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Abstract

An important aspect of any crime scene investigation is to detect, secure and analyze trace
evidence. In forensic examinations where topographic characterization is important like in
fingermark, textile and document forgery examinations, the atomic force microscopy
(AFM) imaging technique can be of value. However, it is the force spectroscopy that could
make AFM a versatile tool in crime investigations. Particularly, the ability to measure
changes in mechanical properties of forensic trace material over time makes this technol-
ogy in potential interesting for forensic examinations. The usefulness of force measure-
ments to evaluate the elasticity of red blood cells (RBCs) in relation to the age of a
bloodstain is an interesting example. With minimally invasive AFM technology, time-
dependent alterations in the viscoelasticity of RBCs that occur during the aging of blood-
stains can be featured. A discrimination between traces left by the perpetrator and other
persons that have been present at the crime scene will thus be enabled. A recently
obtained proof-of-concept demonstrating the usefulness of AFM for age estimation of
bloodstains will be described. Additionally, the usefulness of AFM imaging and force
spectroscopy for human hair, document forgery, textile fiber, fingermark and gunshot
and explosive residue examinations will be discussed.

Keywords: forensic, atomic force, crime, red blood cell, textile, fingermark, explosives,
forgery

1. Introduction

During a crime scene investigation (CSI), it is essential to detect, secure and interpret biological

and nonbiological traces [1, 2]. The physical and chemical procedures for these forensic exam-

inations can be performed in the laboratory but are also carried out more and more at the scene

of the crime. Especially, the biological traces that can be used for DNA-profiling are important.
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Crucial condition thereby is the use of non- to minimally invasive methods. Key information

regarding offenses may thus be established and contribute to the reconstruction of crimes.

Today different nanotechnologies such as the application of nanoscale powders, high-

resolution transmission and scanning electron microscopy (HRTEM, HRSEM) and atomic

force microscopy (AFM) are available for forensic investigations [3, 4]. However, forensic trace

characterization at the nanoscale may not necessarily yield relevant forensic information as

explained by Inman and Rudin with the principle of divisible matter [5, 6]. Relevant forensic

materials thus need to be found and interpreted preferable at the dimension at which they are

created. Nanoscale, extremely detailed information may be superfluous and not related to

evidence. Nevertheless, it has been demonstrated that high-resolution scanning probe AFM

has interesting forensic applications [7, 8]. This chapter focuses on the forensic potential of

AFM with special focus on the force measurements, known as force spectroscopy (FS). First,

AFM imaging and FS are briefly explained. Second, the forensic potential of AFM imaging and

FS is evaluated with special attention to age determination of bloodstains. Third, a conclusion

is provided based on the effectiveness and usefulness of the information provided by this

technology in relation to the system of criminal justice.

2. Principles of AFM

An AFM consists of a cantilever with a tip at the end, together named the probe, a piezo-

electric XY- and Z- scanner, a laser and a photo-diode detector system (see Figure 1) and can be

operated in different modes. In the contact mode, the tip is dragged across the surface at

constant force, in the intermittent contact mode the cantilever is oscillating and the tip will be

repulsed at the lowest oscillation point and get out of contact at the upper part of the oscilla-

tion, in the non-contact mode the cantilever is oscillating close to the sample but without

contacting its surface and in the force modulation mode the tip is oscillating while remaining

in contact with the sample surface [9].

2.1. AFM imaging

Briefly, a sample is scanned by the tip (mostly sharp and made of silicon or silicon nitride)

parallel to the sample surface (with the XY-scanner) while interactions between sample and

probe are experienced. These interactions concern attractive and repulsive forces between

molecules of the sample and tip thereby causing deflections of the cantilever toward or away

from the sample that results in a deflection of the laser beam and can be recorded by a photo-

diode system (see Figure 1). As the deflection of the cantilever is directly proportional to the

force, a feedback system is usually employed. With this feedback system, the height of the

cantilever is adjusted in order to maintain a constant deflection (force) while moving parallel to

the surface. In this way an image of the topography of a sample, a height image, is created, and

quantitative surface roughness can be determined from height images. In another type of

imaging, phase imaging, the phase shift between the driving signal and the cantilever signal

as it interacts with the surface is recorded during intermittent contact AFM or noncontact
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AFM. In intermittent contact, in AFM mode, the cantilever is oscillating and the tip is repulsed

at the lowest oscillation point and get out of contact at the upper part of the oscillation. The

phase lag is caused by the energy dissipation in the cantilever because of the experienced

interaction forces between probe and sample. Dissipation differs for different materials; there-

fore, the phase image can provide extensive information on differences in sample composition,

particularly on flat surfaces.

2.2. Force spectroscopy

In case of force measurements, the probe is moved vertically toward the sample and subse-

quently retracted. As the tip further approaches the surface attractive, mostly van der Waals,

forces become significant. These interactions result in a “snap-to-contact” of the tip with the

sample followed by a deflection away caused by repulsive molecular interactions. In this regime,

the sample is indented on purpose. From the resulting force-distance curve (FD, see for a

schematic representation Figure 2), cantilever properties and contact area nanomechanical prop-

erties such as a material’s modulus of elasticity, the Young’s modulus (YM), can be quantitatively

obtained. The YM is a mechanical property that indicates the force per unit area that is needed to

compress or stretch an elastic material. Stiffer materials have larger YM. This contact stiffness can

Figure 1. Illustration (kindly provided by JPK Instruments AG) of the basic components of an AFM, the probe, piezo-

electric scanner, the laser, sample and photo-diode detector system. Depending on the roughness of the surface and type

of measurements, the tip can be pyramid-shaped (commonly made of silicon or silicon nitride) with a curvature radius

ranging from 2 nm to 2 μm or spherical (0.5–2.5 μm in diameter and mostly made of titanium or silica). Force interactions

between tip and surface molecules will result in a deflection of the cantilever that is recorded as the deflection of a laser

beam aligned to the back of the cantilever. Quadrant photo-diodes (with optically active areas A, B, C and D) will then

convert the laser signals into an electrical output signal that is proportional to the deflection of the cantilever.
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be retrieved from the FD curves that can be measured at slow rate [force-volume (FV)] [10], at

high rate [11], via pulsed-force mode [12], peak force [13] or from the change in resonance

frequency of the cantilever (contact-resonance AFM) [14] and by amplitude modulation [15].

Other mechanical properties that can be derived from FD curves are visco-elasticity, adhesion

forces and energy (the area of the attractive part of the retract FD-curve) [16]. Additionally, FD-

curve modifications induced by electrostatic charges can be investigated [17]. Electrical signals

based on the conductivity through sample and tip may be monitored as well while the tip is

moving over the sample [9]. It may be noticed that for mechanical studies with lateral resolution

a sharp silicon or silicon nitride tip can be used but a spherical, colloidal probe may render more

specific data on material-material mechanical interactions like forensically relevant adhesion

interactions between gunshot and explosive residues and textile fibers [18].

3. Forensic potential of AFM imaging

As demonstrated in several studies, little research has been carried out into the forensic

possibilities of AFM imaging [7, 18]. Subjects that have been investigated concern human hair

analysis [19–24], document forgery [25–28], textile fibers [29, 30], fingermarks [31], gunshot

and explosive residues [32, 33]. It is important to discriminate between those studies that have

actually used this technique from a forensic point of view from those that employed AFM only

to examine materials that may be present as traces at a crime scene. In case of forensic traces

relevant micro- to nanosized regions are not visible at macro-level and thus difficult to detect.

Even though AFM is a minimally invasive technique, an important condition for the preserva-

tion of evidence, the small scan area of usefully not more than 100 � 100 μm strongly limits a

forensic application. In this respect, HRTEM/SEM mediated investigations could be more

Figure 2. Schematic representation of idealized FD curves showing the approach and retract curve. A: the tip is

approaching the sample surface; B: van der Waals attractive forces are experienced resulting in a snap-to-contact of the

tip with the sample and indentation; C: deflection of the tip away from the sample; D: retraction of the tip; E: withdrawal

of the tip from the sample. The larger the deflection of the cantilever, the stiffer the sample (see the slope of part C).
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useful if it were not that the required sample treatments for electron microscopy imaging have

been proven responsible for surface modifications of the samples [34]. Also, electron micro-

scopes operate in the majority of cases in high vacuum conditions. Atomic force microscopy

does not require any specific form of sample preparation and operates in ambient conditions.

In this section, important (potential) forensic applications of AFM imaging will be introduced

and analyzed based on key articles from the field. In comparison with other currently available

techniques, the value of AFM imaging to a CSI will be explored.

3.1. Hair analysis

Forensic hair analyses may be used for genotyping but also to provide information on past

drug exposure. Current forensic hair analyses are mostly performed with ultra-high perfor-

mance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS). Most of the

general hair examinations with AFM imaging focused on the influence of chemicals, as for

instance present in hair care products, on the surface structure of hair. Durkan et al., for

instance, showed a reduction in hair surface roughness after washing with a number of

shampoos to typically below 10 nm (AFM Cambridgenano CN6000 SPM). This reduction was

proven to be directly related to the type of product used [19]. In some cases, isolated deposits

were left behind but how long they remained visible was, unfortunately, not investigated.

Actual toxicological hair investigations using AFM imaging have not been reported so far.

However, unless combined to Raman spectroscopy AFM may not be able to give a chemical

identity of drugs or other hair deposits and therefore just play a minor role in toxicological hair

investigations. Another difficulty of AFM imaging in a forensic hair examination is lack of a

reference hair sample with representative physical properties. Variations in characteristics

depend on the origin of the hair, the region within the origin (thus the age of the hair),

differences in the hair producing follicles, environmental conditions and personal care habits.

This subject has also been acknowledged by Gurden et al. in 2004 (AFMNanoScope IIIa; spring

constant 0.06 N/m; loading force 3.6 nN) who tried to solve this problem with a classification of

hair properties based on several cuticular descriptors calculated from the height images of

various hair parts [21]. These cuticular descriptors provide a range of information on hair

surface properties, and thus the possibility to correlate hair structure characteristics to envi-

ronmental conditions the hairs have been exposed to. The forensic relevance of this has never

been established but probably requires a more extensive database including not only imaging

data but mechanical hair properties as well. Jeong et al. have given an interesting contribution

to this subject by studying the effects of aging on normal Korean hair diameter and surface

features with AFM (AFM NANOStation II; non-contact mode; frequency 146–236 kHz; spring

constant 1–98 N/m) [23]. Any information that may contribute to estimating the age of a

forensic trace is extremely valuable. The value of this lies in the fact that a trace deposition

time can link a suspect to the time a crime has been committed. Interestingly, Jeong et al.

discovered an increase in hair diameter in the first 20–30 years followed by a decrease with

further age increase. For the cuticular descriptors, surface roughness increased also signifi-

cantly with age. However, the presented results showed a large variation and thus low

precision. It may be noticed that gender had no influence on the hair diameter of the Korean

participants. The hair surface area studies of Tomes et al. with both SEM and AFM (AFM
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Veeco; resonance frequency 300 kHz; spring constant 42 N/m) resulted in only little difference

in quality of surface profiles obtained with these techniques [22]. For forensic hair imaging, the

minimally invasive AFM technique may thus be preferred over SEM even though large hair

surfaces may limit its effectiveness. The forensic relevance of the preservation of evidence

weighs in this case heavier.

3.2. Document forgery

Document forgery involves the illegal altering, erasing or extension of its contents. The mini-

mally invasive character of AFM imaging when compared to SEM fits well to this subject.

Competitive less invasive techniques in this case are FTIR, Raman spectroscopy, near infrared

hyperspectral imaging and digital technologies [35–37]. With respect to this subject, it is

interesting that the study of Kasas et al. (Nanoscope IIIa) on line crossings produced with dot

matrix printers and different ball-point pens on plain paper reported qualitatively the same or

better AFM results when compared to SEM. Similar superior AFM quality over SEM in

crossing line investigations has been reported by Chen et al. [27]. They demonstrated different

roughness and maximum height values for commonly used paper (duplicator, copper print-

ing, glassine and Kraft paper) samples whereby crossing lines were applied with three differ-

ent types of oil-based pens (AFM Bruker; resonance frequency: 146–236 KHz; spring constant:

21–98 N/m). However, the number of scans in the 5 � 5 μm areas and the number of these

spots were not given and significances in paper surface roughness could therefore not be

given. Additionally, the authors provided amplitude images. These types of images normally

show how the tip is deflected when encountering the sample’s topography while the feedback

system is trying to keep the amplitude constant. Because the deflection and amplitude images

are actually the error signals, good amplitude (deflection) images will only be obtained in case

of minimized deflection signals. Although this research proved the usefulness of AFM imaging

to detect crossing lines in general, the overall paper surface roughness could hamper the

detection of erased, partially erased streaks or slightly printed ink patterns. It is also important

to realize that changes in height profiles of ink streaks on documents may result from absorp-

tion of the ink by the paper substrate. The impact of this phenomenon may vary for different

types of paper and hinder a correct interpretation of the height images. Moreover, when only

AFM imaging is applied in these types of investigations a clear evidence of counterfeit can

never be provided. A chemical identification of the ink with for instance Raman spectroscopy

is thereby indispensable to deliver the final crucial decisive information. A combination of

AFM and Raman spectroscopy has therefore more forensic potential as demonstrated by

Bradao et al. [28]. This investigation focused on the authentication of banknotes (US dollar,

Euro and Brazilian real) on the basis of asymmetry and kurtosis for the evaluation of paper

roughness. Based on these parameters AFM (spring constant 42 N/m, resonance frequency

285 kHz) could, in most of the cases, discriminate the paper that was used for the

counterfeiting compared to that of the authentic banknote (based on scans from different

banknote locations). As stated by Ellen, AFM imaging may provide useful information on

crossing lines and thus on document forgery and the order of text application [26]. However,

further research is warranted to confirm the same degree of usability for rougher paper or

documents that have been exposed to extreme environmental conditions. Moreover, current
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optical document examinations also focus on the chemical identity of crossing. The chemical

heterogeneity that could be present in fraudulent documents could be well characterized with

AFM phase imaging particularly in combination with infrared or Raman spectroscopy for

chemical ink analysis.

3.3. Textile fibers

Current forensic textile investigations comprise microscopic, chemical and/or mechanical ana-

lyses. Although the value of forensic textile investigations concerns more, the mechanical

properties of textile fibers under various environmental and weathering conditions [29]. AFM

height images may deliver height, valley and mean square roughness values for different types

of textiles. This subject has been investigated by Canetta et al. (JPK Bio AFM, Au-coated Si3N4

cantilever, spring constant: 0.03 N/m) in a study on environmentally stressed and weathered

textile fibers [30]. An important result of this research is that the surface roughness differed

significantly for all investigated textile fibers (natural cotton, wool and man-made viscose) and

that it showed a time and environment dependent increase. Atomic force microscopy imaging

may thus be used to distinguish the effect of different environmental effects on fibers and is

thereby complementary to other microscopy techniques like scanning SEM and environmental

scanning electron microscopy (ESEM). However, a forensic textile investigation requires also

information on the chemical identity of textile fibers. Additional noninvasive techniques such

as surface-enhanced Raman scattering, Raman microspectroscopy, FTIR or photodiodearray

spectrophotometry are therefore still needed. As these techniques can provide both nature and

color of the textile fibers [38], AFM imaging will not play a crucial role in forensic textile

investigations. Unless combined to Raman spectroscopy, AFM imaging can only add comple-

mentary information on textile characteristics and degradation patterns.

3.4. Fingermarks

A fingermark is an impression of friction ridges of a human finger that consists of exogenous

and endogenous compounds. In a CSI visualization of latent fingermarks is important because

the patterns of ridges of a human fingermark are very characteristic and therefore a powerful

biometric feature for a person’s identification. A chemical identification of the fingermark

components and their metabolites render additional donor information such as personal habits

and health condition. The various physical, chemical and instrumental techniques [39–43] for

fingermark visualization and analysis focus on improving the contrast between the ridges and

the surface underneath, surface characteristics and the presence and identification of particular

contaminants [44, 45]. The subject of age determination of a fingermark is also with respect to

forensic fingermark research an important but not yet solved issue [46–48]. Atomic force

microscopy imaging could highlight specific details of fingermark ridges and substrate surface

provided that the roughness of the surface on which the fingermark was deposited does not

increase the height of the fingermark ridges. This problem was indeed experienced in the

study of Goddard et al. (AFM Veeco; resonance frequency 250–350 kHz; spring constant 20–

80 N/m) [31]. In their study that focused on localized brass surface erosion processes in relation

to fingermark ridge evaluation, the authors noticed how the high roughness of the brass
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surface in a 70 � 70 μm scan area hampered the analysis of the ridges of a fingermark. In this

particular research, these problems were solved by successfully polishing the brass surfaces.

However, as stated by the authors themselves, this solution is far from realistic. Apart from the

obstacle the surface roughness is giving, the inability of AFM to provide chemical information

on the components of a fingermark further limits its forensic usefulness. Spectroscopy tech-

niques that operate in a nondestructive manner seem to have more value in case of forensic

fingermark examinations. Vibrational spectroscopy techniques like FTIR and conventional

Raman are examples of methods that offer in a nondestructive manner a specificity for molec-

ular identification that is comparable to mass spectrometry [41, 43]. The latter has nevertheless

excellent selectivity and sensitivity in identifying unknown fingermark components but is

highly destructive. Even AFM phase imaging cannot offer similar forensic effectiveness. This

type of imaging can, unhindered by surface roughness, admittedly provide information on

different materials and provide physicochemical mapping of exogenous substances present on

fingermarks (for instance, gunshot or explosive residues or compounds that can be associated

with sexual assaults) but fails in chemically identifying them. There is, however, still one

application of AFM imaging that remains to be explored but could be potentially interesting

in a forensic examination, the investigation and deconvolution of overlapping fingermarks

and/or bloodstains.

3.5. Gunshot and explosive residues

Inorganic gunshot and explosive residues can provide important information in the forensic

reconstruction of shooting incidents and are usually analyzed with neutron activation analysis

(NAA) [49], atomic absorption spectrometry (AAS)-based methods [50, 51], inductively

coupled plasma (ICP) [52], and SEM combined to energy dispersion analysis (SEM–EDX)

[53]. Organic gunshot and explosive residues can be analyzed with gas chromatography

(GC), GS-MS, or HPLC [54]. Additionally, time-of-flight secondary ion mass spectrometry

(TOF–SIMS), ablation-ICP/MS and Raman micro-spectroscopy have been reported for both

inorganic and organic gunshot and explosive residue characterization [55, 56]. To clarify the

chemical identity of these residues, it is an extremely important element in CSIs that involve

firearms. Consequently, AFM imaging will only have any value when combined to one of the

indicated techniques. Such a combination of technologies has been reported to be successful to

evaluate shooting distances based on the shape and size of GSR (Quesant Q-Scope 250

Nomad) [57]. D’Uffizi et al. explored micromechanical and micromorphological features of

gunshot residue particles deposited on bullets and hands of a shooter and collected with

double-sided tape. In combination with SEM-energy-dispersive spectroscopy and selected-

area X-ray photoelectron spectroscopy, the role of AFM height and phase imaging in this

investigation was only modest [32]. The only forensic gunshot and explosive investigation in

which AFM imaging could provide sufficiently powerful information regards physicochemical

characterization of gunshot and explosive residues that have been detected on hairs and in-

between the ridges of fingermarks as demonstrated in several publications [21, 33]. In this

respect, the study of Oxley et al. (Digital Instrument Dimension 31,000) proved that various

chemical hair treatments (water, acetonitrile, KOH and KMnO4) all resulted in a decrease in

surface roughness. However, no information was given on the recovery time, thus the duration
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of the observed decrease in roughness [33]. Moreover, finding the right location will still be

difficult and time-consuming.

4. Forensic potential of force spectroscopy

In contrast to the limited value of AFM imaging in a CSI, FS can in fact play a crucial role in

these investigations. The power of this AFM application concerns the possibility to measure

forces at the nano-level and consequently calculate mechanical characteristics of materials and

changes of these properties over time. Changes in mechanical characteristics of forensic trace

material as function of time render the possibility to estimate the age of the trace. Yet there is

little forensically mediated research on this subject. Investigations in this area have mainly

focused on age determination of bloodstains [58–61] and to a lesser extent on hair [19, 20, 23,

62, 63], gunshot and explosive residues, [64] and pressure sensitive adhesives [65–67]. Based

on key articles from the field, the application of FS in forensic hair, gunshot and explosive

residue and pressure sensitive adhesives examinations will be discussed followed by more

extensive attention to age determination of bloodstains.

4.1. Hair

As demonstrated by Durkan et al. force measurements (AFM Cambridgenano CN6000 SPM;

spring constant 0.2 N/m) proved 20% increase in adhesive force and four times higher adhesion

energy on hair deposits as compared to the bare hair surface with 6 nN adhesion force. The hair

deposits in this study resulted fromwashing of the hairs with various shampoos. No data were

available on statistical significance of these findings. More forensically interesting is the study

of Jeong et al. that demonstrated the usefulness of AFM force measurements by showing age-

dependent hair stiffness. The stiffness increased up to 30 years and then decreased again. The

average adhesion force of the hairs, however, showed no age dependence. As also noticed by

the authors, their data may not be representative for all hairs and hair parts. Force-distance and

friction measurements between individual hair strands have been documented byMax et al. for

direct quantification of hair-hair (other types of fiber) interactions in the range of 10–100 mm

diameter (AFM Atomic Force F&E, MFP-3D; spring constant 1.2–8.5 N/m) [62]. DelRio and

Cook have also provided interesting data of hair samples (untreated virgin hairs and condi-

tioned and bleached hairs) [18]. They reported an indentation modulus of 2.4 � 1.1 GPa and

1.8 � 0.9 GPa for respectively the virgin and the bleached hairs. For the conditioned hairs, the

modulus of indentation varied between 0.05 and 0.5 GPa depending on the position along the

hair. All the measurements were performed on a 5 by 5 μmarea but the number of indentations

was not mentioned. Although all these investigations are interesting from a physical point of

view, the forensic usefulness of mechanical hair parameters will be limited because of the

numerous environmental and personal conditions affecting these parameters and thus the

accuracy of the overall measurement. However, modeled in a Bayesian network, mechanical

properties may be related to environmental conditions and used to calculate complex likeli-

hood ratios and thus increase their usefulness in a CSI.
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4.2. Gunshot and explosive residues

Apart from the topography of organic and inorganic particles present in gunshot residues and

explosives, mechanical properties of these particles have a forensic value as well. With respect to

this subject, Xu et al. have described an interesting nanoscale characterization of mock explosive

materials, a study that fully explored the technical options of dynamic AFM such as phase

imaging, force volume imaging, and Kelvin probe force microscopy (KPFM) with resonance

enhancement (AFM Asylum Research MFP-3D AFM; spring constant 10.97 N/m; resonance

frequency 147.53 kHz) [64]. Physical properties of components of explosive residues such as the

density of the simulant, simulant to the explosive HMX and polymeric binder were mapped over

10 � 10 μm areas to understand the formation of hotspots and their local structure in relation to

the processing method. This enabled mapping of local mechanical dissipation, elastic modulus,

adhesion and the “effective” local dielectric constant of amock explosive 900-21 sample (mechan-

ical substitute for the plastic-bonded explosive PBX 9501). The authors used the phase lag

between the excitation force and tip response for a nanoscale quantitative analysis of their sample

and emphasized the importance of measuring this phase lag. To make the phase images more

useful for quantitative mapping, conversion into energy dissipation maps was included. If the

amplitude of the cantilever is kept constant, the phase shift is related to the energy dissipated in

the tip-sample contact and phase data can thus provide energy dissipationmaps [68]. The energy

dissipation during one oscillation cycle by the tip on the sample was calculated according to the

well-established method described by Martinez and Garcia [69]. To create adhesion and YM

maps, FV mapping was employed based on Hertz contact model calculations. When compared

to energy dissipation, adhesion or YMmaps, the dielectric property map revealedmore localized

spatial features: fine and large crystals appeared to have the same dielectric constant while the

binder region was characterized by a much higher dielectric constant. This study clearly demon-

strated AFMmultiparameter functionality resulting in a variety of physicochemical properties of

compound mixtures. Particularly, the interfacial regions between crystalline zones of complex

composite materials such as explosive residues were indicated as important areas where impuri-

ties, unreacted molecules, additives and binders form a heterogeneous structure. The study of

DelRio and Cook also investigated adhesion forces of explosive particles on different fabric types

using a colloidal probe [18]. The results showed for two fabrics similar modulus of indentation

(29.0� 8.0MPa for cotton and 30.7� 7.0MPa for rayon) that differed from the values given in the

literature (3 and 11 GPa for respectively cotton and rayon fibers) [70]. The authors ascribed the

differences to variations in surface roughness and work of adhesion. This example illustrates the

difficulty in quantifying mechanical properties based on AFM and determining the “true” value

of a mechanical property. Some of the choices that can be made for in a given AFMmeasurement

and the probes may influence the outcome of mechanical measurements and thus need to be

correctly interpreted to insure the forensically desired accuracy and precision.

4.3. Pressure sensitive adhesives

Pressure sensitive adhesives (PSA) usually consist of a polymeric base with appropriate plas-

ticizers and tackifiers and are, unfortunately, also employed in criminal activities such as

assault, rape and hijacking to immobilize and blindfold victims and in the preparation of
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homemade explosives. Typically, PSA investigations involve physical fiber characterization

and chemical analysis of the adhesive additional to the search for fingermarks and DNA. A

physical fit of free tape ends may constitute important evidence in the reconstruction of a

crime and link a suspect to a scene of crime [71]. Current methods for PSA examinations of

physical characteristics include polarized light microscopy, GS-MS [72], FTIR [72, 73], SEM

[74], X-ray fluorescence spectrometry (XRF) [75], and ICP [76]. As PSA manufacturing and

effectiveness depends on the cohesive and viscoelastic properties of the applied polymers,

AFM may certainly play a role in forensic PSA examinations. In 2000, Paiva et al. applied

AFM (AFM Autoprobe M5) in a PSA investigation for surface adhesion measurements on

7 months old polyethylene-propylene blends with different concentrations of the tackifier n-

butyl ester of abietic acid [65]. A two-phase morphology was found for the blends at compo-

sitions exceeding 15 wt% tackifier. This resulted in two different types of behavior as demon-

strated via nanoindentation measurements: a viscoelastic response in the tackifier-rich

domains versus a more highly dissipative response in the matrix. In 2001, the same group

used AFM to investigate PSA aging [67]. Apart from the polyethylene propylene/n-butyl

abietate blends combinations of polyisoprene/n-butyl abietate and polyisoprene/pentalyn H

were investigated after 2 weeks and 18 months with various tackifier concentrations. The

microindentations in their study used a glass hemisphere probe (3 mm in diameter) and a

maximum load of 25 mN while the nanoindentations were performed with a conical tip with a

curvature radius of 10 nm. Adhesion measurements provided information on blend changes

over time. While these changes appeared to be significant for the miscible polyisoprene/n-

butyl abietate and polyisoprene/pentalyn H systems adhesion properties were not affected

for the immiscible polyethylene propylene/n-butyl abietate samples. Moreover, adhesive stiff-

ness revealed a more pronounced increase (elasticity reduction) as function of the tackifier

concentrations in the miscible systems than in the immiscible system. This stiffening degrades

the adhesive effectiveness of the films that could prove an interesting feature in a forensic

investigation. Canetta et al. also presented different nanostructural and nanomechanical prop-

erties of a variety of adhesive tapes: three visually indistinguishable different, transparent OPP

packaging tapes, the visually distinguishable brown packaging, and green electrical insulation

tape (AFM NTEGRA; spring constant 45 N/m; resonance frequency 330 kHz) [66]. All tapes

showed the existence of two phases: a hard low energy dissipative phase and a soft phase

which exhibits more energy dissipation. The authors correctly noticed that in case of adhesive

tapes with dispersed regions of higher and lower viscosity, the interaction of the AFM tip with

the surface may vary. Consequently, less energy will be dissipated on surface regions with

lower viscosity while in the more viscous areas enhanced energy dissipation occurs. For both

the visually distinguishable and indistinguishable tapes, AFM measurements demonstrated

statistical differences in the maximum adhesive force of the particles to the tip, the maximum

distance of deformation of these particles and the adhesion energy. Atomic force microscopy

can certainly give relevant nanomechanical information in a forensic PSA investigation that

may not easily be clarified with other available techniques provided that the effect of environ-

mental conditions on PSA is documented as well. Paiva et al. have also made a start with this

and proved a decrease of elastic modulus with increasing relative humidity, estimated with

Hertzian contact mechanics (Autoprobe CP scanning probe microscope operating in lateral

force microscopy mode using the signal access module) [65].
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4.4. Age determination of bloodstains

The most interesting forensic application of FS concerns undoubtedly the estimation of the age of

a bloodstain at a crime scene. The need for estimating the deposition time of a trace of blood,

linking a suspect to the time a crime has been committed, has attracted much attention world-

wide over the years. Although many studies have focused on blood as the key trace at a crime

scene, it is currently still not possible to provide an accurate determination of the age of a

bloodstain. Except for hyperspectral imaging (HSI), technologies explored were all characterized

as invasive and thus less attractive for forensic applications. Even though HSI is a promising

technology deviations of the true age of bloodstains compared to the age determined with HSI

already increase within a few days (for an actual age of 2 days, the absolute error is 2.7 days)

[77]. An innovative and minimally invasive method for age determination of blood traces at a

crime scene is thus highly needed. Force spectroscopy could provide estimations for bloodstain

ages based on temporal changes in the elasticity of red blood cells (RBCs) [7, 8, 58–61]. One of the

first FS researches related to this subjects was performed in 2007 by Strasser et al. (AFM

Topometri Accurex; spring constant 80 N/m; resonance frequency 405 kHz) [59]. However,

indentation areas were not correlated to specific RBCs, and thereby the condition of elasticity

also neglected. On the contrary, the more extensive study ofWu et al. (AFM Veeco Autoprobe CP

Research; frequency 72–96 kHz; spring constant 3 N/m (tapping mode); frequency 255–315 kHz;

spring constant 0.9 N/m (contact mode)) showed a time-dependent, surface-dependent (glass

and mica) and temperature-dependent (controlled 25�C, 76% humidity vs. uncontrolled outdoor

21–34�C, 38–87% humidity) increase of surface adhesive forces of RBCs between 5 and 30 days

[58]. This result is indicative for an increase in stiffness of these cells over time. Chen and Cai

(AFM AutoProbe CP; spring constant: 2.8 N/m) also observed time-dependent cellular changes

in blood cells on a mica carrier in air [61]. Apart from the effects of temperature and humidity on

the elasticity of RBCs, the influence of drugs has been investigated as well. The extensive study

of Girasole et al. (contact mode spring constant 0.032 or 0.064; tapping mode spring constant

5 N/m) demonstrated that in vitro treatment of RBCs with the drug nifedipine, used in cases of

cardiovascular disorders, caused dramatic morphological cellular changes that depended pre-

dominantly on the drug concentration and to a lesser extent on the exposure time [60]. The YM

values calculated for the nifedipine-treated cells compared to control, native dehydrated RBCs,

phenylhydrazine and formalin treated cells were respectively 96�14 kPa, 98�17kPa, 150�23kPa

and 191�28kPa. Additional to the YM and shape of RBCs the authors emphasized the impor-

tance of other smaller, though significant age markers that can be found on the surface of RBCs

such as, for example, spicules and crenatures. The YM measurements in this study were carried

out carefully using the Hertz model adjusted for a four-sided pyramidal shape of the indenter as

given by Sneddon [78] and Bilodeau [79] (see Eq. 1), a maximum load of close to 2.5 nN and an

observed indentation depth of 50–60 nm.

F ¼
C02δ

2
E

π 1�ν
2ð Þtan α

(1)

In this equation, F is the applied force (N), E is the YM (Pa), ν is the Poisson’s ratio (typically 0.5

for elastic bodies), α is the apical tip angle and the coefficient, C0 (1.46) is the specific
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contribution of Bilodeau in the case of pyramidal tips. After the study of Girasole in 2012, it

still took approximately 5 years before Smijs and Galli paid serious attention to the age

determination of bloodstains using FS (AFM JPK instruments AG; frequency 300 kHz; spring

constants 25.2–67.5 N/m) [8]. They applied FS combined to the Hertz model (see Eq. 2) to

investigate the elasticity of randomly selected RBCs from the peripheral zone of 4- to 8-day-old

bloodstains under controlled laboratory conditions.

F ¼
4

3

E

1� ν2

ffiffi

r
p

∙ δ
3
2 (2)

In this equation, F represents the applied force (N), r the tip radius (m), E the Young’s Modulus

(Pa), ν the Poisson ratio and δ the deformation at maximum load (m). Special attention was

paid to the condition of the silicon probes when continuously used to indent RBCs. An

important conclusion of this study was that, based on 256 � 256 indentations/RBC, the elastic-

ity of six RBCs from a 5-day-old bloodstain appeared homogenous over the cell (see

Figure 3A) with a mean Young’s modulus of 1.6 � 0.4 GPa (see Figure 3B). Differences in

RBC YM were significant but because of the large number of YM, data significance is here

mainly caused by the size of the sample rather than by the chosen level of significance and thus

leading to the detection of extremely small differences. Moreover, the authors showed that the

eta-squared (η2) effect size appeared to be 0.065. This means that the spreading between the

data was for only 6.5% caused by the RBC itself. At the same time, this finding illustrates the

complexity of age determination of a bloodstain in a forensic setting where a variety of

environmental as well intrinsic blood and bloodstain factors affect the stiffening of RBCs.

Then authors noticed extremely blunting of their silicon tip resulting from many RBC inden-

tations (from the original radius of 8–200 nm after a total of two sapphire calibrations and six

RBC (256 � 256/cell) indentations. The contact area thus changes resulting in differences in

physics at that nano-level. The authors solved this problem by checking the tip’s radius before

Figure 3. A representative example of an elasticity map (A) of a RBC and the mean YM (� SD, B) calculated for six RBCs.

All RBCs were randomly chosen from the peripheral zone of a 5-day old bloodstain (6.5–7 mm in diameter, obtained from

3 μL capillary blood). The arrows in A indicate areas with artifacts probably based on a sharp fall of the tip at the edge of

the RBC. The blood drop was passively deposited on a glass surface in a Petri-dish, dried (23.9 � 0.5�C and 35 � 7%

relative humidity, n = 7) and measured after 5 days (27�C, 36% relative humidity). AFM (JPK Instruments AG) specifica-

tions: sapphire calibrated silicon tip (Olympus), spring constant 38.75 N/m; frequency 300 kHz; maximum load: 548 to 874

nN; indentation depths: 12 to 16 nm, [8]. Copyright © 2017 Smijs T.
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and after RBC indentations. Up to a radius increase to approximately 100 nm, corrected radii

were applied to the Hertz model. However, the authors rightfully recognized the shortcomings

of this technique when it comes to an application on a real crime investigation with an

unknown bloodstain with RBCs of unknown stiffness. A problem related to this, and also

acknowledged by the authors, is the fast increasing stiffness of the RBCs over time and thus the

need for an ever-stronger cantilever in order to assure indentation. These things were particu-

larly noticed when RBC stiffness’s of a bloodstain aging between 4 and 8 days was investi-

gated (see Figure 4A and B).

AFM specifications for A: sapphire calibrated silicon tips (Micromash) with spring constants

ranging from 45.5 N/m, 55.8 N/m and 55.1 for respectively day 4, day 5, 6 and day 7, 8;

frequency: 300 kHz; maximum load: 3018 –3414 nN; indentation depths: 20–45 nm. Statistical

data analysis (A) was performed with One-Way Repeated Measures Anova (IBM SPSS statistics

20) with a critical level of significance of p = 0.05 and based on YM values calculated with the

Hertz model (Poisson ratio: 0.5; corrected radii: 20 nm for day 4 data, 70 nm for day 5 data,

133 nm for day 6 data, 75 nm for day 7 data, 130 nm for day 8 data) for 43,046 to 44,272 FD curves

per cell. Given are the mean YM values/cell (� SD). Size effect η2 for the factor day is 0.810.

Calculated size effects for day 5 vs. 6, 6 vs. 7, and 7 vs. 8 were respectively 0.195, 0.727 and 0.597.

Presented mean YM in B (Hertz model, Poisson ratio: 0.5) were based on force measurements

of three RBCs (equality variance proven, Mauchly’s test) from the peripheral zone of the stain.

AFM specifications: sapphire calibrated silicon tips (Olympus and Micromash) with spring

constants of 25.2–67.5 N/m; frequency: 300 kHz; maximum load: 548–3905 nN; indentation

depths: 8–63 nm.

Similar to other researchers, Smijs and Galli also found irregular values for the YM of RBCs

between 2 and 4 days old. Wu et al. ascribed these fluctuations to a collapse of the cell, a feature

that was also noticed by Girasole et al. Moreover, both Smijs et al. and Girasole noticed stiff

spicules and crenatures on the surface of the RBCs [8, 60]. Smijs and Galli concluded from their

study that additional experiments using similar but also realistic forensic conditions with

Figure 4. Representative changes in YM (� SD) of RBCs selected from the peripheral zone of a bloodstain between 4 and

8 days old (A) and changes in elasticity (YM � SD) of cells from different 3- to 8-day-old bloodstains (B) [8]. Copyright ©

2017 Smijs T.
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optimized AFM probes, such as those with a more robust tip, so that the tip radius remains

constant during the measurements, are needed. As the mechanism of RBC stiffening in a

bloodstain is not completely known, it may be important to investigate not only the influence

of external factors but also intrinsic RBC and bloodstain properties.

5. Conclusion

This chapter focused on the usefulness of AFM technology in forensic investigations. Impor-

tant forensic examination subjects such as fingermarks, textile fibers, document forgery, gun-

shot and explosive residues and PSA have been discussed. Special attention was paid to age

determination of bloodstains.

The forensic power of minimally invasive AFM is undoubtedly the ability to measure

mechanical characteristics of trace materials such as elastic modulus, adhesion forces,

energy dissipation and dielectric properties. Moreover, current AFM systems deliver syn-

optic mapping of these characteristics and FD curves for each pixel. Particularly, the ability

to measure changes in mechanical properties of forensic traces over time makes this tech-

nology potentially interesting for a CSI. The increase of the YM of RBCs over time as

measure for the age of a bloodstain is an excellent example of the forensic usefulness of

FS. This information could provide valuable insights regarding the time of death of a

victim or link a suspect to the scene at the time the crime was committed. Temporal forensic

information can also be used to support or refute statements of victims, suspects and

witnesses, especially when the defense states that the forensic evidence at hand is not

related to the crime.

Less forensic value can be ascribed to AFM imaging. There are several reasons for this. The

roughness of a surface on which a forensic trace has been deposited can hamper a proper

examination of a height image. Although this problem could partially be solved by using

phase imaging, many forensic trace characterizations require a chemical identity as well. Phase

imaging will provide evidence only for the presence of different chemical substances but

cannot identify them. However, AFMs equipped with optical microscopy and Raman spec-

troscopy or surface enhanced Raman spectroscopy may pave the way for AFM imaging as

valuable tool for forensic examinations. Most promising in this respect is tip-enhanced Raman

spectroscopy using a gold-coated atomic AFM tip-substrate system [80].

To grasp the forensic applicability of AFM in actual casework, additional research as well as

laboratory and crime scene validation studies is required. The growing availability of fully auto-

matic AFM systems that operate outside isolation cabinets brings a forensic AFMapplication closer.
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