
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



14 

Design of a Tactile Sensor for Robot Hands 

Giorgio Cannata1 and Marco Maggiali2 
1University of Genova 

2Italian Institute of Technology 
Italy 

1. Introduction 

Grasping and manipulation of objects, as well as the capability interacting safely with the 

environment (possibly including also humans), is a fundamental task for a humanoid robot. 

In order to tackle these issues a great effort has been put for over two decades to develop 

robot hands or mechanisms emulating the grasping capabilities of a human hand (Salisbury 

& Mason 1985; Jacobsen et al. 1986; Melchiorri & Vassura 1992; Lotti et al. 2004; Butterfass et 

al. 2001; Carrozza et al. 2003; Kargov et al. 2005; Caffaz & Cannata 1998; Lane et al. 1997; 

Hashimoto 1995). However, grasping and manipulation control also rely the availability of 

suitable contact and force feedback. 

In this chapter we first present a survey of recent advances in the area of skin-like tactile 

sensors for both robot hand and for robot bodies. In the second part we will discuss the 

design of an embedded and modular tactile/ force sensor to be installed on the phalanges of 

a robot hand. Each sensor consists of a distributed array of analog tactile elements and an 

integrated three-component force transducer with embedded analog and digital electronics. 

The tactile sensor consists of a matrix of electrodes etched on a flexible printed circuit board 

covered by pressure conductive rubber. The force sensor is instead an off-the-shelf 

integrated three components micro-joystick. 

2. Tactile and force sensors for robots and robot hands 

Tactile sensing in robotics has been widely investigated in the past 30 years (Webster 1988), 

and has received particular attention in recent years for the problems of grasping control 

with robot hands (Kawasaki 2002, Martin et al. 2004, Cannata 2005, Carrozza et al. 2006, Liu 

2006), but also for sensing contacts over robot links (Asfour 2006, Hishiguro 2006) in order 

to enable safe interaction between humanoid robots and humans. 

Research in this field has focused largely on transduction principles and transduction 

technology: as a matter of fact a wide range of transduction solutions have been proposed 

(Lee 1999). Most of the devices were either of the scalar single-point contact variety or were 

linear or rectangular arrays of sensing elements. The main transduction methods identified 

mostly belong to the following classes: resistive, capacitive, piezoelectric and pyroelectric, 

magnetic, optical, ultrasonic. 

Despite the efforts made to prove the effectiveness of different type of transduction 

principles, various issues have strongly limited the development of embedded solutions for 
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both robot hands and large area tactile sensors (robot skin in the following) and their actual 

application by the robotic scientific community. On one hand developing a tactile sensor is a 

very hardware problem involving several engineering issues and often also special process 

equipment. Furthermore, there are at the bottom various technological difficulties which 

represent the bottleneck limiting the transition from a single tactile element (or a small 

matrix prototype) to a large scale integrated solution (e.g. the curse of wiring issue). 

This section is a short survey of various recent and interesting papers addressing the 

problem of designing sensorized robot hands as well as robot skin mostly at system level. 

The objective is to provide a state of the art of tactile sensors from a system level point of 

view, emphasizing the issues of integration of the transducers with the electronic and 

mechanical hardware. Also, we will focus on standard transduction techniques 

(piezoresistive, piezo-electric, capacitive and optical being the most common), since we 

assume that these principles are currently the best candidates for in-house custom 

development of embedded tactile sensing devices. 

2.1 Tactile sensors for robot hands 
For manipulation and grasping robots must be capable controlling the forces arising at the 

contact points. If the geometry of the gripper or robot hand is well known and the contacts 

area can be modeled as point wise it is possible to compute (or estimate) the contact location 

as well as the applied force using a six-axes force/ torque intrinsic tactile sensor as discussed 

in (Bicchi et al 1993). However, this minimalistic approach may fail as long as more complex 

interactions could arise (e.g. in the case of multiple contacts, or contacts with non rigid 

objects etc.). In this case the geometry of the contacts as well as pressure distributions must 

be measured directly using skin-like sensors. 

The design of distributed tactile sensors for robotic applications has been widely discussed 

in recent years (Shimoyo 2004; Krishna & Rajanna 2002; Yamada et al. 2002; Engel et al. 

2003). ). However, there has been an only limited number of papers discussing the 

integration and embedding of these devices on dextrous robotic hands. As a matter of fact, 

miniaturization and cabling harness still represent one of the most important limitations to 

the design of small sized embedded sensors. 

The four-fingered hand DLR-II (Butterfass et al. 2001), Figure 1, is a significant example of 

robot gripper integrating on board a complete force/ torque sensor system. This hand has 22 

degrees of freedom (DOFs) and is a complete self-contained system including motors, 

electronics and sensors. A sophisticated six-components force/ torque transducer is installed 

on each fingertip and connected with the electronic modules, hosted on the palm of the 

hand, by ten wires (8 for data and 2 for power supply), Figure 2. The DLR-II does not make 

use of tactile sensors and can detect contacts located only on its fingertips. 

The GIFU hands II and III (Kawasaki et al., 2002; Mouri et al 2002), Figure 3, have a 
commercial six axis force/ torque sensor (produced by BL. AUTOTEC) integrated on each 
fingertip. However, these hands also feature a distributed tactile sensor based on pressure 
sensitive piezo-resistive ink transducers, see Figure 3. The tactile sensor has 859 taxels. 
formed by various grids of electrodes; the palm, the thumb, and each of the other fingers 
have 313, 126, and 105 taxels respectively covering about 50% of the transducer’s area. The 

sensor can withstand a maximum pressure load of about 2.2x10-3 N/ m2, with a resolution of 
8 bits. The sampling cycle is 10 ms/ Frame. The sensor is about 0.2 mm thick and can cover 

both planar and cylindrical surfaces. The hand does not embed the sensor electronics and 
sensor cables from the transducers and sensors are all routed along the fingers and palm. 
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Fig. 1. DLR-II Hand (Butterfass et al. 2001). 

 

Fig. 2. Embedded electronics of the DLR-II finger (Butterfass et al. 2001). 

 

Fig. 3. Gifu hand III and skin-like tactile sensors (Kawasaki et al., 2002; Mouri et al 2002). 
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Another interesting example of integrated mechanical and sensing design is the robot hand 

CyberHand, a five fingered tendon driven under-actuated gripper, (Carrozza et al. 2006), 

Figure 4. Each finger has on its tip a custom three axis force transducer, while the phalanges 

are sensorized with custom flexible polyimide sensor formed by on-off taxels, with an 

activation force of about 1N. Also in this case, the design of the sensor does not feature 

embedded electronics on the finger. This kind of skin sensor can provide only geometrical 

contact information, therefore cable-tension sensors based on strain gauges have been 

integrated to estimate the force applied at the contact. 
 

 

Fig. 4. Cyberhand tactile sensor. 

 

Fig. 5. Placement of the pressure transducers in the Robonaut hand (Martin et al., 2004). 

In the Robonaut hand (Martin et al., 2004), Figure 6, a different approach to skin-like tactile 

sensing has been proposed. Instead of integrating the transducers on the mechanical 

structure of the hand, a sensorized glove covering the hand and embedding force transducers 

and cabling has been developed. The proposed design is based on a coarse grain 

distribution of pressure sensitive resistive rubber transducers (produced by QTC Ltd. and 
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Interlink Inc.), Figure 7. In total the glove has 33 sensitive sites where contact forces are 

concentrated by means of plastic beads. 
 

 

Fig. 6. Robonaut hand (Martin et al., 2004) 

 

Fig. 7. Detail oft he Robonaut skin (Martin et al., 2004). 

The concept is simple and the adoption of discrete piezo-resistive resistive transducers suggests 

that this solution could be used for simple custom tactile sensors, also because interface 

electronics consists only of a voltage divider. There are however some drawbacks quoted by 

the authors. In fact, as the hand opens and closes the glove itself applies forces on the 

transducers; furthermore the glove interfere with the hand movements. both these problems 

have been addressed in (Martin et al., 2004), but the authors considered them still open issues. 

2.2 Large scale tactile sensors 
From the previous section it emerged that a major issue for designing tactile sensors for 

grasping and manipulation is related to the need of tailor-made solutions. In fact, most of 

the solutions proposed are strongly dependent on the mechanical design and specialized for 

a particular platform. Other features like modularity and scalability could in fact improve 

the characteristics of these devices. the target is that of developing modular sensors, with 

embedded transducers and electronic possibly based on a common design. Networking of 

these devices would make possible the scalable (and incremental) development of large 

scale tactile sensors. 

These ideas have been used for the design of a various large scale skin-like sensors proposed 

in the literature. By large scale we intend tactile sensors which can cover large areas of a 

robot body conforming to its outer shape. 
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The investigation on large scale robot skin has originally received attention for particular 

applications, as space robotics (Lumelsky et al., 2001), But it significantly rose recently with 

the growth of the interest in humanoid robots. A humanoid robot is expected to interact in 

complex and largely unpredictable way with its surrounding environment, and it is 

expected to be capable of safe and purposive interaction with humans (A. Billard and R. 

Siegwart 2004). The class of humanoid robot based tasks requiring direct interaction 

capabilities is certainly much larger and critical than those addressed in the past, and 

complex operations involving concurrent walking, interaction with humans and body 

manipulation (Ohmura, 2007) are strongly based on active control based also on tactile 

feedback. in fact, these tasks need the monitoring of the contacts ot the robot with the 

environment which may happen at unpredictable positions and in unpredictable ways.   

One of the first examples of truly scalable robot skin systems for humanoid robots has been 

proposed by Ohmura and Kuniyoshi (Ohmura et al., 2006). They approached the problem at 

system level, and focused the issue of the wiring as th he key problem for developing a 

technology which could be practically exploited. Their main contribution has been that of 

introducing a networked architecture featuring peripheral nodes (chips) scanning (locally) a 

limited number of taxels. All the electronics and the transducers are embedded on a tree- 

shaped flex/ semi-flex PCB support, Figure 8. This solution allows a simple mechanical 

integration of the sensor over curved surfaces and has been experimentally tested with success 

(Ohmura 2007), Figure 9. This system design has however some limitations. The spatial 

resolution is quite low since the minimum distance between the taxels is about 2.7 cm. 

Furthermore, the sensor is based on IR optical transducers which have (at the present status of 

the technology) a quite large power consumption; this means that for a complete robot skin 

system (which might have thousands of taxels) the power supply requirements could become 

critical (e.g. for autonomous robots). An attempt to limit the current requirements has been 

that of sequencing the switching on of the LED sand this clearly reduces the sampling rate 

capability of the sensor. Finally, other limitations of this design are related to the network 

solution adopted which does not seem to support fault tolerance mechanisms. This is 

important since for its own nature robot-skin could be subject to continuous or cyclic stress 

and impacts over long periods of time and its performance should possible have graceful 

degradation. The fault tolerance problem was previously addressed by Um and Lumelsky 

(Um et al. 1999), who tackled the problem via component redundancy for a system featuring 

over 1000 sensing elements. 
 

 
Fig. 8. Tactile sensor sheet (Ohmura 2007) 
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Fig. 9. Integration of the robot skin on the robot (Ohmura 2007). 

A similar layout, but using piezo-resistive commercial pressure transducers has been 

recently proposed in (Mukai, 2008), Figure 10. The sensor is modular, and consists of 8⋅8 

taxels with a spatial resolution of 1.8 mm which can withstand a pressure of about 12 N/  

cm2. It does not embed electronics, however custom hardware modules for data acquisition 

and networking allow a scalable configuration of the system. The RI-MAN humanoid robot 

(Mukai, 2008), is equipped with five tactile modules for a total of 340 taxels and implements 

a tactile based feedback control operating at 50 Hz. 
 

 

Fig. 10. Tactile sensors fort he RI-MAN humanoid robot (Mukai, 2008). 

In the robot ARMAR-III (Asfour et al., 2006), Figure 11, developed by Prof. Dillmann and his 

team, the idea of skin patches, based on piezo-resisteive matrices of sensors, with embedded 

data processing electronics has been successfully implemented. Embedded electronics 
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provides local tactile data processing in order to limit the bandwidth requirements. The 

patches are custom designed and have flat or cylindrical shape in 3D for covering relevant 

parts of the robot arms, while smaller patches are used to sensorize the fingers. 
 

 

Fig. 11. The Humanoid robot ARMAR-III (Asfour et al., 2006). 

 

 

Fig. 12. Arrangement of tactile sensor in Robovie-IIS (Tajika et al. 2006). 

Another example of artificial skin system for a humanoid robot has been proposed by Tajika 

et al. (Tajika et al. 2006) and implemented in the Robovie-IIS, Figure 13. 

The tactile sensors have been designed with the aim of detecting stimuli coming from 

people trying to interact with the robot and it is based on PVDF based transducers. The skin 

has low spatial resolution (transducer area is of about 25 cm2), and it has the possibility of 

measuring only stimuli at frequencies higher than 5-10 Hz, Figure 12. 
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Fig. 13. The humanoid robot Robovie-IIS (Tajika et al. 2006). Robovie-IIS has been developed 

by ATR. 

A similar solution has been adopted in the CB2 humanoid robot (Minato et al., 2007). The 
robot it has humanlike appearance similar to a child-size boy. It is about 130cm high and 
weights about 33kg. Tactile sensing is obtained by embedding small thin PVDF films 
beneath the skin. The system is not modular, i.e. the transducers are placed ad-hoc over the 
robot body. The output is proportional to the rate of change of bending (deformation rate). 
The information equivalent to a contact force is obtained by temporal integration of sensor 
output. The transducers are put between a layer of urethane foam covering the mechanical 
parts and the outer silicone skin. On the robot there are 197 sensors providing output at a 

frequency of 100 Hz, Figure 15. 
 

 
Fig. 14. Tactile sensor layout of robot CB2 (Minato et al., 2007). CB2 has been developed by 

JST ERATO Asada Synergistic Intelligence Project 
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Finally, Kotaro (Mizuuchi et al, 2006), is a very complex musculo-skeletal humanoid robot 

where tactile sensing is obtained using flexible with bandages formed by two flexible printed 

circuit boards with a intermediate layer of pressure-sensitive conductive rubber forming 64 

taxels. The sensor can match complex shape surfaces. 
 

 

Fig. 15. Humanoid robot CB2 (Minato et al., 2007). 

 

Fig. 16. Muscoloskeletal humanoid Kotaro and the bandage tactile sensors (Mizuuchi et al, 

2006). 

3. Tactile/force sensor design
1
 

In this section we describe the prototype of a modular tactile and force sensor for a robot 

hand. The system is modular and the same design has been used to develop all the sensor 

used in different parts of the hand. Each module is composed by : a three-axis commercial 

force sensor(CTS 109 from CTS Corporation), a flexible tactile array based on piezo-resistive 

                                                 
1 This section is based on the work published in (Cannata & Maggiali, 2006). 
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transducer and a data acquisition and processing unit consisting of analog signal 

conditioning electronics, a microcontroller (MCU), and communication interface, (Cannata 

& Maggiali 2005), Figure 17. 
 

 

Fig. 17. CAD model of the whole phalange, with the force sensor, the tactile transducer and 

MCU board. 

These modules are implemented on three different printed circuit boards (PCBs), as 

sketched in Figure 17. The first board supports the force sensor, rigidly connected with the 

phalange’s shell, and its differential amplifiers. The tactile sensor module is a matrix of 64 

taxels, supported by a double layer flexible PCB (flex-PCB), conformed to the finger cover. 

Finally, a third PCB hosts the MCU for local data processing and a CAN transceiver for 

communications. The whole tactile sensing system is scalable as several modules can be 

interconnected using a CAN bus link. 

The current prototype has been designed to be integrated on each phalange of the robot 

MAC-HAND, Figure 18 . 
 

 

Fig. 18. The MAC-HAND robot. 

3.1 Force sensor 
The force sensor used is a CTS Series 109 integrated micro joystick (CTS Corporation, see for 

detailed specifications). This component has good sensitivity and linearity, furthermore, its 

SMD packaging makes its embedding and integration with other electronics much simpler 

than using a strain-gauge based design. 
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Table 1. Specifications oft he force sensor (CTS Series 109). 

3.2 Tactile sensor 
The tactile transducer is a matrix of electrodes (8×8 taxels in the current implementation), 

covered by a layer of pressure sensitive conductive rubber (PCR Co. Ltd.). The electrodes 

are etched on a flex-PCB, in order to conform to a curved surface, Figure 19b. A thin elastic 

sheet covers the whole sensor and provides a mild pre-load useful to reduce noise. Pressure 

due to contacts changes the resistance among the electrodes, and can be measured with a 

resistive voltage divider. The scanning of the whole tactile matrix is performed using the 

scheme shown in Figure 20, where the columns are directly selected and driven by digital 

output ports of the embedded MCU, while rows are selected using a low noise and low 

onresistance analog multiplexer, followed by a low pass active filter. Ideally, the scanning of 

a resistive tactile matrix should follow the zero potential method (Hillis 1982); in order to 

obtain fully decoupled measurements. This method requires that during scanning the taxels 

belonging to column i, all the other columns are set to ground (Shimoyo et al 2004). This 

approach has a major drawback since the driving electronics is too complex to be integrated 

 

 

Fig. 19. The electrodes of the tactile sensor are etched on a double layer flex-PCB, and are 

connected in a matrix configuration (fig. a).The flex circuit conforms to the cylindrical 

phalange rigid cover (fig. b - resistive rubber not shown here). Fig. c: section view of the 

tactile sensor. Row electrodes are encircled by column electrodes. 
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Fig. 20. Scanning Circuit Scheme 

in a small volume. Therefore, in order to reduce the effects of cross-coupling among the 

taxels, two combined techniques have been adopted in our design. First of all, a careful 

definition of the geometry of the electrodes has been adopted, Figure 19a, with the goal of 

limiting the parasitic currents across the various taxels along one direction. Secondly, by 

exploiting the linearity of the resistive circuit characterizing the transducer, the 

crosscoupling is compensated performing a scanning of all the rows, keeping all the MCU 

driving outputs at low level. In this way, the effects of the parasitic injected currents in each 

column (due mainly to the characteristics of the MCU output ports) can be measured and 

subtracted by software from measurements obtained during the ordinary scan procedure. 

This method is in practice equivalent to measure data from a dummy column not providing 

any pressure measurements. This technique has a mild cost in term of scanning time, while 

the quality of the measurements is largely improved, as shown in Figure 21. 

Signal conditioning is performed by using a first order active low pass filter placed on the 
sensor flex PCB and connected to the MCU. 
 

                 
                                               (a)                                                                     (b) 

Fig. 21. The tactile image refers to a small cylindrical presser. Fig. a shows the measured 

pressure distribution using conventional matrix scan. Fig. b shows the tactile image 

obtained using the proposed compensation method, based on dummy column method, where 

the false pressure distribution has been removed. 
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4. Local data processing 

Tactile data are sampled by the on-board MCU, with a resolution of 8 bits. Each tactile image 

in the current prototype consists of 64 taxels requiring the transmission of 8 CAN messages 

(with full payload) for each module and then 64 messages for the whole hand MAC-HAND. 

The CAN 2.0A frame duration, operating at 1Mbit/sec, is nominally of 132 μsec, therefore, the 

total minimum latency is of about 8.5 msec. This figure does not take into account possible bus 

access conflicts and therefore must be considered as an optimistic lower bound. 

We proposed to reduce the amount of tactile data fed back to the controller using an 

approach inspired by the idea of contact centroid introduced in (Bicchi et al 1993).Let us 

assume that the contact between the sensor and an object, corresponds to a pressure 

distribution over a connected region. The distribution in general can be assumed to be 

apriori unknown and therefore could be modeled as a random one. Therefore, it is 

reasonable to associate the contact distribution (i.e. the tactile image), to statistic moments of 

first and second order. In particular, it is possible to define the pressure centroid xc as follows: 

 
(1) 

where xi is the position of each taxel in local surface coordinates, p(xi) is the corresponding 
measured pressure and N is the number of taxels of the sensor. The shape of the pressure 
distribution could be approximated as an ellipsoid, defined as follows: 

 
(2) 

where E is a positive semi-definite symmetric matrix. 
Remark 1: The above quantities are valid for any sensor conforms to a regular surface. 
Experimental tests, discussed in detail in the next section, have shown significant sensitivity 
of both xc and E to measurements noise, in particular for low values of pressure. In order to 
reduce the effects of noise with respect to the actual pressure values, formulas (1) and (2) 
have been modified as follows: 

 
(3) 

 
(4) 

where 

 (5) 

with a and n suitable constants. The role of the non-linear transformation (5) is to increase 
the signal to noise ratio. 
The above formulas are implemented locally on the embedded MCU. Assuming a data 
resolution of 8 bits using this method a single CAN message is sufficient to transmit the 
force measurement and contact centroid data. In fact 3 bytes are requested for force 
measurements, 2 for xc and 3 are sufficient for E. Of course, this condition would hold also 

for tactile sensors with a large number of taxels. 
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Remark 2: In the curent implementation the tactile sensor covers an area of 34 ×20 mm2, then the 

pressure centroid can be computed with a spatial resolution approximately of less than 0.15 mm. 

5. Experients 

The experiments presented in this section refer to a planar tactile matrix formed by 8 × 8 

taxels. The electronics used for data acquisition and processing is the same designed to be 

installed on the gripper MAC-HAND. The experiments have been performed using the test 

rig shown in fig. Figure 22. The characteristic response of each taxel has been obtained from 

experimental data using a least square cubic approximation, Figure 23. The experiment 

proposed consists of a pen pressed on the matrix. The tactile image as well as the computed 

pressure centroids and ellipsoids are shown in Figure 24. The time behavior of the sensor 

shows a mild creep of the stressed taxel, as well as the astual sensor noise, Figure 25. The 

computation of the centroids and the ellipsoids has an evident averaging effect, Figure 26 

and Figure 27, with a better response using the non-linear algorithm (5). 
 

 

Fig. 22. Test rig for sensor calibration and tests. 

 

Fig. 23. Pressure to voltage ratio of a generic taxel. Dashed curve is the cubic that 

approximate the characteristics of the taxel 
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Fig. 24. Tactile image of a pressed pen.                     Fig. 25. Time behaviour of the taxels. 

 
                                    (a)                                                                                   (b) 

Fig. 26. Components of the matrix E as functions of time. Fig. a: without using 

transformation (5). Fig. b using transformation (5). 

 

Fig. 27. Coordinates of the centroid as functions of time. Fig. a: without using transformation 

(5). Fig. b using transformation (5). 
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6. Conclusions  

The use of skin like tactile sensors will play an important role for the development of 

humanoid robots performing complex interaction tasks possibly involving humans. In the 

first part of this chapter we have presented a survey of relevant recent achievements in the 

area of robot-skin technologies and tactile sensors for robot hand. In the second part an 

integrated tactile/ force sensor with embedded electronics has been presented. The sensor 

consists of a three components commercial force sensor and of a custom matrix tactile 

transducer based on pressure sensitive conductive rubber. The sensor is driven by a local 

embedded microcontroller which implements local algorithms for the processing of raw 

tactile data extracting relevant parameters related to the contact force distributions. 
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