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Abstract

The forecasting of future value of water consumption in an urban area is highly complex
and nonlinear. It often exhibits a high degree of spatial and temporal variability. It is a
crucial factor for long-term sustainable management and improvement of the operation of
urban water allocation system. This chapter will study the application of two pre-
processing phase space reconstruction (PSR) and wavelet decomposition transform
(WDT) methods to investigate the behavior of time series to forecast short-term water
demand value of Kelowna City (BC, Canada). The research proposes two pre-process
technique to improve the accuracy of the models. Artificial neural networks (ANNs), gene
expression programming (GEP) and multilinear regression (MLR) methods are the tools
that considered for forecasting the demand values. Evaluation of the tools is based on two
steps with and without applying the pre-processing methods. Moreover, autocorrelation
function (ACF) is used to calculate the lag time. Correlation dimension is used to study the
chaotic behavior of the dataset. The models’ relative performance is compared using three
different fitness indexes; coefficient of determination (CD), root mean square error (RMSE)
and mean absolute error (MAE). The results showed how pre-processing combination of
WDTand PSR improved the performance of the models in forecasting short-term demand
values.

Keywords: artificial neural network, correlation dimension, chaos, gene expression
programming, Kelowna, water demand, wavelet
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1. Introduction

Climate change significantly affects the water availability all around the world. This effect

plays a crucial role in arid and semiarid regions. On the other hand, urban development,

population growth, industrial development and economic expansion also increases water

scarcity concerns critically worldwide. Therefore, the governments have to be prepared before-

hand for any consequences related to water problems, especially drinking water. The efficient

operation and a management plan of urban water supply requires information about the value

of consumption in the future. For using different standards to simulate hydraulic constitutions

in pipeline systems (to improve the reliability of the system), it is necessary to have an accurate

simulation of consumption value in a specific period. In other words, “The purpose of water

demand forecast is to demonstrate futuristic information available for public water suppliers

as they conduct their business” [1, 2]. Short-term (e.g., less than a week), mid-term (e.g.,

weekly to monthly) and long-term (e.g., greater than monthly) period forecast demand values

are critical for daily operations and future management of the system. Long-term urban

demand forecasting (up to 25 years), mid-term (up to 2 years) and short-term values (up to

2 days) depends upon vital factors such as water supply planning, pipeline maintenance, and

water distribution system optimization (e.g. optimized pumping, pipeline maintenance, mini-

mize energy cost and water supply cost, improving system reliability and water quality),

respectively [3–5]. While studies have advanced the understanding of nonlinear characteristics

and high complexity of water consumption factors, further research is still required. The

present accepted knowledge for these factors is still limited and depends upon (1) accurate

estimation and forecast water consumption and (2) determination of type and degree of

nonlinearity among the effective variables [6]. Over the past decades, two groups of determin-

istic and probabilistic methods have been proposed to forecast urban water demand. The

deterministic approach is solely based on the input variables and their initial conditions,

whereas a probabilistic model relies on modeling uncertainties and randomness of the input

variables.

Given the significant challenges and complexity of probabilistic methods and the fact that pre-

processing methods can provide a useful approximation to their probabilistic counterparts,

this research focused on the application of pre-processing to forecast short-term consumption.

2. Literature review

Midterm water demand forecast helps the water management authorities to develop an inte-

grated plan which balances supply and demand in a given period. Water stress of an area can

be reduced by accurate estimation of drinking water supply demand [3, 7–9]. Moreover,

management can provide water sustainability based on their experience as well as the accurate

and reliable value of future demand [10].

Compared to other hydrological forecast studies (e.g., river discharge, sedimentation, rain-

fall, etc.) water consumption is not as influenced by the input factors as other studies do. The
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most significant input variables are temperature, precipitation, and past demand values that

were popular in most of the studies [11–13]. Two different types of variables affecting water

demand: climatic (e.g., temperature, relative humidity, rainfall, etc.) and socioeconomic (e.g.,

population and income) [14]. Climatic variables can affect short-term and mid-term values

while socioeconomic variables are useful for long-term forecasting [11, 15, 16]. However, a

few studies investigated the impact of climatic variables on demand forecasting [17–19].

Literature enlists various deterministic and probabilistic techniques for forecasting urban

drinking water demand. In general, conventional methods were prevalent for a better under-

standing of determinants of water demand [20–22], which consider linear relationships

between effective variables and water demand, which is nonlinear. The mentioned studies

are broadly categorized into two-fold: physical based and black box models. Without ana-

lyzing the physical processes, the second one applies artificial intelligence techniques (artifi-

cial neural networks, genetic programming, etc.), fuzzy-based (fuzzy logic, neuro-fuzzy,

etc.), soft computing (support vector machine, etc.), and nonlinear deterministic (nonlinear

local approximation, etc.) to identify the relationship between the input and output vari-

ables. Conventional regression models [3], autoregressive integrated moving average

(ARIMA) [23], autoregressive integrated moving average with explanatory variable

(ARIMAX) [24, 25], artificial neural networks (ANN) [9, 26–29], a combination of conven-

tional and ANN [11, 12, 30], feedforward neural networks [12, 31], general regression neural

networks [32, 33], support vector machines [14, 9, 34–37], gene expression programming

[14, 38], fuzzy regression [39], neuro-fuzzy systems [40, 41], Fourier analysis [4], hybrid

models (e.g. combined wavelet-ANN and wavelet-GEP) [13, 38], fuzzy cognitive map learn-

ing method [42, 43]. This research applies probabilistic ANN, GEP approach and a conven-

tional method (MLR) to determine the performance of the methods with/without phase

space reconstruction and wavelet decomposition in the case.

The chaotic nature has been addressed for various systems [44–49]. Any chaotic system is

deterministic in which minor changes in the initial conditions could lead to entire different

behaviors in the next periods [44]. Chaos theory was successfully used to understand the

nonlinear dynamic of the system. The models that are based on chaos theory and nonlinear

dynamics are a better representative of the behavior of dynamic of observed data [50]. In

general, chaos theory improves the understanding of nonlinear dynamics [51]. Ng et al.

applied chaos theory on noisy time series of discharge in Saugeen River (Canada) [52]. They

argued that noisy time series not only increase the complications of the data but also gave high

embedding dimension. Sivakumar et al. utilized the concept of nonlinear dynamic behavior to

classify rivers from phase-space data reconstruction perspective [53].

Genetic programming (GP) and gene expression programming (GEP) are among the heuristic

algorithms based on Darwin’s evolution theory [53]. GP was employed to complete missing

data in wave records and forecasting [55–57]. Aytek and Kishi used GP model to suspended

sediment in the Tongue River (United States) and found GP more accurate than sediment

rating curves and multiple linear regressions (MLR) [58]. Ghorbani et al. investigated the chaos

theory, artificial neural network (ANN) and GEP in estimating suspended sediment in the

Mississippi River (United States) [59]. GEP is superior to GP as it is more convenient to

interpret the results by a GEP tree that comes along with output results. GEP also performs
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better at extracting a mathematical equation which shows the relation between input and

output variables [59–61]. Nasseri et al. developed a hybrid model combining the extended

Kalman filter with genetic programming for monthly water demand forecasting in Tehran [62].

Shabani et al. proposed a new rationale and a novel technique in forecasting water demand

using lag time to feed the determinants of water demand by the development of GEP and SVM

models [14]. Yousefi et al. implemented sophisticated mathematical models to forecast water

demand of City of Kelowna in monthly temporal scale. Their study assessed the performance

of GEP using wavelet decomposition [38].

Among the variety of examined methods Artificial Neural Networks (ANNs), have been

applied to the various period in the wide variety of hydrological issues. The main reason of

ANNs frequent usage is its ability to overcome the relationship in determining the complexity

of time series, even with the shortage of amount of data available to train the models. There-

fore, most of the studies applicable in area of water resources demand applies ANNs to

forecast short, mid and long-term demand values [13, 30, 31].

Regarding the literature review reported by Nourani et al. concluded about the dominant

application of wavelet-based models [63]. Moreover, Labat notified about the improving

ability of wavelet in models’ performance [64]. Therefore, the application of wavelet brought

researchers attention into the area such as denoising [65]; stream flow and water resources [66];

evaporation and climatic models [67]; groundwater level modeling [68]; water demand fore-

casting [13, 38], where in most of the mentioned studies combination of Wavelet-ANNs

performed accurately over conventional models without hybrid wavelet models (e.g. ARIMA,

MLR, ANN and etc.).

The objectives of this study are four-fold: (1) to investigate chaotic behavior of case data and

finding the proper lag time; (2) to find the accuracy of the forecasting for one-day ahead lead

time with various input combination, and (3) to study if phase space reconstruction (PSR)

based on optimum embedding dimension would improve the accuracy of the models, and 4)

application of wavelet decomposition by five different transform functions combined with all

the mentioned models with and without PSR.

3. Methodology

3.1. Case study and data information

3.1.1. Understandings

Unlike natural water resources like rainfall, the lower percentage of drinking water which is

change to waste water after use, back to the cycle. Water pressure in a pipeline, water quality,

supply peak consumption time, pipeline maintenance, maintenance cost, specialist and edu-

cated human resources, pipeline failure management, etc. are the variables that all of them

should be under control at the same time. Also, to develop an integrated long-term plan,

availability of resources is crucial. Therefore, knowing about the value of consumption in a
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specific period is the first step for any management plan beyond urban drinking water supply

and allocation. This chapter investigates the first step of every long-term plan development in

urban drinking water as discussed below. Water utility management needs drinking water

long-term forecasted values in several terms. (1) water distribution network design; (2) supply

and consumption management; (3) efficient application of distribution network; (4) pipeline

pressure management; (5) network development; (6) optimizing the cost of water supply and

network maintenance.

3.1.2. Study area

The present research selected Water consumption of the City of Kelowna (BC, Canada) as the

test case. The city of Kelowna water utility provides services for approximately 65,000 resi-

dents. Poplar Point, Eldorado, Cedar Creek and Swick Road pump stations cover services for

99% of the population of the area [69]. However, few areas in the boundary are named as

“Future City”where does not contain any population yet, land development plan shows water

servicing is considered in the area. Monitoring of water quality, the operation of the pumps,

water level in reservoirs, and pipeline pressure are conducted by the use of Supervisory

Control and Data Acquisition Software (SCADA).

3.1.3. Review of data records

Hourly water demand for the above-mentioned stations has been made available by the city

utility of Kelowna. The data used 6 years (approximately 52,464 hourly consumption) starting

from January 1st, 2011 to 30th December 2016. Figure 1 shows the variation of daily and

monthly water demand and the consumption pattern. Concerning the 6 years water demand

samples of daily scale (2186 points), the first 5 years (1882 points) are used for calibrating the

models and the last year (365 points – 2016) is considered as the test period. Table 1 shows the

characteristics of the dataset in the test case.

3.2. Phase space reconstruction (PSR)

Given a set of physical variables and their interactions, the dynamics of a system (e.g., water

consumption) can be defined by a single point moving on a trajectory, where each of its points

Figure 1. Time series plot of (a) daily water demand; (b) average of the consumption pattern in 24 h within 6 years.
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represents a state of the system. The lag-embedding method reconstructs phase-space from a

univariate or multivariate time series generated by a deterministic dynamic system [70]. The

underlying dynamics can be studied by building an m-dimensional space Xt defined by [49]:

Xt ¼ xt; xt�τ; xt�2τ;…; xt� m�1ð Þτ

� �

, t ¼ 1, 2,…, N (1)

where Xt is a vector of the observed data of {xt} t = 1,…,N, N is the total number of observed

data, τ is the lag time, and m is embedding dimension. The embedding dimension (m) is

typically in the range of 1–10 [53, 54]. The lag-embedding method is sensitive to both embed-

ding parameters of τ and m. Average mutual information (AMI) and autocorrelation function

(ACF) are the two well-known methods for estimating the lag time [71, 72]. More details about

ACF and different functions are available at [73].

3.3. Correlation dimension (Chaos investigation)

Correlation dimension is a nonlinear measure of the correlation between pairs lying on the

attractor. The dimension of a system reveals the number of effective variables in the system.

Kermani (2016) classified different dimensions in a system as topological, Hausdorf, box

counting, point-wise, and correlation dimension. These dimensions are nearly equal in chaotic

systems [52, 74]. This research employed correlation dimension, as it is a lower bound measure

of the fractal dimension [59, 74]. For time series whose underlying dynamics is chaotic, the

correlation dimension gets a finite fractional value, whereas it is infinite for stochastic systems.

The later does not saturate to a specific amount of correlation exponent [75]. For an m-

dimensional phase-space, the correlation function, Cm(r), is defined as the fraction of states

closer than r [76].

Cm rð Þ ¼ lim
Np!∞

2

Np � w
� �

Np � w� 1
� �

X

Np

i¼1

X

Np

j¼iþ1þw

H r� Xi � Xj

�

�

�

�

� �

(2)

where H is the Heaviside step function, Xi is the ith state vector, Np is the number of points on

the reconstructed attractor, r is the radius of a sphere with the content of Xi or Xj. The Theiler

window (w) is the correction needed to avoid spurious results due to temporal correlations

instead of dynamical ones. Cm(r) is proportional to r for stochastic time series, whereas for

chaotic time series it scales with r as:

Cm rð Þ∝ rce : (3)

where ce is correlation exponent defined by:

Property Number of

Data

Max.

Value*
Min.

Value*
Average* Standard

deviation*

Coefficient of

variation

Skew Kurtosis

Data 2186 114597.2 14,124 43046.4 20074.5 0.46 0.73 �0.38

Table 1. Statistics of water consumption of Kelowna City in different temporal resolutions (*m3).
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ce ¼ lim
r!0

lnCm rð Þ

ln r
: (4)

The parameters m and Ce can be determined as the slopes of the lines when plotted Cm(r)

against r in logarithmic scale. In a deterministic system, Ce increases by increasing m until

eventually remaining unchanged. The correlation dimension of time series is defined as the

specific value of m after which Ce remains unchanged [54, 59].

3.4. Artificial neural networks

When ANN is based roughly on the neural layout of the human brain and is capable of non-

linear modeling processes that can classify the patterns and recognize the capabilities [77].

Regarding the ability of multilayer perceptron (MLP)-ANN outperformance as a conventional

ANN approaches [77, 78, 79], this research employed three-layer MLP-ANN (input, hidden

and output layers) and the different number of neurons. In hidden layer, neurons are calcu-

lated by the summation of demand values (di) with the given weight for each value (wij) to

determine the output signal as (uj).

uj ¼
X

t

i¼1

wijdi (5)

Oj ¼ ϕ uj � θj

� �

(6)

where ϕ is the transfer function and θ is a threshold limit [80, 81, 82]. Among various transfer

functions (e.g., sigmoid shape, piecewise, step, linear and non-linear functions), the logistic

sigmoid and Purelin (linear) transfer functions. Regarding the large number of input variables

in the present study, no transfer function is applied to reduce the computationally demanding.

While, the logistic sigmoid and Purelin transfer functions that are commonly used in literature

[79, 81, 82] are provided at the output and hidden layers, respectively (further details about the

bias and transfer functions are available at [79, 81]). Feed-forward multi linear perceptron is

employed in this study containing input, hidden and output layers. The number of neurons in

the input layer varies from 1 to 10 (without decomposition) and from 4 to 24 (with decompo-

sition). Moreover, the neurons of the layers are connected with the neurons in the next layer by

weights. Also, to consider all optimal solutions with the highest probable accuracy, this study

investigated the number of HLN from 1 to 20 in 1 to 200 epochs.

3.5. Gene expression programming

Evolutionary computation has received significant attention among researchers for studying

complex engineering systems. Genetic algorithm (GA), genetic programming (GP), and gene

expression programming (GEP) were inspired by Darwin’s theory of evolution [60, 61]. GEP

defines an algorithm and equation which shows the relation between input and output vari-

ables. GA and GP rely on a string of numbers with defined length called “chromosomes”,

while GEP employs a set of nonlinear entities with different shapes and sizes, “expression/
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parse trees”. The expression tree accommodates the ease of a GA solution as well as the

capability of accepting the nonlinear/complex behavior in a typical GP solution. The chromo-

some can have one or more genes of equal length. A gene represents a set of symbols

containing two parts; a head which has functions and terminals and a tail which only has

terminals. Initiating with the random generation of chromosomes, GEP is followed by different

applications of genetic operators like replication, recombination, mutation, etc. The terminat-

ing condition for developing GEP depends upon the selection of maximum fitness. This

research applied 30 chromosomes, eight head sizes, three genes, and arithmetic operators of

{+,-, �, x, x2, √x}.

3.6. Multilinear regression

When MLR corresponds to a linear combination of the components of multiple signals x (e.g.

recorded discharge, lag time discharge, or combination of both) to a single output signal y

(Demand) by:

y ¼ bþ
XN

i¼0

aixi (7)

where xi is the defined input (demand) and ai is regression coefficient determined by the least

square method with the residual r defined by:

r ¼ y� a1x1 � a2x2 �…� b: (8)

3.7. Wavelet decomposition

Commonly wavelet transforms are used for decomposition, de-noising, and compression of

the time series [83]. Time series have a combination of low and high frequency which represent

improved features (e.g., cyclical trends) and chaotic element, respectively [84]. Considering

these frequencies, separation of low and high frequency is helpful in studying the original

pattern and behavior of the time series. One of the mentioned methods is discrete wavelet

transform (DWT) to separate per level of frequencies in time series. One of the common

discretion ways proposed by Mallat that this study used the mentioned DTW method to

separate the frequencies of the applied data [85]. The level of the decomposition shows the

subseries. For example, for level 1 decomposition, the number of subseries is two. Therefore,

the number of levels indicates the number of subseries plus one. Level 3 is considered as

suitable decomposition level in the present study regarding the number of data (2186 day)

and following Nourani et al. (2009) that offered [83]:

Ln ¼ int log Nð Þ½ �: (9)

where Ln is the number, the level of decomposition andN is the number of used data. Thus, the

proper level in this study is considered as 3. However, increasing the level number does not

necessarily improve the accuracy of the models. Therefore, the original data are discretized in a

high-frequency subset (a3) and three high frequencies as (d1), (d2) and (d3), where the
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summation of all is equal with the value of original data. This research employed Haar, the

second and fourth order Daubechies (db2, db4), and the second and fourth order Symlets

(Sym2, sym4) wavelets to decompose daily water demand time series into sub-series. The

software MATLAB 2015 (https://www.mathworks.com) was employed for the analysis.

3.8. Evaluation of models’ performance

This research measured the models’ accuracy by coefficient of determination (CD), root mean

squared error (RMSE) and mean absolute error (MAE) defined as:

CD ¼

PNt

i¼1 Oi �O
� �

Fi � F
� �

PNt

i Oi �O
� �2

h i1
2 PNt

i Fi � F
� �2

h i1
2

2

6

4

3

7

5

2

: (10)

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PNt

i¼1 Oi � Fið Þ2

Nt

s

: (11)

MAE ¼
1

n

X

n

j¼1

Oi � Fij j: (12)

where Nt is the number of values, O and F are the observed and forecasted values of demand,

respectively.O and F are the mean of the observed and forecasted demand values, respectively.

Note that the range of CD is between 0 and 1 with higher positive values indicate better

agreement. A lower value of RMSE andMAE indicates better agreement between the observed

and forecasted values.

4. Preliminary results

4.1. Phase space reconstruction and investigation of chaotic behavior

Existence of chaotic behavior in the time series is shown in Figure 2. However, the results are

not entirely based on the proof of having chaotic behavior, as the figure only shows possible

low-dimensional chaotic behavior. Theoretically, several methods are well known for investi-

gating the chaotic behavior such as lag time calculation method (e.g., average mutual informa-

tion (AMI), Autocorrelation function (ACF)), correlation dimension, largest Lyapunov

exponent, etc.). This study investigates the chaotic behavior by applying ACF and correlation

dimension. Having chaotic behavior allows using ACF to calculate the lag time of the time

series. The value of lag time is considered as the first approach of ACF to 0 (Figure 2).

The results show 83-days as the lag time of the time series. Therefore, 83-day is used to design

combination of inputs as phase space for the time series. In this study, the difference between

1st day and 83rd day is used as delay period for phase space reconstruction varying embed-

ding dimensions from 1 to 10 (m1: Dt; m2: Dt,Dt-τ; m10: Dt,…,Dt-10τ). It should be noticed that
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several methods were introduced in literature to calculate the value of optimum embedding

dimension which may be more than 10 for the used time series in this study. This study aims at

showing the performance of embedding dimension and reconstructed phase space, where m is

only considered 1 to 10. Figure 2 shows the value of ACF for the demand series and reconstructed

phase space (τ = 83). Figure 3a shows the relation between C(r) and r and (3b) correlation

exponent by varying m. Figure 3b shows that the value of correlation exponent increases by m

and as m = 17, the correlation exponent reaches a specific value (Ce = 3.41). This constant value of

Ce at m = 17 indicates the existence of the deterministic behavior of the time series.

4.2. Multilinear regression

Excel 2010 was used to implement MLR model. The train period was used to derive regression

coefficient from getting the value of variables in the linear equation. The availability of trained

equation, helped in testifying the last year data as the test period. In the first fold, the 1-day

delay was considered for m 1 to 10, and second fold applied 83-day delay. Table 2 shows the

results of both MLR and PSR-MLR in the test period.

Figure 2. (a) Autocorrelation function (τ); (b) reconstructed phase space by (τ and 2τ -day lag time).

Figure 3. (a) The relation between correlation function C(r) and r by various m; (b) Saturation of correlation dimension Ce

(m) with embedding dimensions.
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Statistical indices for the fitness values showed m = 1 for 1-day delay and m = 4 for the

reconstructed phase space with the value of (CD = 0.9565, RMSE = 3642.89 and MAE = 50.42)

and (CD = 0.9572, RMSE = 3636.34 and MAE = 51.04), respectively. However, the difference

between the two models is not considerable, in the large value of demand in long-term this

difference can come into account. Figure 4 shows the comparison of observed and demand

values. Moreover, the suggested equation for the best result by MLR is given by:

Dtþ1 ¼ �0:00854Dt � 0:0366Dtþτ � 0:0128Dtþ2τ þ 0:9427Dtþ3τ: (13)

4.3. Performance of artificial neural network

ANN is another approach to model the demand values which represented in Section 3.4.

ANN’s structures have different hidden layer neurons (HLN) from 1 to 20 with 200 epochs

MLR, τ = 1 PSR-MLR, τ = 83

m CD RMSE(m3/day) MAE m CD RMSE(m3/day) MAE

1 0.9565 3642.89 50.42 1 0.9565 3642.89 50.42

2 0.9565 3804.14 52.14 2 0.9565 3804.14 52.14

3 0.9468 14106.70 112.82 3 0.9570 5319.51 66.90

4 0.9473 13174.97 108.82 4 0.9572 3636.34 51.04

5 0.9505 3724.99 49.81 5 0.9568 4167.55 56.45

6 0.9503 3746.33 50.09 6 0.9569 5907.90 71.65

7 0.9503 3747.49 50.10 7 0.9565 4370.03 58.86

8 0.9493 6058.34 70.88 8 0.9566 4581.10 60.89

9 0.9505 3736.33 50.02 9 0.9566 5023.16 64.71

10 0.9506 3738.35 50.07 10 0.9566 4327.34 58.48

Table 2. Fitness values for MLR and PSR-MLR methods in different embedding dimensions (bolded lines are the most

accurate values).

Figure 4. The performance of MLR and PSR-MLR in comparison with observed values.
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for each model. Table 3 represents the result of ANN for both 1-day delay and PSR values. The

results in the table for each m, are extracted from the result of various HLN and epochs.

Figure 5 shows the example for selecting m = 3 among (20 � 200 = 4000). This calculation has

been done for all m from 1 to 10 for both 1-day delay and PSR. (4000 � 10 � 2 = 80,000) number

of calculations where the best 10 values have been selected (Table 3).

Selection of ANN structures are represented in Table 3 for the test period. Statistical indices for

the fitness values showed m = 6 for 1-day delay and m = 3 for PSR, with the values of

(CD = 0.9520, RMSE = 3535.66 and MAE = 47.58) and (CD = 0.9578, RMSE = 3330.53 and

ANN, τ = 1 PSR-ANN, τ = 83

m Structure Epoch CD RMSE* MAE m Structure Epoch CD RMSE* MAE

1 1-5-1 110 0.9505 3611.56 48.34 1 1-6-1 150 0.9573 3369.55 47.63

2 1-3-1 140 0.9509 3602.25 48.25 2 1-4-1 20 0.9568 3369.50 47.83

3 1-16-1 20 0.9514 3554.13 48.06 3 1-2-1 120 0.9578 3330.53 47.13

4 1-16-1 170 0.9516 3550.99 47.90 4 1-2-1 70 0.9575 3333.67 47.25

5 1-3-1 160 0.9513 3561.33 47.98 5 1-3-1 110 0.9578 3340.36 47.15

6 1-9-1 50 0.9520 3535.66 47.58 6 1-3-1 40 0.9572 3340.16 47.46

7 1-3-1 100 0.9511 3563.14 48.08 7 1-3-1 100 0.9570 3348.68 47.80

8 1-8-1 20 0.9510 3570.70 47.84 8 1-2-1 150 0.9573 3333.88 47.24

9 1-4-1 200 0.9511 3566.00 47.69 9 1-2-1 140 0.9571 3338.53 47.89

10 1-3-1 100 0.9515 3546.72 47.94 10 1-4-1 10 0.9539 3518.86 49.28

Table 3. Fitness values for ANN and PSR-ANN in different embedding dimensions *m3/day). (bolded lines are the most

accurate values).

Figure 5. The results of ANN for τ = 83 PSR by various HLN and epochs.
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MAE = 47.13), respectively. Regarding the results, PSR-ANN mostly dominates in all embed-

ding dimensions for the fitness accuracy indices. Figure 6 shows the comparison of observed

and demand values in the test period for both ANN and PSR-ANN inm = 6 and 3, respectively.

The results showed (Dt, Dt + τ
, Dt + 2τ) as the best input combination for the models.

4.4. Performance of gene expression programming

GEP preliminarily investigates the relationship between input and output as discussed in

Section 3.5. Unlike the other models in this study, 1-day ahead is output, and various combi-

nations of input in terms ofm are considered as input variables. The arithmetic operations used

in this study are {+,�,�, x, x2, √x}, and GEP applies them to fit the best accuracy between input

and output variables. Further details of GEP initial term values are in following of [14, 38, 59]

to extract the GEP model for both 1-day delay and PSR. The results are shown in the Table 4

for the test period.

According to the Table 4, there is not much difference among the different m. But the differ-

ence in PSR-GEP results can be considered as a proof of sensitivity to the initial values of

specific time lags where the variations of the results for different m are more than 1-day delay.

There is not a significant difference in the results in this study comparing to other alternative

models, especially PSR-ANN is not an advantage of GEP. However, extracting the mathemat-

ical equation through GEP is one of advantage of GEP comparing to other artificial models. As

a result of given model, equation form = 3 (PSR-GEP) can calculate the demand value for 1-day

ahead by:

Dtþ1 ¼ 0:0529
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dtþτ þDtþ2τ

p

þDt � 7:0838 (14)

Although, variety of other arithmetic operations may have been applied here but focusing on

the aim of study, only simple known operations were applied to extract the GEP equation. The

results of PSR-GEP and alternative ones prove the advantage of PSR to improve the accuracy

of the models. Statistical indices for the fitness values showed m = 2 for 1-day delay and m = 3

for the reconstructed phase space with the value of (CD = 0.9497, RMSE = 3609.82, and

Figure 6. The performance of ANN and PSR-ANN in comparison with observed values.
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MAE = 48.37) and (CD = 0.9569, RMSE = 3343.36, and MAE = 47.50), respectively. Figure 7

shows the comparison of observed and demand values in the test period for both GEP and

PSR-GEP in m = 2 and 3, respectively.

5. Wavelet decomposition and models’ performance

The combination of models with wavelet decomposition is derived by adding the output of

each wavelet to the input of the models. Figure 8 shows the example of the decomposed values

for water demand time series by db2 transform function. To discrete the demand values, five

GEP, τ = 1 PSR-GEP, τ = 83

m CD RMSE(m3/day) MAE m CD RMSE(m3/day) MAE

1 0.9494 3621.87 48.59 1 0.9565 3363.46 48.03

2 0.9497 3609.82 48.37 2 0.9565 3357.00 47.82

3 0.9494 3633.87 48.42 3 0.9569 3343.36 47.50

4 0.9494 3637.74 48.42 4 0.9566 3359.53 47.95

5 0.9494 3639.05 48.43 5 0.9562 3372.70 48.04

6 0.9494 3619.77 48.60 6 0.9566 3359.64 48.08

7 0.9495 3630.44 48.38 7 0.9564 3365.04 47.95

8 0.9494 3634.41 48.42 8 0.9567 3353.24 47.62

9 0.9494 3628.46 48.42 9 0.9562 3370.08 48.05

10 0.9494 3631.12 48.40 10 0.9565 3356.68 47.84

Table 4. Fitness values for GEP and PSR-GEP in different embedding dimensions (bolded lines are the most accurate

values).

Figure 7. The performance of GEP and PSR-GEP in comparison with observed values.
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wavelet transforms were applied (Section 3.7.). As suggested by Nourani et al. [83], 3rd level

decomposition is recommended for 2186 point data.

Table 5 indicates the results of wavelet decomposition for the selected models in the previous

section. As the table highlights, db4 and db2 are the transforms which resulted in the highest

accuracy in W-MLR and W-PSR-MLR, with the value of (CD = 0.9697, RMSE = 2804.44 and

MAE = 42.11) and (CD = 0.9745, RMSE = 2699.83 and MAE = 43.61), respectively. After implying

the decomposed inputs for MLR and PSR-MLR for result comparison improved the results in

both models. Also, sym4 and db2 are the transforms which resulted in the highest accuracy inW-

ANN and W-PSR-ANN, with the value of (CD = 0.9915, RMSE = 1486.21 and MAE = 30.06) and

(CD = 0.9756, RMSE = 2517.24, and MAE = 41.68), respectively. Also, calculations for W-ANN

and W-PSR-ANN are done with HLN 1 to 20 and epochs 1 to 200, and the mentioned results in

the table are selective of the highest among them. Unlike the results of MLR, W-ANN forecasted

accurately than W-PSR-ANN which is the inversion of the results of ANN and PSR-ANN.

However, wavelet decomposition improved the results of W-ANN andW-PSR-ANN comparing

to the alternative without decomposition (Table 3). Moreover, db4 and db2 are the transforms

which resulted in the highest accuracy in W-GEP and W-PSR- GEP, with the value of

(CD = 0.9845, RMSE = 2027.28 and MAE = 36.62) and (CD = 0.9753, RMSE = 2532.21, and

MAE = 41.69), respectively. Following the results of ANN method, W-GEP forecasted accurately

thanW-PSR-GEP. However, wavelet decomposition improved the results of W-GEP andW-PSR-

GEP comparing to the alternative without decomposition (Table 4).

All PSR models resulted in the highest values which used the decomposed inputs by db2

transform. It is noticeable that PSR affects the inherent of the time series which the results of

performance of all models are in common about improving the accuracy. Considering this fact,

Figure 8. Three level DWT of daily water demand time series of Kelowna City in 2016.
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PSR can be introduced as a pre-processing method like wavelet decomposition; however,

complexity and accuracy of PSR cannot be compared with the higher result of wavelet decom-

position. Figure 9 shows the comparison of all selected models with highest accuracy (W-PSR-

MLR, W-ANN, and W-GEP) in forecast of short-term water demand values.

The figure shows that the performance of W-ANN and W-GEP is better than W-PSR-MLR,

while W-ANN’s calculated values are more accurate than W-GEP in simulating peak points.

This study eventually would suggest that these peak points are indication of critical issues

related to water distribution system (pressure management, peak time demand, etc.) taking in

account the performance of the models and simulations of highest and lowest values of

demands. Therefore, it is recommended to evaluate models’ performance in two separate parts

as maximum values and minimum values along with evaluating criteria such as CD, RMSE,

and MAE for the test period. The difference is not visible in Figure 9. Therefore focusing on

Figure 10, it shows the performance of models by residual values in the test period.

In Figure 10 the residual values show the remarkable difference of performance of models. W-

ANN values distributed in the area of (�15%, +15%), unlike other two models. W-GEP domi-

nates over W-PSR-MLR; however, the fitness criteria values for both are very close to each

other (Tables 2 and 4).

Models Fitness Transform functions

haar db2 db4 sym2 sym4

W-MLR CD 0.9612 0.9477 0.9697 0.9677 0.9694

RMSE(m3/day) 3168.62 3681.17 2804.44 2893.60 2816.06

MAE 44.48 49.04 42.11 43.54 42.24

W-PSR-MLR CD 0.9670 0.9745 0.9719 0.9745 0.9712

RMSE(m3/day) 3008.34 2699.83 2811.58 2699.83 2845.69

MAE 45.39 43.61 43.95 43.61 44.24

W-ANN CD 0.9868 0.9816 0.9861 0.9856 0.9915

RMSE(m3/day) 1853.11 2189.15 2136.25 1948.28 1486.21

MAE 33.78 36.91 39.50 33.86 30.06

W-PSR-ANN CD 0.9685 0.9756 0.9723 0.9752 0.9715

RMSE(m3/day) 2867.87 2517.24 2677.44 2547.89 2724.56

MAE 43.16 41.68 42.09 42.19 42.61

W-GEP CD 0.9721 0.9766 0.9845 0.9297 0.9255

RMSE(m3/day) 2698.16 2492.46 2027.28 4311.60 4429.89

MAE 41.21 39.05 36.62 54.23 55.25

W-PSR-GEP CD 0.9667 0.9753 0.9721 0.9748 0.9704

RMSE(m3/day) 2937.76 2532.21 2689.20 2555.82 2770.80

MAE 43.66 41.69 42.13 41.90 42.51

Table 5. Fitness values for decomposition of selection of models for the test period (bolded lines are the most accurate values).
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This chapter presents the performance of two pre-processes methods in improving the accu-

racy of three models to forecast short-term urban water demand value in Kelowna City, BC,

Canada. The first pre-process approach of PSR which is calculated by ACF method has

improved the results of all models in this study. However, PSR does not improve the accuracy

of models for entire dataset. Based on the behavior of time series, ACF or AMI (two lag time

calculation methods) may have improved a non-deterministic dataset, but it seems in a chaotic

dataset, PSR improves the performance of models in increasing accuracy with a proper num-

ber of embedding dimensions. Wavelet decomposition, the second pre-process method in the

present study has also improved the accuracy of the models but, decomposition did not work

on PSR based methods except MLR. It can be concluded that PSR and wavelet are in common

with their outfits as two applicable pre-process methods. Also, PSR pre-processing is simpler

than wavelet. Therefore, it is recommended to use PSR for the models. As per the results of this

study it seems PSR works on a chaotic dataset which seems to be considered as disadvantage

of PSR. Comparing the mentioned two pre-process methods, wavelet decomposition is signif-

icant to use, though, it is time-consuming and complex than PSR. Also, each transform func-

tions have specific application where each of them can be used independently (e.g., seasonal,

de-noising, peak points, etc.).

Figure 9. The performance of the W-models in comparison with observed values.

Figure 10. Residual values of the selected W-models.
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6. Conclusion

Over the past decades, hydrologists have paid attention to data-driven modeling techniques.

City governments and WDS operators are always looking for an accurate estimation of water

demand values not only for future but also focusing on probable failures like peak consump-

tion and pressure values to manage the WDS pipelines. Therefore, the wide variety of model-

ing techniques such as artificial and evolutionary simulation methods are proposed by

researchers. This chapter investigated the performance of three techniques (ANN, GEP, and

MLR) in forecasting short-term water demand of Kelowna City (BC, Canada). About 6 years

daily dataset was employed for training and testing the models. First 5 years were considered

to train the model and the last year as the test period. All three techniques performed consid-

erably accurate, while the focus of this chapter was on improving the accuracy of the models

for the same dataset. Firstly, the model was calibrated by different input combination with 1-

day lag time. Then, models were calibrated by the lag time of the data set (83-day) which was

calculated by ACF method. WDT was combined with the models to capture multi-scale

features of the signals by decomposing observed demand values into sub-series. Five WDT

functions (haar, Db2, db4, Sym2, and sym4) were employed to decompose the dataset. The

results were then compared with the MLR, ANN, and GEP when no pre-processing (PSR,

WDT) was applied. The research results were accurate than PSR. WDT have also improved the

accuracy of models with PSR and without PSR. However, the impact of wavelet on the models

with PSR was not as considerable as without PSR. The lowest error was reported by W-ANN

among all alternative models in this chapter. Regarding the improvement of all models com-

bining WDT and PSR, it is recommended to use the method in modeling and forecasting

issues, especially about the dataset that the peak points are very critical in the case. The

inherent behavior of dataset (deterministic or stochastic) can affect the performance of the

pre-processing methods. Therefore, behavior of datasets should be investigated before decid-

ing to combine any pre-process methods.
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