas it is 20% lower than normal in typical endurance athletes [120]. No significant differ-

ence has been reported in acetylcarnitine (AcC) concentration between endurance-trained and 

Figure 4. Summary of skeletal muscle metabolic processes exploitable by MRS. Linked in-figure legends denote 
observable effects, correlations with whole-body metabolic readouts, suggested mechanism in healthy trained, systemic 
metabolic disease or skeletal muscle myophaties/dystrophies and respective nucleus for MRS. Please note that several 

of the readouts are affected by both training status and metabolic disease and thus could serve as potential markers 
of training status and metabolic flexibility. Metabolites are abbreviated as follows: LCFA-CoA, long-chain fatty acid 
coenzyme A; IMCL, intramyocellular lipids; Cr, creatine; PCr, Phosphocreatine; ATP, adenosine triphosphate; ADP, 

adenosine diphosphosphate; Pi, inorganic phosphate; GPC, glycerophosphocholine; PDE, phosphodiester; Glu, 

glutamate; Gln, glutamine; TCA cycle, tricarboxyacid cycle; AcCarnitine, acetylcarnitine; Acetyl CoA, acetyl coenzyme 

A; G-6-P, glucose 6 phosphate.
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untrained lean sedentary or obese sedentary volunteers [32, 121]. A recent study performed in 

trained and normally active subjects showed significant differences between AcC concentra-

tions measured after overnight fast or after lunch [33]. This makes the comparison difficult and 
emphasizes the need for strict standardization of measurement time, dietary conditions, and 

physical activity (explained below) for the measurement of AcC/carnitine.

Endurance-trained athletes also have a higher volume of mitochondrial density, and, there-

fore, faster oxidative metabolism which is mirrored by faster PCr resynthesis following 

submaximal exercise [122]. Faster PCr resynthesis has been demonstrated in comparison to 

untrained [123–125], and even sprint-trained athletes reflecting superior oxidative metabo-

lism function of endurance-trained subjects [122, 126]. Gradually decreasing training status is 

also mirrored in decreasing 31P MRS derived measures of mitochondrial capacity and Pi
2
/Pi 

ratio when comparing endurance-trained, lean sedentary and overweight-to-obese sedentary 

volunteers [86, 92, 110]. Sedentary lifestyle, if accompanied by overweight, type 2 diabetes 

mellitus or in connection to different muscle specific disease, gives also rise to higher PDE 
levels in skeletal muscle [84, 86]. Increased PDE levels, although to a much lesser extent, have 

been also reported in professional cyclists in comparison to normally trained men [85] and 

in long-distance runners compared to sprinters [82]. These increased PDE levels in highly 

trained or pathology hampered subjects can potentially indicate persistently damaged (and 

actively remodeling) muscles as the result of their training or disease. As yet, the connection 

of PDE to oxidative metabolism and/or muscle integrity is not completely understood.

3.2. Acute exercise challenge

From the metabolic point of view acute exercise challenge relates to changes of concentrations 

in energy storage pools, e.g., glycogen, lipids, or phosphocreatine, boost in the aerobic and 

anaerobic metabolism, lactate formation, following pH changes and effects on cell osmotic 
equilibrium.

From the MRS point of view: although carnosine concentration in gastrocnemius nor in soleus 

muscles could be influenced by a 1-h-long submaximal street run, the carnosine peak was 
shown to change in shape, demonstrating an exercise-induced change in pH [31]. The appear-

ance of the second line of carnosine peak can potentially mirror the existence of two skeletal 

muscle compartments with different pH, possibly as a result of oxidative (slow-twitch) and 
glycolytic (fast-twitch) fiber composition. Acute exercise has been also shown to alter carnitine 
metabolism. Low-intensity exercise (below the individual’s lactate threshold) does not cause 

significant changes in the MR detectable muscle carnitine pool, however, after only 10 min of 
high-intensity exercise, majority of muscle carnitine pool is redistributed to short-chain acylcar-

nitine. This redistribution is highlighted over a further 20 min of exercise and has long recov-

ery period (over a 60-min) [45, 127]. Likewise, no changes in creatine (Cr) concentration were 

detected during exhaustive exercise, but a specific change in its methylene (Cr2) resonance line 
advocate for detection of compartmentation of Cr pool to bound and free sections [23].

Recently, high-intensity exercise challenge to the vastus lateralis muscle by performing squats 

continuously for 10 min also showed an increase in the AcC level and approximately 15 min 

after the cessation of exercise, AcC depletion or washout was observed [33]. Similar effect 
of increasing AcC levels was observed in trained and untrained subject after 30 min of cycle 
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ergometer exercise. While, during 40-min recovery period, the AcC signal decayed rapidly in 

the trained group, it continued to rise in the untrained group [121]. Exercise that results in 

muscle glycogen depletion are followed by adenine nucleotide loss and muscle fatigue [116, 

128]. Later on, depending on the diet and exercise regimen during the recovery, glycogen 

super-compensation can be seen. Comparing trained cyclists with untrained subjects, it has 

been shown that endurance-trained subjects resynthesize glycogen faster and are able to accu-

mulate more muscle glycogen during the super-compensation period [116].

IMCL depletion can be observed during prolonged submaximal (60–70% of VO
2
max) running 

or cycling [38, 58, 129, 130], but not during the sprints or repetitive bouts of strenuous exer-

cise [129, 131], supporting the notion that increased IMCL stores serve as important energy 

reserves for endurance athletes. Following the exercise, repletion of IMCL stores was shown 

to be dependent on the diet composition in recovery period [16, 58, 130, 132].

3.3. Training interventions

Interventional studies focused on endurance training show an increase in IMCL after the inter-

vention period of 4–6 weeks [133, 134]. On the other hand, 12 weeks of high-intensity training 

does not seem to have a similar effect [135]. This is potentially due to relative increase of type 

I oxidative muscle fibers during endurance training and the fact that IMCL concentration is 
fiber dependent, as discussed earlier. A recent overview of effects of a varying periods and 
different training types on the carnosine content in the vastus lateralis muscle showed that in 
most of them carnosine levels did not change after training. Only 8 weeks of power-training 

led to an increase of muscle carnosine levels [136]. Examining muscle glycogen resynthesis 

rate and levels after a glycogen-depleting exercise before and after 10 weeks of endurance 

training exposed higher glycogen concentration as well as an accumulation rate in trained 

than in untrained state [128], what is in good agreement with studies directly comparing 

trained and untrained subjects [116]. Eight weeks of endurance training also leads to lower 

PCr depletion and increased pH levels after exercise [137]. Similarly, the PCr resynthesis rate 

and muscle mitochondrial capacity can be improved by regular exercise [138].

3.4. Dietary interventions

Alternative approach to alter muscle metabolism without changing the physical activity 

pattern of an individual is a dietary intervention. This includes calorie restricting diets, car-

bohydrate loading, as well as substrate supplementation studies. Even very short, but rig-

orous calorie restriction in obese sedentary subjects leads to decrease in IMCL stores [139]. 

Although one could expect an improvement in muscular oxidative metabolism to accompany 

the IMCL reduction, it has been demonstrated using biopsies that mitochondrial capacity 

is unaltered by diet alone and can be improved only if combined with exercise intervention 

[140]. Creatine supplementation is often advertised as a tool to increase body mass in body 

building and physical sports [141]. An increase in total creatine and PCr levels in the muscle 

can be demonstrated [22], however no improvement in PCr resynthesis has been found after 

creatine supplementation [22, 142], off-putting the effect on muscle oxidative metabolism. 
Still, creatine supplementation leads to an increase in glycogen super-compensation [143], 

and thus can potentially be considered an affective ergogenic aid [141].
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Increase in skeletal muscle glycogen super-compensation by carbohydrate loading due to 

the preceding depletion exercise was also detected in longitudinal study applying 13C MRS 

[144]. Similar study setup where carbohydrate loading yielded glycogen super-compensation 

and insulin-stimulated glycogen synthesis as well as glucose-6-phosphate (G-6-P) accumu-

lation was measured by 13C/31P MRS during hyperinsulinemic-euglycemic clamp confirmed 
the hypothesis that glycogen limits its own synthesis through feedback inhibition of glyco-

gen synthase activity, as reflected by an accumulation of intramuscular G-6-P, which is then 
shunted into aerobic and anaerobic glycolysis [145]. Sequential 13C MRS measurement could 

also show that caffeine ingestion 90 min before prolonged exercise did not exert a muscle 
glycogen-sparing effect in athletes with high muscle glycogen content [63].

4. Muscle MRS in metabolic and skeletal muscular disease

Variations in skeletal muscle metabolism are not only connected to training, but are also indic-

ative of many health conditions. Whole-body metabolic disorders, e.g., insulin resistance, 

T2DM and metabolic syndrome are accompanied by impaired skeletal muscle metabolism 

[17, 84]. Similarly, skeletal muscle myopathies effect the metabolic health of skeletal muscles 
[146, 147]. The usability of MRS to monitor these two major groups of diseases influencing 
muscle metabolism will be discussed now.

4.1. Insulin resistance, T2DM and substrate over-abundance

Insulin-resistant states are characterized by hampered reactions of skeletal muscle to 

increased peripheral serum insulin concentrations. Insulin signaling, glucose transport 

and/or phosphorylation, glycogen synthesis, and glycolysis rates are reduced. Many 13C 

MRS studies have characterized the defects in skeletal muscle metabolism in insulin-resis-

tant states, including experimental manipulations. These studies revealed a ~60% decrease 

of insulin-stimulated glycogen synthesis in overt T2DM patients [7], as well as a compa-

rable impairment in their lean insulin-resistant offspring [62, 148] and in obese nondiabetic 

insulin-resistant volunteers [149]. Similar 13C MRS approaches have shown decreased post-

prandial skeletal muscle glycogen synthesis under normal physiologic conditions after a 

standard carbohydrate rich mixed meal regimen in T2DM patients [64]. In combination 

with 31P MRS measurement focused on glucose phosphorylation, i.e., the formation of 

intramuscular glucose-6-phosphate [148], 13C MRS measurements of intra- and extracel-

lular glucose demonstrated that the lowered glucose transport is one of the main defects 

effecting whole skeletal muscle glucose metabolism in T2DM [150]. Excellent time resolu-

tion of labeled 13C MRS measurements of skeletal muscle resynthesis following a depleting 

exercise could reveal early insulin independent and subsequent insulin dependent phases 

of this process [151], from which the latter, insulin dependent, is impeded in insulin-resis-

tant offspring of individuals with T2DM [62].

Combined 13C and 31P MRS has also been used to monitor the effect of lifestyle changes and 
pharmacological insulin-sensitizing therapy on skeletal muscle glucose metabolism. One 
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bout of aerobic exercise normalized insulin-stimulated glucose fluxes along with the nor-

malization of whole-body insulin sensitivity in insulin-resistant offspring of T2DM patients 
[152], while troglitazone treatment improved the skeletal muscle glucose transport and the 

glycogen metabolism of patients with T2DM [70, 153].

Unlike in endurance-trained volunteers, where IMCLs act as an important energy source for 

prolonged exercise [113], accumulation of ectopic lipids inside muscle cells in untrained sub-

jects is detrimental. Starting with obesity, through the insulin resistance toward T2DM, IMCL 

have an increasing tendency, showing a clear correlation between IMCL and insulin sensitivity 

in sedentary subjects [17], making IMCL a very good indicator of metabolic defect. However, 

due to the fact that endurance training also leads to increased IMCLs, i.e., due to the athletes-

paradox, high IMCL levels cannot be used as a marker of metabolic disorder on their alone. 

Muscle acetylcarnitine (AcC) levels measured at rest could be potentially used to tip the scales 

in the right direction, as it has been shown that while T2DM subjects have low muscle AcC 

concentration, endurance-trained subjects have high stores of muscle AcC [32]. Unfortunately, 

as the AcC levels are dependent on dietary status and physical activity [33], more studies 

accounting for these dependencies are required to support these initial findings. Multinuclear 
MRS studies have also revealed a link between IMCL accumulation measured by 1H MRS and 

skeletal muscle glucose metabolism [17, 118, 154] assessed by 13C and/or 31P MRS, which has 

also been studied in different states of insulin resistance and physical fitness [155].

The role of free fatty acids (FFA) and amino acids (AA) serum over-abundance on skeletal 
muscle glucose metabolism has been investigated in studies simulating the metabolic con-

ditions of T2DM in young healthy men. An experimentally induced increase in plasma FA 

concentrations showed that substrate over-abundance decreased glucose transport and phos-

phorylation [156–158], and impaired skeletal muscle glycogen synthesis [156], which precedes 

the decrease in whole-body glucose uptake in a dose-dependent manner [157]. The observed 

effect of over-abundance also holds true in various conditions of insulinemia [156–158], as 

well as with depleted skeletal muscle glycogen [159]. Measuring skeletal glucose transport/

phosphorylation and glycogen synthesis in the skeletal muscle of young healthy men during 

an experimental AA challenge showed a direct effect of AA on glucose transport or phosphor-

ylation [160] and reduced skeletal muscle glycogen synthesis. Substrate over-abundance and 

defects in lipid oxidation can lead to increased lipid accumulation inside the skeletal muscle. 

Exchange kinetics between Pi and ATP, measured by 31P MRS ST, are also decreased in T2DM 

in basal and glucose/insulin challenged conditions [161] as well as in the presence of increased 

serum FFA in healthy volunteers and hyperinsulinemic-euglycemia [162]. Slower PCr recov-

ery rate after exercise and lower mitochondrial capacity also accompanies obesity [86] and 

insulin resistance [163, 164]. Similarly, increased muscle PDE levels were found in T2DM and 

shown to correlate with insulin resistance [84]. However, the PDE dependence on age [86, 

165] has to be taken into account when using PDE to compare different metabolic groups.

4.2. Skeletal muscle myopathies

Skeletal muscle pathologies are often characterized by muscle pain, weakness, and defects 

in skeletal muscle energetic metabolism. From the MRS point of view, changes in relative 31P 
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metabolite concentrations, i.e., drop in PCr and increase in Pi, were observed in patients with 

mitochondrial myopathy [97] and Duchenne dystrophy [166]. Increased levels of PDE mea-

sured at rest can be indicative of congenital lipodystrophy [87], fibromyalgia [90, 167], or vari-

ous muscular dystrophies [166, 168, 169]. Slower PCr recovery and decreased mitochondrial 

capacity was found in patients with chronic fatigue syndrome [170], as well as in patients 

with lipodystrophy [87]. Pathologic defects in muscle trimethylamine compounds-to-creatine 

ratio were found in facioscapulohumeral muscular dystrophy already prior to macroscopic 

muscle fat infiltration [171]. Furthermore, analytic in vitro MRS could detect alteration of lipid 

metabolism in patients with muscular dystrophy in early phase of the disease [172].

5. Summary

Summarizing the knowledge gained from skeletal muscle magnetic resonance spectro-

scopic studies, we can say that the combination of 1H, 13C, and 31P MRS: (i) can measure 

intramyocellular lipids deposition, which can be either utilized as a useful energy source 

in endurance-trained athletes, or is an indication of metabolic disorder (athletes-paradox); 

(ii) enables quantification of acetylcarnitine that may help to resolve the athletes-paradox; 
(iii) can improve the knowledge about buffering capacities of skeletal muscle by observing 
changes in lactate and carnosine metabolism; (iv) can measure glycogen metabolism and 

glycogenic substrate flux in the skeletal muscle under various conditions; (v) can assess 
oxidative and nonoxidative energy fluxes in basal and exercise challenged conditions. 
Taken together, it has helped to uncover defects in skeletal muscle metabolic pathways in 

insulin-resistant conditions; and to discover links between defects in mitochondrial activ-

ity/capacity and lipid metabolism, as well as defects in whole-body and/or muscle glucose 

metabolism. There is also to mention that several of the MR-derived readouts are affected 
by both training status and metabolic disease, and thus could serve as potential markers of 

training status and metabolic flexibility.
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