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Abstract

The prediction and the optimization of the rate of penetration (ROP), an important mea-
sure of drilling performance, have increasingly generated great interest. Several empirical
techniques have been explored in the literature for the prediction and the optimization of
ROP. In this study, four commonly used artificial intelligence (AI) algorithms are explored
for the prediction of ROP based on the hydromechanical specific energy (HMSE) ROP
model parameters. The AIs explored are the artificial neural network (ANN), extreme
learning machine (ELM), support vector regression (SVR), and least-square support vector
regression (LS-SVR). All the algorithms provided results with accuracy within acceptable
range. The utilization of HMSE in selecting drilling variables for the prediction models
provided an improved and consistent methodology of predicting ROP with drilling effi-
ciency optimization objectives. This is valuable from an operational point of view, because
it provides a reference point for measuring drilling efficiency and performance of the
drilling process in terms of energy input and corresponding output in terms of ROP. The
real-time drilling data utilized are must-haves, easily acquired, accessible, and controlla-
ble during drilling operations.

Keywords: artificial intelligence, ROP prediction, neural network, data analytics, least
square support vector regression, specific energy, drilling efficiency, extreme learning
machine

1. Introduction

The speed at which a drill bit breaks the rock under it to deepen the hole is called rate of

penetration (ROP). The ROP prediction is necessary for effective drilling and cost optimization;

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



therefore, it has been of great concern to drilling engineers during the last decades [1, 2].

Maximization of ROP is often directly related to the minimization of drilling costs and,

therefore, it is a significant measure of drilling performance. Hydrocarbon accumulations are

becoming more increasingly difficult to find and reach in terms of depth and remoteness of

location, and therefore more complex wells are being drilled. Effective prediction of ROP

becomes imperative in order to improve efficiency of the drilling process, enables drilling

engineers, and operations team to properly estimates the time for the drilling phase of opera-

tions, the associated costs, and properly phase the operation in order to save cost. ROP

prediction also helps to explain the reason behind a sudden slowness in the drilling process,

and therefore helps in making informed decisions on the optimization strategy to adopt.

There are several techniques present to predict ROP, each with its own merits and demerits,

and there is no acceptable universal model for all conditions, as the nature of the relationships

among the parameters that affects ROP is quite complex and unique for each case. Traditional

ROP model usually predicts ROP with lots of assumptions and wide range of uncertainties

due to the complexity in the interactions of several parameters which affects ROP. ROP follows

a complex relationship with several drilling parameters such as string rotation (RPM), weight

on bit (WOB), mud weight (MW), flow rate, bit hydraulics, formation properties such as

compressive strength, pore pressure gradient; mud properties, mud hydraulics, borehole

deviation, size, and type of bit used. In some cases, increasing WOB and RPM could results in

decreasing ROP, as there is an interaction of these inputs with other factors that affects ROP.

The understating of the underlying complex relationships among these parameters is impor-

tant in the accurate prediction and optimization of ROP [3].

Predictive data-driven (PDA) modeling involves searching through complex data to identify

patterns and adjust the program actions accordingly. During drilling operations, lots of real-

time data are being gathered with quite a number related to ROP but are riddled with lots of

uncertainties and complex relationships which are better handled by data-driven analytical

techniques. The ability of AI techniques, to work through complex data sets and establish a

relationship or trend without prior assumptions has made it endearing to the hearts of engi-

neers who seek to solve complex drilling engineering problems, especially when the geology

and rock mechanic parameters differs from well to well, and therefore may have different

recommended drilling parameters within a wide range [4].

Several researches have been carried out in predicting and optimizing ROP using AI techniques.

Jahanbakhshi developed an artificial neural network (ANN) modeling for predicting ROP as a

real-time analytical approach with encouraging results [5]. Bodaghi et al. showed that optimized

SVR has better accuracy and robustness in the prediction of ROP compared to back propagation

neural network (BPNN), and is a practicable method to implement for drilling optimization [6].

Also, Shi et al. in their study showed a promising prospect for extreme learning machine (ELM)

and upper-layer-solution-aware, in predicting ROP, as they outperform the ANNmodel [7]. The

study of Moraveji and Naderi concluded that response surface methodology, RSM statistical

model provides an efficient tool for prediction of ROP as a function of controllable and uncon-

trollable variables with a reasonable accuracy [8]. Mantha and Samuel, using ANN, SVR, and

classification regression trees (CART) in their study, shows ROP follows a complex relationship
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which cannot be comprehensively explained by traditional models alone. Application of data-

driven analytics using several machine learning algorithms coupled with regression analysis can

help in better understanding and predicting ROP [3].

This study seeks to improve ROP prediction by proposing the utilization of HMSE parameters

as inputs in the prediction of ROP by four AI techniques. The capability of the four AI

techniques namely artificial neural network (ANN), extreme learning machine (ELM), support

vector regression (SVR), and least-square support vector regression (LS-SVR) are compared. To

demonstrate this, a case study is presented using real data from two development wells from

onshore Niger Delta hydrocarbon province. The results shows all the AI techniques predicted

ROP within acceptable accuracy range and provided an improved and consistent methodol-

ogy of predicting ROP with drilling efficiency optimization objectives.

2. ROP models

ROP is an important drilling parameter as a measure of performance in terms of both drilling

cost savings and drilling efficiency. It is defined as the slope of the depth evaluated over a short

time. It gives a perspective of how fast or slow a particular formation is being drilled or how

operational conditions affect the functioning of the drilling system. The mathematical expres-

sion of ROP is given as [9]:

ROP tð Þ ¼
dh

dt
(1)

Factors affecting ROP can be divided into the following [5, 10];

• Personnel/Rig efficiency: this refers to the man-power and efficiency of the hardware

involved in drilling operation. The experience of the personnel matters and is often a

determinant in the selection of certain drilling parameters which affects ROP. The age,

ratings, and technology of the drilling rig and associated hardware system also affects the

efficiency of the selected drilling parameters to deliver optimum ROP output.

• Characteristics of the formation such as strength, hardness/abrasiveness, formations

stress, elasticity, plasticity, pore pressure, balling tendency, porosity and permeability, etc.

These parameters that controls ROP with varying degrees of uncertainties in the subsur-

face. The elasticity and ultimate strength of the formation are the most important param-

eters that affect ROP. In elastic environments, the normal compaction trend (NCT)

indicates the increase in formation strength with increasing depth of burial. This relation-

ship does not hold in carbonate environments. The chemical composition of the formation

also affects ROP, with formation containing abrasive minerals rapidly dulling the bit

while formation with gummy clay minerals clings to the bit to ball up. All these are

uncontrollable factors that affect ROP [9].

• Mechanical factors such as RPM, bit type, and WOB can be often referred to as the bit

operating conditions.
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Bit type selection is dependent on the type of formation to be drilled with a significant

effect on ROP. Some bits such as roller cone bits with large cone offset angle and long

teeth are only practical for soft formations due to fast tooth wear and hence a quick loss of

ROP in harder formation. The fixed cutter bit is one where there are no moving parts, but

drilling occurs due to shearing, scraping, or abrasion of the rock. Fixed cutter bits can be

either polycrystalline diamond compact (PDC) or grit hot-pressed inserts (GHI) or natural

diamond. They can also be matrix-body or steel-body, the selection of which depends on the

application and the environment of use. Matrix is desirable as a bit material, because its

hardness is resistant to abrasion and erosion. It is capable of withstanding relatively high

compressive loads, but, compared with steel, has low resistance to impact loading. PDC bits

are generally used for drilling soft but firm, and medium-hard, nonabrasive formations that

are not sticky. The choice of bit therefore has a significant impact on ROP [9].

RPM: this is the revolutions per minute which represents the rotational speed of the drill

string. The top drive system (TDS) is a revolutionary introduction into the rig system in

the early 1980s, it provides clockwise torque to the drill string to drill a borehole. Figure 1

shows an experimental result which proves that ROP usually increased linearly with

increasing values of RPM up to a certain point for a particular formation illustrated as

segment a-b, provided all other drilling parameters are kept constant, after which ROP

starts to diminish as seen in segment b-c. Point b, is called “the bit floundering point.”

Weight on bit (WOB): the WOB represents the amount of axial force applied onto the bit

which is then transferred to the formation causing it to break. The significance of WOB as a

factor affecting ROP can be seen as illustrated in Figure 2. The figure shows zero ROP until the

inertial breaking WOB is applied to the formation at point a. The ROP increases rapidly with

increasing WOB as observed in segment a-b; then, a linear increase in ROP is observed in

Figure 1. Typical response of ROP to RPM.

Drilling108



segment b-c followed by only a slight increase in ROP at a high value WOB in segment c-d. In

extreme cases, a further increase in WOB will lead to a decrease in ROP as seen in segment d-e.

The point at which this occurs is called floundering point.

• Hydraulic factors: this refers to the bit hydraulics, and the two main hydraulic factors

with significant effects on ROP are (i) jet velocity, and (ii) bottom hole cleaning. Significant

improvement in ROP could be achieved if proper nozzles were selected for a proper

jetting action at the bit as drilling fluids flows at a determined flowrate through the drill

string and the bit nozzles into the annulus. This promotes better cleaning action at the bit

face as well as bottom hole.

Bottom hole cleaning is an important mechanism of removing drilled cuttings from the

face of the bit. The jetting action of the mud passing through the bit nozzles has to provide

enough velocity and cross flow across the surface of the bit to remove the newly drilled

cuttings effectively as the bit penetrates the formation. This will prevent bit balling and

regrinding of drilled cuttings by moving them up the annulus to maximize drilling

efficiency of the bit.

• Drilling fluid properties: the two main mud properties with significant impact on hole

cleaning are the mud density and viscosity.

Mud density: aside serving as the primary control of the well, that is, prevention of

formation-fluid intrusion into the wellbore, the mud density functions as mechanical

stabilization of the wellbore. Increasing the mud density beyond required to serve the

aforementioned functions, is detrimental to ROP, and may cause induced losses by frac-

turing the formation under the in-situ stress condition. An increase in the mud density

causes a decrease in ROP. This is because it causes an increase in bottom hole pressure

Figure 2. Typical response of ROP to WOB.
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beneath the bit causing a chip hold-down effect. Hence, regrinding of drilled cuttings with

adverse effect on penetration rate.

Viscosity tends to decrease ROP as it increases in drilling fluids. Plastic viscosity is the

resistance of the drilling fluid to flow caused by mechanical friction within the fluid. With

high viscosity, cuttings tend to remain stuck on the bottomof the hole causing their re-drilling

and this leads to reduction in the performance of the bit. It affects the hydraulic energy

available at the bit nozzles for cleaning due to parasitic frictional losses in the drill string [9].

2.1. ROP empirical models

There has been many proposed empirical ROP models in the last 3 decades; however, three of

them are quite popular for estimating ROP, they are (i) Maurer’s ROP model, (ii) Galle and

Woods ROP model, and (iii) Bourgoyne-Young ROP model.

2.1.1. Maurer’s model

Maurer [11] developed a ROP model based on a theoretical penetration equation as a function

of WOB, RPM, bit size, and rock strength derived for a roller-cone type bit. A mathematical

relation between rate of drilling, WOB, and RPM based on perfect hole cleaning condition was

achieved as a function of depth. The ROP equation was thus given as:

dFD
dt

¼

4

πd2b

dV

dt
(2)

Here, FD = footage drilled by bit (ft), t = time (h), V = Volume of rock removed, db = diameter of bit.

2.1.2. Galle and woods’ model

Galle and Woods, in their work, investigated the effects of bit cutting structure dullness, WOB,

and RPM on ROP, rate of tooth wear and bearing life for roller cone bits. The result of their work

is a presentation of graphs and procedures for field applications to determine the best combina-

tion of constant WOB and RPM [12]. They presented a drilling rate equation as follows:

dFD
dt

¼ Cfd
W

k

ap
r (3)

Here, Cfd = formation drillability parameter, a = 0.028125h2 + 6.0 h + 1 time, hr, h = bit tooth

dullness, fractional tooth height worn away, in, p = 0.5 (for self-sharpening or chipping type bit

tooth wear), k = 1.0 (for most formations except very soft formations), 0.6 (for very soft

formations), r = RPM function, W= function of WOB and db, such that W ¼
7:88WOB

db
.

2.1.3. Bourgoyne and Young ROP model

The most popular of the ROP model is Bourgoyne and Young ROP model used to calculate

the ROP. In their work, they presented a mathematical relationship using a complex drilling
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model to capture the effects of changes in the various drilling parameters. They proposed an

eight function empirical relationship to model the effect of most of drilling variables [1]. The

equation form is

dROP ¼ f R a1; ::…; a8; p2;…:; p8
� �

(4)

¼ Exp a1 þ
X8

i¼2

aipi

 !
, (5)

Here, a1 = formation strength parameter, a2 = exponent of the normal compaction trend,

a3 = under compaction exponent, a4 = pressure differential exponent, a5 = bit weight exponent,

a6 = rotary speed exponent, a7 = tooth wear exponent, and a8 = hydraulic exponent.

2.1.4. Hydromechanical specific energy ROP model (HMSE)

Approaching the drilling process as a closed system in terms of energy input in the form of

applied drilling parameters, and a corresponding output, in the form of ROP, brought about

the concept of specific energy (SE). This concept was first introduced by Teale in [13]. Further

work has been done to fully capture the mechanical and hydraulic energy input and their

relationship with ROP. The HMSE concept states that “the energy required to remove a unit

volume of rock comes primarily from the torque applied on the bit, the weight on bit (WOB),

and the hydraulic force exerted by the drilling fluid on the formation” [14]. Specific energy is

therefore a significant measure of drilling performance, especially of the cutting efficiency of

bits and rock hardness [15]. The equation form is:

HMSE ¼
F

Ab
þ
120π:N:T

Ab:ROP
þ
1154η:∆pb:Q

Ab:ROP
(6)

Rearranging

ROP ¼
120π:N:T þ 1154η:∆pb:Q

Ab:HMSE� F

� �
(7)

Here, HMSE = hydromechanical specific energy in psi, F = WOB in lbs, N = RPM, T = TORQ in

lb-ft, Ab = bit cross sectional area in in2, ROP = rate of penetration in ft/hr, Q = mud flow-in rate

in gallons per minute, η = dimensionless energy reduction factor depending on bit diameter,

and ∆pb = pressure loss at bit in psi.

The use of HMSE-derived ROP model drilling parameters have been proposed in this study

because it fully captures the relevant controllable parameters that affects ROP. Also, from an

operational point of view, it is valuable because it provides a reference point for measuring

drilling efficiency and performance of the drilling process in terms of measuring energy input

and corresponding output in terms of ROP. The SE concept became a key element for the fast

drill process (FDP) [16]; the process of drilling with the highest possible ROP in terms of

technical and economical limits. In early 2004, Exxon Mobil Corporation used the process to
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optimized their drilling operation with a result of an astonishing increase in ROP by 133%

proven the concept a useful one [16, 17].

3. Artificial intelligence (AI) techniques

Artificial intelligence (AI) can be described as the imitation of human intelligence processes by

machines, especially computer systems. These processes include the acquisition of information

from sets of data, use logic of their interdependency to reach approximate or definite conclu-

sions while self-correcting [18]. AI was coined by John McCarthy, an American computer

scientist, in 1956 at The Dartmouth Conference where the discipline was born [19]. According

to artificial intelligence applications institute (AIAI), AI areas of application are; case-based

reasoning: a technique for utilizing historical datasets to guide diagnosis and fault finding;

evolutionary algorithms: an adaptive search technique with very broad applicability in sched-

uling, optimization, and model adaptation; planning and workflow: modeling, task setting,

planning, execution, coordination, and presentation of activity-related information; intelligent

systems: an approach of building knowledge-based systems; and knowledge management:

the identification of knowledge assets in an organization, and support for knowledge-based

work [20].

Some of the advantages of AI techniques include, but not limited to ability to model complex,

nonlinear processes without priori relationship assumption between input and output vari-

ables; potential to generate accurate analysis and results from large historical databases; ability

to analyze large datasets to recognize patterns and characteristics in situations where rules are

unknown or relationship and dependency of variables are complex; cost-effectiveness: many

AI algorithms have the advantage of execution speed, once they have been trained. The ability

to train the system with data sets, instead of writing programs, makes it more cost-effective

and changes can be easily implemented when need arises. Multiple algorithms can be com-

bined taking competitive advantages of each algorithm to develop an ensemble AI tools. AI

techniques can be deployed to solve routine boring tasks which would be completed faster

with minimal errors and defects than human [21].

AI techniques limitations includes some of them being tagged as “black boxes,” which merely

attempt to chart a relationship between input and output variables based on a training data

set. This raises some concerns regarding the ability of the tool to generalize to situations that

were not well represented in the data set. However, application of the right domain knowledge

helps to address this limitation. Other limitations are the lack of human touch, enormous

processing time for large datasets and requirement for high computational resources and

skills.

Despite some of the disadvantages of AI techniques, their overwhelming advantages have

made them endearing in different fields, including the exploration and exploitation of oil and

gas. Recent advancement in the collection and transmission of real-time drilling data coupled

with insufficiency of empirical ROP models to unveil the real-time downhole conditions has

made researchers to shift into AI techniques for prediction purpose. Furthermore, the effects of
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all factors affecting ROP and downhole conditions are inherent in the collected surface drilling

data. Applying data-driven predictive analysis has proven useful in decoding the hidden

information in these drilling data.

Table 1 shows some recent work done using artificial intelligence to predict ROP. ANN has

been the most often used. What is also clear in the literature review is that the selection of input

is not consistent and some may be difficult to obtain in some instances. Also, for optimization

purpose while drilling, some of the variables included in the models are not controllable

factors that can be adjusted in real time.

3.1. Some artificial intelligence techniques

Below are of some of the AI techniques considered in this study. A summary of their charac-

teristics is presented in Table 2.

3.1.1. Artificial neural network (ANN)

Artificial neural networks, ANN, are designed based on the examination of biological central

nervous systems and neurons, axons, dendrites, and synapses. Similarly, an ANN is composed

of elements that are called “neurons,” “units,” or “processing elements” (PEs). Each PE has a

specification of input/output (I/O) and they are connected together to form a network of nodes

for mimicking the biological neural networks, hence they are called “artificial neural network,”

ANN.

Model Input

number

Input variables Output

ANN 9 UCS, bit size, bit type, drillability coefficient, gross hours drilled, WOB, RPM, drilling

mud density, and AV (Apparent Viscosity) [22]

ROP

ANN 20 Differential pressure, hydraulics, hole depth, pump pressure, density of the overlying

rock, equivalent circulating density, hole size, formation drillability, permeability and

porosity, drilling fluid type, plastic viscosity of mud, yield point of mud, initial gel

strength of mud, 10 min gel strength of mud, bit type and its properties, weight on the bit

and rotary speed, bit wear, and bit hydraulic power [5]

ROP

ANN 7 Depth, bit weight, rotary speed, tooth wear, Reynolds number function, ECD, and pore

pressure gradient [23]

ROP

ANN 9 Formation drillability, formation abrasiveness, bearing wear, tooth wear, pump rate,

rotating time, rotary torque, WOB, and rotary speed [24]

ROP

SVR 12 Viscosity, MW, pump rate, well deviation, RPM, WOB, depth, formation, bit size, and bit

tooth wear [6]

ROP

ANN 6 Rock strength, rock type, abrasion, WOB, RPM, and mud weight [25] ROP and

wear

ANN 13 Bit Type, IADC Codes, Bit diameter, Bit Status, Measure Depth, True Vertical Depth,

Weight on Bit, Rotary Speed, Torque, Pump Flow Rate, Stand Pipe Pressure, mud weight,

and Formation Mineralogy [26]

ROP

Table 1. Summary of some recent applications of AI in ROP prediction.
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The use of ANN as a reliable universal estimator in constructing nonlinear models from data is

very common. It is capable of approximating both linear and nonlinear functions defined over

a range of data to the desired degree of accuracy using an appropriate number of hidden

neurons, this has been proven mathematically [27]. Being data-driven models, they learn from

training data presented to them and do not require any a priori assumptions about the

problem, not even information about statistical distributions. In petroleum engineering, the

training data may be assembled from experimental data, past field data, numerical reservoir

simulation, real-time data, or a combination of these [5]. Though assumptions are not required,

knowledge of the statistical distribution of the input data and domain knowledge of the

problem can help to speed up training. Several issues such as the ability to run parallel

processes and apply learning instead of programming have made ANN an efficient tool to be

Artificial

intelligence

techniques

Characteristics Advantages Limitations

ANN Nonlinearity

Input-output mapping, supervised

learning while working through

training samples

Evidential response

Neurobiological analogy

Very large scale integration

applicability

Ability to run parallel

processes and apply learning

Complex linear and nonlinear

relationships can be derived

using ANN

Flexible input/output Less

sensitive to noise

Black box models: it is not

possible to explain how the

results were calculated in any

meaningful way

Many optimizing parameters to

be set in defining model to avoid

overtraining

Requirements of elaborate

training examples

ELM Input weights and biases, are assigned

randomly without any dependency

Fast learning process by using a fixed

nonlinear transformation in the

training phase

An innovative training algorithm for

Single-hidden Layer Feed-forward

Neural networks SLFN

Online real-time application

Avoids unnecessary human

intervention

Reduces computational

burden

Needs less training time

Prediction accuracy slightly

better than ANN

Easy implementation

Suffers from uncertainty

Suffers generalization

degradation problem

Black box models

SVR Supervised learning

Maximal hyperplane is constructed to

separate a high dimensional space of

input vectors mapped with the feature

space

Its core feature in control of its

attractiveness is the notion of an ε-

insensitive loss function

Invaluable for the estimation

of both real valued and

indicator functions

Handles very high

dimensional data

Can learn very high elaborate

concepts

More stable

Robust to ‘outliers’ (i.e., data

samples outside ε-insensitive

zone)

Consumes lots of computer

resources

Time consuming for training,

testing and validation of models

Uses a complex quadratic

programming approach making

it difficult for very large datasets

Black box model

LS-SVR LS-SVRs are closely related to

regularization networks and Gaussian

processes but additionally emphasize

and exploit primal-dual interpretations

Simplified algorithm

Requires less effort in model

training in comparison to the

original SVR, owing to its

simplified algorithm

Highly sensitive to outliers

Ineffective at handling non-

Gaussian noise

Consumes lots of computer

resources

Table 2. Summary of AI techniques used in the case study.
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applied in various fields of engineering [28]. In the training process, weights and biases of the

network are adjusted on basis of learning rules and completing training; these fixed weights

and biases act as the memory of the network.

Some of the advantages of ANN are; ability to handle linear and nonlinear models: complex

linear and nonlinear relationships can be derived using neural networks. Flexible input/out-

put: neural networks can operate using one or more descriptors and/or response variables.

They can also be used with categorical and continuous data. Noise: neural networks are less

sensitive to noise than statistical regression models. While some of the major limitations are;

Black box models: it is not possible to explain how the results were calculated in any meaning-

ful way. Optimizing parameters: there are many parameters to be set in a neural network and

optimizing the network can be challenging, especially to avoid overtraining [23, 27, 29–32].

3.1.2. Extreme learning machine (ELM)

Extreme learning machines (ELM) are derived from ANN, it is however a generally unified

single layer feed-forward network framework with less requirement of human interventions

and thus has been found to run faster than most conventional neuron-based techniques. This is

notably due to the fact that the learning parameters of its hidden nodes, including input

weights and biases, are assigned randomly without any dependency, and the simple general-

ized operation that is involved in the determination of the output weights. The training phase

with data in the ELM algorithm is efficiently completed using a fixed nonlinear transformation

which is a fast learning process. The efficiency of ELM in online or real-time applications

cannot be over emphasized as it automatically determines all the network parameters analyt-

ically and therefore avoids unnecessary human intervention [33].

Also, the universal approximation ability of the standard ELM with additive or Radial Basis

Function (RBF) activation function has been proved [7, 33]. Success story of the application of

ELM in many real-world problems is well documented especially in classification and regres-

sion problems on very large scale datasets. ELM is very efficient and effective as an innovative

training algorithm for single-hidden layer feed-forward neural networks (SLFNs) [33].

Some of the merits and limitations of ELM can be summarized as follows: ELM reduces the

computation burden without sacrificing the generalization capability in the expectation sense.

ELM needs much less training time compared to popular ANN and SVM/SVR. The prediction

accuracy of ELM is usually slightly better than ANN and close to SVM/SVR in many applica-

tions. Compared with ANN and SVR, ELM can be implemented easily since there is no

parameter to be tuned except an insensitive parameter L. It should be noted that many

nonlinear activation functions can be used in ELM [33]. While the limitations are ELM suffered

from both the uncertainty and generalization degradation problem and for the widely used

Gaussian-type activation function, ELM degraded the generalization capability [34].

3.1.3. Support vector regression (SVR)

Support vector regressions (SVRs) methodology involves a group of related supervised learn-

ing methods employed for both regression and classification problems. They fall in the
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category of generalized linear classifiers (GLCs). In SVRs, a maximal hyperplane is constructed

to separate a high dimensional space of input vectors mapped with the feature space. It was

initially designed as a classifier only to be modified in a later study by Vapnik [35] as a support

vector regressor (SVR) for regression problems. Its robustness in a single model estimation

condition has been testified to [36]. Hence, it can be considered invaluable for the estimation of

both real valued and indicator functions as common in pattern recognition and regression

problems, respectively.

When used as a regressor, SVRs attempt to choose the “best” model from a list of possible

models (i.e., approximating functions) f x;ωð Þ, where a set of generalized parameters is given

by ω. Generally, “good” models are those that can generalize their good predictive perfor-

mance on an out-of-sample test set. This is often determined by how well the model minimizes

the cost function while training with the training data. The core feature of SVR regression in

control of its attractive properties is the notion of an ε-insensitive loss function. SVR is suitable

for estimating the dominant model under multiple model formulation, where the objective

function can be viewed as a primal problem, and its dual form can be obtained by constructing

Lagrange function and introducing a set of (dual) variables.

SVRs generalization characteristics are ensured by the special properties of the optimal hyper-

plane that maximizes the distance to training examples in a high dimensional feature space. It

has been shown to exhibit excellent performance [32]. The merits and limitations of SVRs are

summarized thus; merits: SVRs can deal with very high dimensional data; they can learn very

elaborate concepts; usually works very well. While the limitations are: requirement of both

positive and negative examples; the need to select a good kernel function; consumes lots of

memory and CPU time; there are some numerical stability problems in solving the constrained

[30, 37, 38]. Analysis of (linear) SVR indicates that the regression model depends mainly on

support vectors on the border of ε-insensitive zone; SVR solution is very robust to “outliers”

(i.e., data samples outside ε-insensitive zone). These properties make SVM very attractive for

its use in an iterative procedure for multiple model estimation.

3.1.4. Least square support vector regressions (LS-SVR)

LS-SVRs are reformulated versions of the original SVRs algorithm for classification and

function estimation, which maintains the advantages and the attributes of the original SVRs

theory. LS-SVRs are closely related to regularization networks and Gaussian processes but

additionally emphasize and exploit primal-dual interpretations [39]. LS-SVR possesses excel-

lent generalization performances and is associated with low computational costs. LS-SVR

requires less effort in model training in comparison to the original SVR, owing to its simpli-

fied algorithm. It minimizes a quadratic penalty on the slack variables which allows the

quadratic programming problem to be reduced to a set of matrix inversion operations in the

dual space, which takes less time compared to solving the SVR quadratic problem [40].

Robustness, sparseness, and weightings can be incorporated into LS-SVRs where needed

and a Bayesian framework with three levels of inference has also been developed [41]. Some

of its limitations include being ineffective at handling non-Gaussian noise as well as being

sensitive to outliers [42].
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4. Case study

A case study is presented below to illustrate one of the advantages inherent in combining AI

techniques with domain expert knowledge for improved prediction and optimization of dril-

ling rate of penetration.

4.1. Data description

In this study, data from two development wells from onshore Niger Delta hydrocarbon prov-

ince were used for the development and testing of the models, in each of the AI algorithms

compared. The field is about 95 square kilometers in extent with a northwest-southeast

trending dual culmination rollover anticline. The wells chosen represents the best in terms of

drilling performance as measured by best ROP and bit runs for all the three hole sections

considered. The formations encountered are mainly consolidated intercalation of shales and

shallow marine shoreface sands with a normal compaction trend, a typical elastic depositional

environment of the Niger Delta. The field is a mainly gas field with some of the reservoirs

having significant oil rims.

The wells used for the study were selected for ROP prediction because they were the best in

class in terms of drilling performance, a result of carefully optimized drilling parameters and

practices. The repeatability of such feat is highly desirable, and hence the choice of the wells.

The formations encountered are well correlated across the field with lateral continuity. These

two wells fairly represents the field with Well-A located in the Eastern flank of the field while

Well-B is located 8 km to the west of Well-A and just about 3 km to the field western boundary.

While Well-A is highly deviated and deeper in reach with maximum inclination of 74� at total

depth of 11,701 ft TVD, Well-B is slightly deviated with maximum inclination of 23� at total

depth of 9000 ft TVD The wells are also similar in terms of drilling equipment, the same rig

was used for their construction; bit type and bottom hole assembly (BHA) used were same,

hence, they were both drilled with the same bottom hole hydraulics. Details of the bit used in

the three hole sections included in this research are presented in Table 3.

BHA No. Type Make/Model IADC

Code

Initial

status

Nozzle

Size

TFA IADC Dull Grade

16” Hole section

1 Tri-Cone bit Baker Hughes Christensen bits/

MXL-DS3DDT

135 New 22*3; 1*20 1.42 6-5-WT-A-E-1/16-FC-PR

12-1/4” Hole section

1 PDC Bit VAREL PDC(VTD713 P2DGX) New 16*5; 18*2 1.479 2-2-CT-A-X-1/16-WO-TD

8 1/2” Pilot hole section

1 PDC Bit BM 563 New 16*2; 13*8 1.17 1-1-WT-A-X-1-NO-TD

Table 3. Bit details.
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As explained in Section 2.4, the specific energy concept in the drillability of a formation

is being explored in this study with particular focus on hydromechanical specific energy,

HMSE. The HMSE concept states that “the energy required to remove a unit volume

of rock comes primarily from the torque applied on the bit, the weight on bit (WOB),

and the hydraulic force exerted by the drilling fluid on the formation” [14]. Drilling data

from surface data logging (SDL) tools were used in this study. These were real-time data

collected at surface and could be transmitted via satellite to a central location while

drilling. Among the numerous data usually collected are; measured depth (MD), hookload

(HKLD), weight on bit (WOB), pipe rotation per minute (RPM), rotary torque (TORQ),

mud flow-in rate (GPM), total gas (TG), pump strokes per minute (SPM), pits volume

change, mud flow-out rate percentage (FFOP%), mud weight in (MW), etc. Since ROP

prediction using the hydromechanical specific energy ROP model is the focus of

the research, efforts to use as many data that affects ROP were consciously made. Given

the HMSE Eqs. (6) and (7) in Section 2.4, [14]. It is necessary therefore, to reorganize the

collected data and focus on those with physical relationship with ROP based on the

HMSE-ROP model.

It is important to mention that the surface drilling mechanics data are inexpensive to collect

during drilling operations; the sensors can be calibrated without disturbing drilling operations

and are a must-have for drilling operations. Hence, continuous drilling data such as MD,

WOB, RPM, flow rate, mud weight, bit size, TORQ, SPP from the two wells were used in this

study. Data quality checks were performed on individual wells and simple activity logic was

applied to ensure only on-bottom drilling data were used. Noise, as a result of sensor issues,

and spurious data points within the dataset were filtered out of the collection first using

activity code to sort the data and manually removing data points that are out of range using

excel spreadsheet.

4.2. Details of the experiment/methodology

The following approach was used in the preparation of the model using data from the selected

well as follows:

1. Collect and explore the datasets: raw data from the two wells, which included several

drilling equipment parameters, were explored to analyze properties of interesting attri-

butes as it relates to the objective of the study. Eight measured drilling parameters of

interest were eventually selected for this study.

2. Data integrity check: verify the data quality and identify plausibility of values from

operational point of view.

3. Sorting of data: using drilling activity code to separate on-bottom parameters of the

identified predictors (drilling parameters to be used for ROP prediction in the AI models)

from HMSE-ROP model. Clean datasets by removing noise either as a result of sensor

calibration issues or as equipment malfunctioning using operational background knowl-

edge. The total number of drilling variables which were used as predictors of ROP is

presented in Table 4.
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Statistical properties of the data in various forms such as standard deviation, mean, median,

etc., were taken before training the learning models. Statistical analysis helped to reveal certain

characteristics of the datasets, one of such important characteristics is standard deviation as

can be seen in Tables 5 and 6.

It reveals that the dataset varies widely as a result of the different lithological units penetrated,

and as such data normalization was carried out as part of preprocessing. This brought the

various data within same range to align their distributions and prevented biasing of the model

toward large values that are present in the dataset [6].

Data splitting and model development: to ensure uniform distribution of the data point and

removed effect of biased sampling, the normalized data were then randomized before used in

the model development. Data from the two wells were randomly split into 70% for training,

15% for testing and 15% for validation with which the algorithms were trained, modified to

come up with an acceptable model for testing in each of the artificial intelligence techniques.

Well-Code No of data Utilized drilling parameters (Predictors)

Well-A (Dataset 1) 3641 WOB, RPM, TORQ, SPP, GPM, Depth, MW, Bit Size

Well-B (Dataset 2) 5228 WOB, RPM, TORQ, SPP, GPM, Depth, MW, Bit Size

Key: weight on bit (WOB), bit rotation per minute (RPM), rotary torque (TORQ), stand pipe pressure (SPP), flow rate in

gallons per minute (GPM), mud weight (MW).

Table 4. Streamlined datasets for each of the wells (predictors) used in the models.

Depth

(ft)

Flowrate

(gpm)

WOB

(klb)

RPM

(rpm)

TORQ

(kf-p)

SPP

(psig)

MW

(ppg)

Bit Size

(inch)

ROP

(fph)

Min 2681.3 450 1 2 1.33 1232 8.6 12.25 9

Max 12982.5 1108 68 142 20.32 4216 11.5 16 170

SD 83.94 6.72 28.75 3.47 557.65 0.78 — 40.26

Median 916 14 129 19.51 2878 10.4 — 82.6

Mean 899.59 14.70 117.93 17.73 2878.82 10.29 — 84.43

Table 5. Statistical analysis of Well-A (Dataset A).

Depth

(ft)

Flowrate

(gpm)

WOB

(klb)

RPM

(rpm)

TORQ

(kf-p)

SPP

(psig)

MW

(ppg)

Bit Size

(inch)

ROP

(fph)

Min 302.4 375 2 10 1 317 8.9 8.5 2.7

Max 9264 2449 47 152 24.28 3522 10.5 16 281

SD 135.15 8.43 51.77 4.47 629.79 0.51 — 117.10

Median 888 16 41 7.06 2272 9.26 — 158

Mean 887.93 16.05 79.21 7.94 2372.71 9.68 — 177.22

Table 6. Statistical analysis of Well-B (Dataset B).
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Data integrity and similarity were also preserved in all methods to avoid bias in evaluating

different algorithms across the four AI techniques.

Model development: the implementation of ANN was carried out using MatLab® ANN

toolbox. The implementation was based on the backpropagation algorithm with momentum

and adaptive learning rate, and the sigmoidal functions. In the implementation of ELM, the

algorithm was based on MatLab® regularized ELM codes found in ELM algorithms [43]. The

SVR and LS-SVR model was implemented using the least-square-SVM (LS-SVM) proposed by

Valyon and Horvath [44] combined with other functions found in the LS-SVMlab1.8 code [45].

The code was slightly modified to include heavy tailed RBF (htrbf) kernel proposed in

Chapelle et al. [46].

Train models and cross validate to select best model: in the training of ANN model, weights

and biases of the networks were updated by Levenberg-Marquart (LM) algorithm while the

number of hidden layers and neurons was randomly investigated from 1 to 5 and 10 to 100,

respectively, in a loop. The algorithm was run for 500 times, and the best models that gave the

least RMSE values in the cross-validation results were selected. Similar procedure was used in

the training of the ELM models except that number of neuron range from 50 to 5000. In the

training of SVR and LS-LSVR models, the algorithms hyper-parameters (e-tube (epsilon),

tunning parameter (C), lambda and kernel for SVMR and tunning parameter (gam) and kernal

for LS-SVMR) were optimized using cross-validation technique. For each run, a kernel func-

tion was chosen and investigated for different range of values of other parameters in a loop.

The Kernel function and other corresponding hyper-parameters with the least RMSE values

during cross-validation of each run were identified as the best model. Table 7 shows the final

selected model hyper-parameters.

Testing and evaluation of models: the models were tested using the testing data and

the three set evaluation criteria: cc, RMSE and testing time were recorded for evaluation

models.

AI techniques Well-A Well-B

SVR C = 9.4422e+08,

kernel, = ‘htrbf’

kernel option = [0.0391, 1.04267],

lambda = 0.00310

epsilon = 0.0464

C = 1.4035e+08,

kernel, = ‘htrbf’

kernel option = [0.0733,1.01050],

lambda = 5.38274e-04

epsilon = 0.0880,

LS-SVR gam = 5.750319e+02

kernel, = ‘htrbf’,

kernel option = [8.3120e-04, 0.4753]

gam = 990,000

kernel, = ‘htrbf’,

kernel option = [3.6048e-06,0.9228]

ANN Activation functions = [logsig, tansig, purelin]

Hidden nodes = [51,19]

Activation functions = [tansig, logsig, purelin]

Hidden nodes = [61, 71]

ELM Activation function = tribas

Node = 1241

Regularization = 15.7419

Activation function = tribas

Node = 2731

Regularization = 81.9853

Table 7. Summary of optimized parameters used in the implementation of models.
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The flowchart presented in Figure 3 summarizes the processes.

Data from each well were randomly split into 70% for training, 15% for testing, and 15% for

validation with which the algorithms were trained, modified to come up with an acceptable

model for testing in each of the artificial intelligence techniques.

To ensure uniform distribution of the data point and removed effect of biased sampling, the

normalized data were then randomized before use in the model development. To avoid bias in

evaluating different algorithms across the four AI being compared, data integrity and similar-

ity were preserved in all methods. Three performance measures: root mean square error

(RMSE), correlation coefficient (cc), and testing time were used to assess the performance of

the algorithms.

4.3. Performance assessment criteria

To establish a valid evaluation of the performance of the different AI being compared, the

assessment criteria used in petroleum journals were considered as the criteria for measuring

performance [27, 32]. The criteria are as follows.

Figure 3. Methodology flowchart.
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4.3.1. Correlation coefficient (CC)

This is a measure of the strength of relationship between the predicted value and the actual

value being predicted. It indicates how far the model prediction deviates from the real value

with high values indicating good performance and vice versa.

cc ¼

P

ya � y0a
� �

yp � y0p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ya � y0a
� �2

yp � y0p

� �2
r (8)

4.3.1. Root mean-squared error (RMSE)

This can be interpreted as the standard deviation of the variance of the predicted value from

the corresponding observed value. It is a measure of absolute fit and indicates how close the

predicted values are from the actual observed values.

rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � y1
� �2

þ x2 � y2
� �2

þ…: þ xn � yn
� �2

n

s

(9)

The strategy followed is to implement the four techniques under the same data and processing

conditions as described above to avoid bias in evaluating different algorithms [29, 30, 47].

Also, the design of the individual models utilized the cross-validation technique to select the

optimal tuning hyper-parameters with the validation data set using the RMSE evaluation

criteria to measure their performance. Runs for each of the techniques were repeated several

times using a loop, in order to optimize the hyper-parameter of the models while using cross-

validation to select the best model for the algorithms. The testing data is run on the model and

cc, RMSE and testing time were recorded to evaluate the model for comparison.

4.4. Experimental results and discussion

In the implementation of each of the techniques tested for ROP prediction, the training,

validation, and testing data described above were used.

• Dataset A which comprises of eight HMSE-ROP related drilling parameters from Well-A.

• Dataset B which comprises of eight HMSE-ROP-related drilling parameters from Well-B.

The datasets are presented in Table 8.

Dataset Drilling parameters (Predictors)

A Depth, WOB, RPM, TORQ, Flowrate, SPP, MW and Bit Size for Well-A

B Depth, WOB, RPM, TORQ, Flowrate, SPP, MW and Bit Size for Well-B

Table 8. Drilling parameters used in each of the two datasets.
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Tables 9 and 10 show the results of the four AI algorithms used for ROP prediction in the

study. After several runs, the best model in each were tested and evaluated to be adjudged the

best. The algorithms were independently tested with eight drilling parameters presented in

Table 8.

4.5. Discussion of results

Each of the four AI techniques tested exhibited its competitive performance as shown in the

results. Figures 4–6 show the performance of the four techniques in each of the dataset both

during the training and testing, and therefore revealed their respective comparative strong and

weak points. The comparative results of the four AIs applied to the two datasets using the

same drilling parameters were plotted and are as shown in Figure 4.

RMSE and CC as earlier defined are measures of performance in terms of accuracy, with the

algorithm exhibiting lowest RMSE and highest CC being the most accurate predicting algo-

rithm. In Figure 4, a cross-plot of the testing correlation coefficient (cc) against the testing root

mean square error (RMSE) shows that in Well-A the best performance in terms of accuracy in

the algorithms is produced by LS-SVR followed closely by SVR while the least accurate

performance is seen in ELM and ANN. The same pattern is repeated in Well-B with LS-SVR

exhibiting the best performance and ANN and ELM performance are not remarkably far from

each other. The overall best performance is LS-SVR performance in Well-B. This is as a result of

the data density in Well-B as seen in Table 3. Therefore, LS-SVR provides an excellent function

estimation capability.

By comparing the testing time as seen in Tables 7 and 8, and plotting in Figure 5, it is evident

that among the four algorithms tested, LS-SVR and SVR in both wells require considerable

amount of time for model testing, while ANN and ELM require the minimum time for the

Training RMSE Testing RMSE Training CC Testing CC Testing Time

SVR 14.39394 23.29097 0.937030 0.808604 2.839218

ANN 27.26942 27.58479 0.737530 0.715336 0.031200

LS-SVR 10.82009 21.57755 0.966169 0.837852 2.730018

ELM 23.17740 27.08876 0.819712 0.731162 0.078000

Table 9. Dataset A results.

Training RMSE Testing RMSE Training CC Testing CC Testing Time

SVR 10.73935 21.71836 0.980072 0.910637 5.725237

ANN 26.41347 28.04187 0.866958 0.845982 0.031200

LS-SVR 3.69279 18.83404 0.997702 0.933733 5.460035

ELM 25.01964 27.98157 0.881806 0.846528 0.140401

Table 10. Dataset B results.
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same process. The density and amount of data used for Well-B as can be seen in Table 3, is

evidently responsible for the extra time it takes for testing the model.

The application of domain knowledge and in particular, the utilization of specific energy as a

concept in selecting the controllable drilling parameters used in the prediction of ROP has

proven valuable with all the AI models showing accuracy within acceptable range. A depth

plot of actual ROP against the predicted ROP from all the AI models is presented in Figure 6.

As can be observed, the qualitative difference is quite elusive showing that the four AI models

are good predictors with reasonable accuracy.

In summary, the LS-SVR produces the best ROP model for the two dataset in term of accuracy,

while it requires considerable amount of testing time of the four AI techniques compared.

Therefore, it is more suitable for situations where accuracy is most desirable. Whereas, ELM

and ANN requires the shortest testing execution time and are less accurate, they are more

Figure 4. CC-RMSE plot showing testing results for dataset 1 and 2 for wells A and B, respectively.

Figure 5. Testing time for each of the algorithms tested with the two datasets.
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suitable for scenarios where the execution time critical. It must however be stated, that the use

of drilling domain knowledge in the choice of drilling parameters has enhance the accuracy of

all the AI algorithm predicted ROPs to be within acceptable range, while using variables from

HMSE-ROP model as input.

5. Conclusion

AI techniques have increasingly proved to be of immense value in the oil and gas industry

where it has been employed by different segments of the industry. Traditional methods has not

been able to manage such huge impacts in such a short time as AI methods because of its

ability to decipher hidden codes and complex relationships within the enormous data collected

daily during drilling operations. However, application of the right domain expert knowledge

has shown improved performance in the deployment of AI techniques. This technique and its

application leads to time and cost saving, minimized risk, improved efficiency and solutions

many optimization problems. The ability of the technique to retrain itself with life data within

a shorter time has made it a major founding block for drilling automation.

This paper presents an improved methodology of predicting ROP with real-time drilling

optimization in mind. Recent studies in the use of AI in the prediction of ROP shows some

inconsistency in the selection of input variables. The parameters used in this study are the must

haves and easily accessible parameters which can mostly be adjusted while drilling and are

therefore controllable. The utilization of HMSE-ROP model has also enhanced the perfor-

mance of the models as a result of selecting few variables with established relationship to

ROP even though nonlinear. All the methods used provided good degree of accuracy, and

therefore presented the engineers with options to use whichever algorithm is suitable for their

Figure 6. AI predicted ROPs plotted against actual ROP for Well-A and -B.
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scenarios. It is therefore recommended that the HMSE variables should always be included in

the data attributes in the prediction of ROP as they are good predictors.

Nomenclature

AI artificial intelligence

AIAI artificial intelligence applications institute

ANN artificial neural network

BHA bottom hole assembly

CART classification regression trees

CIT computational intelligence techniques

CPU computer processing unit

db diameter of bit

DEO drilling efficiency optimization

DSE drilling specific energy

ELM extreme learning machine

FD footage drilled by bit, ft

GHI grit hot-pressed inserts

GLC generalized linear classifiers

GPM gallon per minute

HMSE hydraulic mechanical specific energy

IADC international association of drilling contractors

LSSVR least square support vector regression

LWD logging while drilling

MATLAB matrix laboratory

MD measured depth

MWD measurement while drilling

NPT non-productive time

∆pb pressure loss at bit in psi

PDA predictive data-driven analysis

PDC polycrystalline diamond compact
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PDM positive displacement motor

Q mud flow-in rate in gallons per minute

RMSE root mean square error

ROP rate of penetration, ft/h

RPM rotation per minute

SDL surface data logging

SE specific energy

SFLA shuffled frog leaping algorithm

SLFN single-hidden layer feedforward neural

SPM strokes per minutes

SPP stand pipe pressure

SVR support vector regression

t time, h

TDS top drive system

TG total gas

TRQ torque

TVD true vertical depth

WDM warren drilling model

WOB weight on bit, lbs

Cfd formation drillability parameter

W function of WOB and db

η dimensionless energy reduction factor depending on bit diameter
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