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Abstract

Vascular smooth muscle cells (VSMCs) play important roles in the physiology and patho-
physiology of the blood vessels. In a healthy adult organism, VSMCs are quiescent, but 
after a blood vessel injury, they undergo phenotypic modulation from the contractile 
phenotype to the synthetic phenotype, characterized by high activity in migration, prolif-
eration and proteosynthesis. This behavior of VSMCs can lead to stenosis or obliteration 
of the vascular lumen. For this reason, VSMCs have tended to be avoided in the construc-
tion of blood vessel replacements. However, VSMCs are a physiological and the most 
numerous component of blood vessels, so their presence in novel advanced vascular 
replacements is indispensable. Either differentiated VSMCs or stem cells as precursors 
of VSMCs can be used in the reconstruction of the tunica media in these replacements. 
VSMCs can be obtained from blood vessels (usually from subcutaneous veins) taken 
surgically from the patients and can be expanded in vitro. During in vitro cultivation, 
VSMCs lose their differentiation markers, at least partly. These cells should therefore 
be re-differentiated by seeding them on appropriate scaffolds by composing cell culture 
media and by mechanical stimulation in dynamic bioreactors. Similar approaches can 
also be applied for differentiating stem cells, particularly adipose tissue-derived stem 
cells, toward VSMCs for the purposes of vascular tissue engineering.

Keywords: vascular replacements, adipose tissue-derived stem cells, transforming 
growth factor-beta, bone morphogenetic protein-4, mechanical loading, dynamic 
bioreactors, smooth muscle cell differentiation, tissue engineering, regenerative 
medicine
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1. Introduction

VSMCs are the most numerous cell types in blood vessels, where they are located in the 

medial layer of the vascular wall, that is, in the tunica media. These cells are necessary for 

the physiological functioning of blood vessels, particularly for vasoconstriction, for vasodi-

latation and for synthesis of vascular extracellular matrix. These cells are also implicated in 

pathological changes in blood vessels during atherosclerosis, hypertension, diabetic angiopa-

thy and other vascular disorders. After biochemical or mechanical damage to blood vessels, 

VSMCs undergo phenotypic modulation, that is, they make the transition from their original 

quiescent contractile phenotype to a synthetic phenotype, characterized by increased proteo-

synthesis and by activation of the migration and growth of VSMCs [1–4]. These changes often 

lead to irreversible damage to blood vessels, including stenosis and occlusion. Ischemia of the 

tissues supplied by the damaged vessels is then manifested by serious disorders, for example, 

heart failure, brain stroke or necrosis of leg tissues, which can result in amputation of the leg.

Low patency of arteries can be treated by balloon angioplasty or by endarterectomy. However, 

in cases of severe blood vessel damage, vascular replacements need to be implanted, usually 

in the form of bypasses spanning the damaged region of the original vessel.

Vascular bypass grafts can be obtained from four sources: autologous, allogenous, xenogenous 

or artificial. Autologous grafts, that is, grafts derived from the patient, have the drawbacks of 
limited availability, donor site morbidity, burden to the patient due to additional surgery 

and, in the case of implantation of a vein into an arterial position, also mechanical mismatch. 

Allogeneous transplants, that is, transplants derived from the same species, or xenogenous 

transplants, that is, transplants derived from a different species, are associated with a risk 
of immune rejection, disease transmission and, when they are fixed in glutaraldehyde, also 
potential release of cytotoxic molecules [5, 6]). In view of these problems, artificially con-

structed vascular grafts have been considered as very promising for future applications.

Artificial grafts currently used in clinical practice are made of synthetic polymers, namely 
polyethylene terephthalate (PET), expanded polytetrafluoroethylene (ePTFE) and, in some 
cases, also polyurethane [5, 7, 8]. The first generation of these prostheses was constructed as 
cell-free, that is, without the reconstruction of any layer of the natural blood vessel. However, 

the inner surface of the prosthesis attracted cell types participating in thrombus formation, 
immune reaction and prosthesis restenosis, that is, thrombocytes, inflammatory cells (leu-

cocytes, lymphocytes, monocytes, macrophages), and also VSMCs. VSMCs migrated on the 

prosthesis mainly from the sites of the anastomosis of the graft with the original vessel and 

were prone to excessive proliferation. In addition, precursors of VSMCs, originating from the 

bone marrow and circulating in the blood, can adhere to the inner surface of the prosthesis 

and can proliferate [9]. All these events can lead to considerable stenosis, obliteration and 

failure of vascular prostheses, especially medium-diameter vascular grafts (up to 8 mm in 

diameter) and small-diameter vascular grafts (up to 4 mm in diameter). Attempts have there-

fore been made to cover the luminal surface of the prosthesis with a confluent, phenotypically 
mature and semi-permeable endothelial cell layer, which is considered optimal for prevent-

ing thrombosis, inflammatory cell adhesion and VSMC hyperplasia [5, 7, 8].
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However, in advanced vascular replacements, it is necessary to reconstruct not only the endothelial 

cell layer, that is, the main component of the tunica intima, but also the other layers of the vascular 

wall, particularly the tunica media with VSMCs as the physiological component of natural blood 

vessels. It is necessary only to control the proliferation activity of these cells precisely and to direct 

them toward a differentiated quiescent contractile phenotype. In modern tissue engineering, it is 
also desirable to differentiate stem cells toward VSMCs, particularly stem cells derived from adi-
pose tissue, which is relatively easily accessible and is available in sufficient quantities [10, 11].

This chapter summarizes our own experience and the experience of other authors in  

re-differentiating VSMCs on vascular constructs via appropriate cultivation substrates, the com-

position of cell culture media, cell–cell interaction and mechanical stimulation in dynamic bioreac-

tors. Similar approaches have also been applied for differentiating stem cells, particularly adipose 
tissue-derived stem cells, toward VSMCs for the purposes of vascular tissue engineering.

2. Use of differentiated VSMCs in blood vessel tissue engineering

As mentioned earlier, attempts have been made to reconstruct the tunica intima on artificial 
vascular replacements, and these replacements have been used sporadically in clinical prac-

tice [7, 8]. At the same time, the tunica media has been reconstructed only rarely in vascular 

replacements, due to the tendency of VSMCs to proliferate excessively, and these attempts 
still remain at the experimental level. However, as was mentioned earlier, the presence of the 

tunica media enhances the functionality of artificially constructed blood vessels, if the VSMCs 
gain their quiescent contractile phenotype [12]. This phenotype is usually lost during the 

expansion of VSMCs after they have been harvested from blood vessels obtained surgically 

from patients. The contractile phenotype can be restored by an appropriate structure and 

composition of the scaffolds, by appropriate composition of cell culture media, by appropri-
ate cell–cell interactions and by appropriate mechanical stimulation of VSMCs in dynamic 

cell culture systems, especially if the factors mentioned here are applied in combination.

2.1. Structure and composition of the scaffolds

As concerns the structure of the scaffolds, three-dimensional (3D) porous scaffolds are more 
physiological than two-dimensional (2D) scaffolds, because 3D scaffolds better mimic the archi-
tecture of the native tunica media and enable a multilayered arrangement of VSMCs [13, 14]. The 

differentiation response of VSMCs to the uniaxial stress generated by a dynamic cell culture 
system was more pronounced in 3D scaffolds than on 2D scaffolds [15].

As concerns the chemical composition of the scaffolds, attempts are being made to fabricate 
these scaffolds from degradable materials, such as synthetic polymers (e.g., polylactides, 
polyglycolides, polycaprolactone and their copolymers), natural polymers (collagen, elastin, 

fibronectin, laminin, fibrin) and combinations of these materials [14–20]. Degradable scaffolds 
are used for vascular tissue engineering, because the scaffolds will gradually be removed and 
replaced by a newly regenerated vascular tissue. In addition, some natural polymers maintain 

the VSMCs in a differentiated contractile phenotype, for example, elastin and proteins of the 
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cell basement membrane, namely type IV collagen and laminin, while other natural polymers, 

such as fibronectin and vitronectin, stimulate the phenotypic modulation of VSMCs toward 
the synthetic phenotype and VSMC migration and proliferation [18, 21, 22]. The role of type I 

collagen is ambiguous. Polymeric fibrillary type I collagen in a healthy blood vessel keeps the 
VSMCs in their quiescent state, but degraded or denatured type I collagen supports VSMC 

proliferation [21, 23]. Scaffolds obtained by decellularization of various tissues, including 
blood vessels, recently emerged as very promising structures for cardiovascular tissue engi-

neering. After decellularization, the tissues lose most of their immunogenicity and could even 

be used for xenogeneic transplantation. At the same time, these scaffolds retain their original 
biochemical composition and mechanical properties [11, 12, 19, 20, 24].

2.2. Composition of the cell culture medium

Another important issue in the reconstruction of the tunica media is the composition of the 

cell culture medium. In the initial phase of colonization of the scaffolds with VSMCs, the 
migration and proliferation of these cells and their synthesis of ECM molecules is desirable, 

and therefore a standard serum-supplemented medium can be used. At the same time, the 

scaffolds should be seeded with a high number of VSMCs in order to shorten their migratory 
and proliferative phase as much as possible. It is known that the confluence of VSMCs and 
the development of cell–cell contact support the re-differentiation of VSMCs toward the con-

tractile phenotype [25]. When the scaffolds are well populated with VSMCs, it is necessary to 
achieve the quiescent differentiated contractile phenotype of VSMCs. For this purpose, chem-

ically defined serum-free or serum-low media are used, for example, media supplemented 
with transforming growth factor-β (TGF-β) [26–28] or with heparin [29]. At the same time, 

heparin supports endothelialization of the prosthesis [30], which also contributes to the devel-

opment of the contractile phenotype in VSMCs, for example, by producing sulfated heparin-

like glycosaminoglycans [2, 18, 31], nitric oxide [32, 33] and by developing contacts between 

VSMC and endothelial cells, that is, myoendothelial gap junctions [27].

2.3. Interactions of VSMCs with endothelial cells and with other VSMCs

VSMCs co-cultured in direct contact with endothelial cells showed more pronounced differ-

entiation toward the contractile phenotype (manifested by increased expression of contractile 

proteins, that is, SM1 and SM2 isoforms of smooth muscle myosin heavy chain, calponin 1 and 

smooth muscle α-actin) than VSMCs co-cultured with endothelial cells without direct contact 
with these cells. This effect was mediated by connexin 43 (Cx43), an important component 
of myoendothelial gap junctions. Inhibition of gap junctional communication pharmacologi-

cally or by knock down of Cx43 in endothelial cells blocked TGF-β signaling and VSMC dif-
ferentiation [27]. However, the gap junctions between VSMCs are a more controversial issue. 

On the one hand, an increased number of these junctions and upregulation of Cx43 have been 
shown to be associated with undesirable VSMC proliferation and vascular diseases. On the 

other hand, when increased expression of Cx43 in VSMCs was induced by TGF-β1, these cells 
enhanced the expression of smooth muscle α-actin (SM α-actin), calponin and SM1 myosin 
heavy chain, that is, markers of VSMC differentiation toward the contractile phenotype [34].

In comparison with other connexins, for example, Cx37, Cx43 is highly mechanosensitive. The 
exposure of human coronary artery smooth muscle cell to shear stress of 5 dyn/cm2, but not 
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to physiological shear stress of 12 dyn/cm2, caused the dysfunction of Cx40/Cx43 heterotypic 
myoendothelial gap junctions, which may be replaced by homotypic Cx43/Cx43 channels and 
induced the transition of VSMCs to the synthetic phenotype, which was manifested by decreased 

expression of smooth muscle myosin heavy chain (SM-MHC) and calponin and by increased 

release of platelet-derived growth factor-BB (PDGF-BB). At the same time, the VSMCs under 
shear stress of 5 dyn/cm2 were randomly oriented, while under shear stress of 12 dyn/cm2, these 

cells were aligned in the flow direction [35].

In our experiments, we investigated the effects of periodical uniaxial stretching of VSMCs on 
the Cx43 expression. Mechanical stimulation of VSMCs was performed using STREX equip-

ment (B Bridge International, Ltd). VSMCs were seeded in flexible silicone chambers coated 
with type I collagen and fibronectin. After a 2-day static culture, the VSMCs were subjected 
to stretch at a frequency of 0.5 Hz and an amplitude of 5%. After a further period of 48 h, the 

frequency was changed to 1 Hz. The changes in Cx43 expression were tested by qRT-PCR. At 
near-physiological conditions (frequency of 1 Hz and amplitude of 5%), the expression imme-

diately rose almost 5 fold, with the maximum in the first 30 min. At a lower degree of stimula-

tion (at a frequency of 0.5 Hz and an amplitude of 5%), the maximal expression was delayed 

to about 60 min, and it was considerably lower. For longer time periods, the expression of 

Cx43 decreased again (Figure 1). VSMCs were also stained by immunofluorescence to show 
the changes in the arrangement and the distribution of the contractile protein SM α-actin. 
After stretching, the SM α-actin was more intensely stained than in the control static culture 
and was organized into filaments, especially in cells after 24 h of stretching (Figure 2).

2.4. Mechanical loading of VSMCs in a dynamic culture system

In general, dynamic cultivation of VSMCs is an important tool for restoring the contractile dif-

ferentiated phenotype of these cells [16, 19]. It has been shown repeatedly that differentiation 
of VSMCs requires pulsatile stress and cyclic strain, that is, components of the hemodynamic 

stress to which blood vessels are exposed in vivo [36].

As concerns pulsatile stress, rabbit aortic VSMCs were seeded onto rubber-like elastic, three-

dimensional poly(lactide-co-caprolactone) scaffolds and were exposed to a pulsatile flow of 

Figure 1. Relative mRNA expression of connexin 43 (GJA1) in rat aortic smooth muscle cells after uniaxial stretching in 
the STREX dynamic cell culture system (B bridge international, ltd.) for 0–48 h at a frequency of 0.5 Hz (dark) or 1 Hz 

(light).
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the culture medium (flow rate 130 ml/min, pressure 25 mmHg with a pulse of 1 Hz, amplitude 
of radial distention 5%, exposure 8 weeks). The pulsatile strain and the shear stress enhanced 

the VSMC proliferation and collagen production. However, at the same time, the expression 

of SM α-actin, an early marker of VSMC differentiation, was upregulated 2.5-fold in com-

parison with the value in VSMCs under static conditions, and the VSMCs were aligned in a 

direction radial to the distending direction, that is, similarly as in native blood vessels in vivo, 

whereas the VSMCs were randomly oriented under static conditions [37].

The behavior of VSMCs in a pulsatile bioreactor can be further modulated by the presence or 

absence of endothelial cells. Endothelial cells were seeded on the opposite side of a porous 

polycarbonate membrane and were placed in contact with a collagen gel containing VSMCs. 

The presence of the endothelial cells increased the VSMC size and the expression of the con-

tractile proteins, namely SM α-actin and SM-MHC. Absence of endothelial cells decreased 
the expression of SM α-actin and SM-MHC without affecting the size of the VSMCs. The 
proliferation of VSMCs was not affected by the presence or absence of endothelial cells [38].

As concerns cyclic strain, collagen-based gels laden with primary human umbilical artery 

VSMCs were exposed to a 10% cyclic strain at 0.5 Hz for 5 days. Cyclic stimulation promoted 

cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of the 

strained samples with respect to the static controls. Moreover, cyclic strain had a positive 

effect on VSMC behavior: the cells maintained their contractile phenotype and spread uni-
formly throughout the thickness of the walls of collagen-based tubular structures [39].

The effect of cyclic strain can be further modulated by the presence of various growth factors. 
For example, VSMCs in a 3D collagen type 1 matrix were exposed to a 10% circumferential 
strain at a frequency of 1 Hz. These conditions increased the gel compaction and the VSMC 

proliferation, which was further enhanced by adding PDGF into the cell culture medium. 
Conversely, the addition of TGF-β strongly inhibited cell proliferation and increased the 
expression of SM α-actin [40]. In a study by Yao et al. [41], rat aortic VSMCs in 70% confluence 
and after starving in a Dulbecco’s Modified Eagle Medium (DMEM) without serum for 24 h 
were subjected to cyclic strain of 10% elongation at 1.25 Hz for 24 h in the Flexercell Tension 

Figure 2. Immunofluorescence of SM α-actin in rat aortic smooth muscle cells in 2-day-old cultures after exposure to 
uniaxial stretching at a frequency of 1 Hz for 4 h (A), 24 h (B) and in control cells without stretching (C). Leica SPE 

confocal microscope (DM 2500 CSQ V-VIS), obj. 63×. Scale bar = 25 μm.

Muscle Cell and Tissue - Current Status of Research Field294



Plus system. The strain stimulated the secretion of TGF-β1 by VSMCs and upregulated the 
expression of contractile phenotype markers in these cells, namely smooth muscle protein 

22-α (SM22-α), SM α-actin and calponin.

The parameters of the cyclic strain also strongly modulate the VSMC response. For example, 

rat aortic VSMCs were exposed to cyclic strains in vitro with defined parameters, that is, 5% 
strain, considered as physiological, and 15% strain, considered as pathological. Both types of 

strain had a frequency of 1.25 Hz and were applied for 24 h. The results showed that 15% strain 

significantly increased VSMC migration and proliferation in comparison with 5% strain [42].

3. Use of stem cells as a source of VSMCs for blood vessel tissue 
engineering

Stem cells have emerged as a promising resource for advanced tissue engineering, including 

vascular tissue engineering. Differentiated VSMCs are often obtained from aged and poly-

morbid patients. These cells show lower proliferation potential than is desirable, as the har-

vested cells need to be expanded in cell culture conditions. In addition, the VSMCs also show 

a higher tendency toward senescence. Another consideration is that these VSMCs are mostly 

of venous origin because it is easier and less invasive to isolate subcutaneous veins than arter-

ies. However, venous VSMCs have different properties from those of arterial VSMCs, for 
example, they are adapted for lower pressure and slower blood circulation in the vein system.

Stem cells are a component of the blood vessels themselves, where they are distributed 

throughout the entire vascular wall, that is, in the subendothelial space of the tunica intima, in 

the tunica media and also in the tunica adventitia. Their primary function is postnatal vasculo-

genesis and regeneration of the vascular wall after injury, but they can also be a cell source for 

vascular tissue engineering [43–45]. However, harvesting stem cells and isolating differenti-
ated VSMCs are associated with similar problems [46].

Other sources of stem cells with the potential to be differentiated into VSMCs are human 
pluripotent stem cells, obtained from embryonic tissues [47, 48] and induced pluripotent stem 

cells (iPSCs) [49–51]. However, the use of these cells, although promising, is associated with 

ethical and legal issues in human embryonic stem cells and with a risk of potential tumorige-

nicity of iPSCs. These complications can be overcome by the use of stem cells isolated from 

extrafetal tissues, for example, placenta [52] and umbilical cord [53] or by the use of stem 

cells from adult tissues, such as bone marrow [36, 54, 55], epidermis, namely hair follicles 

[56] or skeletal muscle [57]. In addition, adult stem cells can be applied in autologous form. 

However, harvesting the adult tissues mentioned here is often invasive and painful, and the 

tissues are obtained in relatively small quantities. Consequently, adipose tissue-derived stem 

cells (ASCs) seem to be the most promising source because the adipose tissue, located sub-

cutaneously, can be obtained by a less invasive method, that is, liposuction, and in relatively 

large quantities.

ASCs have been used relatively widely for experimental vascular tissue engineering. 

The main tools for differentiating ASCs toward VSMCs include composing cell culture 
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media and exerting mechanical stress in dynamic cell culture systems, similarly as for 

the re-differentiation of VSMCs. Examples of results obtained by various authors [10, 11, 

58–67] are summarized in Table 1.

Author Scaffolds Medium supplement Cultivation 
system

Obtained VSMC 
markers

Rodríguez 
et al. [10]

Uncoated tissue culture 

polystyrene dishes 

or dishes coated with 

laminin or collagen

Medium MCDB 131 
with 1% FBS plus 

100 units/ml of heparin

Static SM α-actin, calponin, 
caldesmon, SM22-α, 
SM-MHC, smoothelin

Kim et al. [58] Tissue culture 

polystyrene

Angiotensin II Static SM α-actin, calponin, 
h-caldesmon, SM-MHC

Kim et al. [59] Tissue culture 

polystyrene

Bradykinin Static SM α-actin

Kim et al. [60] Tissue culture 

polystyrene

Thromboxane A
2
 

mimetic U46619

Static SM α-actin, calponin, 
SM-MHC, smoothelin

Nincheri et al. 
[61]

Tissue culture 

polystyrene, microscope 

slides coated with 

gelatine

Sphingosine 

1-phosphate

Static SM α-actin, transgelin, 
cytoskeletal F-actin 

assembly, Ca2+ currents

Wang et al.. 

[62]

Tissue culture 

polystyrene dishes

TGF-β1, BMP-4 Static SM α-actin, SM22-α, 
calponin, SM-MHC

Aji et al. [63] Tissue culture 

polystyrene

TGF-β1, BMP-4 Static SM α-actin, SM22α, 
calponin, SM-MHC

Elçin et al. [64] 8-chamber slides (Labtek) TGF-β1, BMP-4, 
angiotensin II

Static SM α-actin, calponin, 
h-caldesmon SM-MHC

Lachaud et al. 

[65]

Tissue culture 

polystyrene dishes

EGF Static SM α-actin, calponin, 
caldesmon, SM22α, 
desmin, SM-MHC, 

smoothelin-B

Wang et al. 

[66]

Polyglycolic acid mesh TGF-β1, BMP-4 Pulsatile stress SM α-actin, calponin, 
SM-MHC

Harris et al. 

[11]

Decellularized saphenous 

vein

angiotensin II, SPC, 

TGF-β1
Bioreactor 

generating:

Tension

Compression

Pressure

Perfusion

calponin, caldesmon, 

SM-MHC

Rashidi et al. 
[67]

Plasma-treated silicon 

membranes with collagen 

I

TGF-β1 Cyclic strain SM α-actin, SM22-α, 
h-caldesmon, calponin3

TGF-β1: transforming growth factor-β1; BMP-4: bone morphogenetic protein-4 (a polypeptide belonging to the TGF-β 
superfamily); SM α-actin: α-isoform of smooth muscle actin; SM22-α: smooth muscle protein 22-α; SM-MHC: smooth 
muscle myosin heavy chain; Transgelin: actin cross-linking/gelling protein in fibroblasts and smooth muscle cells; SPC: 
sphingosylphosphorylcholine; EGF: epidermal growth factor.

Table 1. Culture conditions for differentiation of ASCs into VSMCs and the obtained markers of differentiation.

Muscle Cell and Tissue - Current Status of Research Field296



For our experiments, the ASCs were isolated from lipoaspirates obtained from patients by 

liposuction under their informed consent and ethical approval. Lipoaspirates of subcutane-

ous adipose tissue were taken from three different regions, that is, the abdominal region and 
the inner or outer side of the thighs. Liposuction was performed under low negative pres-

sure (−200 mmHg) and under high negative pressure (−700 mmHg). The ASCs were then 
harvested by a method originally described by Estes et al. [68], with a slight modification 
described in our earlier study [69].

3.1. Differentiation of ASCs toward VSMCs by the composition of the cell culture 
medium

In our first set of experiments, we attempted to optimize the composition of the cell cul-
ture media in a conventional static cell culture system in order to differentiate the ASCs 
toward VSMCs. First, three types of culture media were tested, namely a DMEM medium 

(Sigma-Aldrich, Cat. No. D5648) with 10% of fetal bovine serum (FBS), SmGM®-2 Smooth 
Muscle Growth Medium-2 BulletKit® (SMGM, Lonza, USA, Cat. No. CC-3182) and 
Endothelial Growth Medium-2 (EGM-2, Lonza, USA, Cat. No. 3162). These media alone, 
that is, without additional supplementation, did not promote the differentiation of ASCs 
into VSMCs. Therefore, we supplemented the media with transforming growth factor-β1 
(TGF-β1; 2.5 ng/mL, Abcam) and with bone morphogenetic protein-4 (BMP-4; 2.5 ng/ml, 
Sigma-Aldrich) because this combination of growth factors showed greater differentiation 
efficiency than TGF-β1 or BMP-4 alone or in combination with angiotensin II [64]. The 

addition of TGF-β1 into SMGM-2 and EGM-2 media caused rapid proliferation and subse-

quent detachment of the ASCs. The differentiation experiments were therefore performed 
with DMEM +2% of FBS + TGF-β1 + BMP-4. The addition of TGF-β1 increased the prolif-
eration of ASCs in comparison with DMEM +2% FBS without any supplement. When the 

ASCs were cultured with TGF-β1 and BMP-4 for three days, immunofluorescence staining 
revealed the formation of SM α-actin-containing filaments and an increasing number of 
calponin-positive cells (Figure 3A-C). In later culture intervals (days 14–17), cells with 

slight positivity for desmin and sporadic SM-MHC-positive cells were also detected. Cells 

cultured without the supplements only sporadically contained SM α-actin filaments or 
calponin (Figure 3D and E). In our experiments, we observed individual differences in 
proliferation and differentiation among the ASCs from various patients and also among 
the cells taken from the same patient but from different regions of the body.

3.2. Differentiation of ASCs toward VSMCs by the composition of the cell culture 
medium and by mechanical load

In our second set of experiments, we studied the differentiation of ASCs toward VSMCs by com-

bining cell differentiation media with mechanical load. The blood pumped by the heart generates 
several mechanical stimuli on the arterial wall, such as the wall shear stress affecting endothelial 
cells, and also the pressure force and the cyclic strain stress. These types of stimuli promote or 

accelerate the differentiation and the phenotypic maturation of ASCs and other stem cells into 
VSMCs [36, 55, 66]. In order to simulate the effects of these mechanical stimuli, we have devel-
oped a unique dynamic cultivation system. This system consists of special cultivation chambers 
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Figure 4. Cultivation chambers used for mechanical stimulation (left). The use of transparent surfaces allows microscopic 

live-cell imaging (right).

and a pressure generation system. The design of the chamber allows the use of rigid substrates 

(glass) or flexible substrates (cast silicone). A rigid substrate is used for evaluating the effect of 
the pressure force. A flexible substrate simulates an elastic arterial wall. The pressure force that 
is applied mimics the dilatation and constriction of the arterial wall by generating cyclic strain 

stress. To improve their hydrophilicity, the substrates are plasma treated. In addition, these sub-

strates can be coated with collagen or fibrin gels to improve the adhesion and the initial pro-

liferation of the cells. After cell seeding, the chamber is hermetically sealed to allow controlled 

stimulation (Figure 4). The pressure generation is maintained by a computer-controlled custom-

built linear syringe pump. A pressure-based feedback-controlling algorithm is implemented to 

Figure 3. Immmunofluorescence staining of SM α-actin (red) and calponin (green) in ASCs on day 3 of differentiation 
(A–C) in a medium containing TGF-β and BMP-4. Immunofluorescence staining of desmin (D) on day 14 and of 
SM-MHC (E) on day 17. Cell nuclei are visualized with Hoechst #33258 (blue). Olympus IX 71 microscope, objective ×20 
and ×40, scale 100 μm and 50 μm, respectively.
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maintain stable conditions. Pressure pulses are generated between two set points that simulate 

systolic and diastolic pressure. Maximum pressure can be set up to 300 mmHg (40 kPa), with a 
maximum pulse rate of up to 180 beats per minute (3 Hz).

Our experimental results, obtained in the dynamic culture system described above, indicated 

positive effects of pressure stimulation on the differentiation of ASCs toward VSMCs. ASCs in 
low passages 2–4, with initial density of approx. 70,000 cells/cm2, were cultured in high glu-

cose DMEM medium (Sigma-Aldrich, Cat. No. D5648), supplemented with 2% FBS, TGF-β1 
(2.5 ng/mL, Abcam) and BMP-4 (2.5 ng/ml, Sigma-Aldrich) for 3 or 7 days under static culture 
conditions or under dynamic pulse pressure stimulation. This stimulation was set to physi-

ological 120/80 mmHg (15.9/10.6 kPa) and pulse rate simulating 60 beats per minute (1 Hz). 

The cell culture medium was replaced after 3 days. The ASCs were stained for SM α-actin 
(Sigma-Aldrich, Cat. No. S2547), an early marker of VSMC differentiation, and for calponin 
(Abcam, Cat. No. ab46794), an intermediate marker of VSMC differentiation, and the cell nuclei 
were counterstained with Hoechst #33258. Pressure loading supported ASC proliferation after 
3 days (Figure 5B) and after 7 days (Figure 5D). This was manifested by a higher cell population 

Figure 5. Immunofluorescence staining of SM α-actin (red) and calponin (green) in ASCs cultured embedded in a fibrin 
gel on glass under static conditions (A, C) and under dynamic conditions (B, D), using the system depicted in Figure 4. 

A, B: 3 days of cultivation; C, D: 7 days of cultivation. Cell nuclei are counterstained with Hoechst #33258. IX71 Olympus 
microscope, DP71 digital camera, obj. × 10.
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Figure 6. Capillary formation in the co-culture model of ASCs with endothelial cells. A: Vascular network formed by 

endothelial cells in the co-culture model, endothelial cells stained against VE-cadherin. B: Detail of vascular sprouting; 
VE-cadherin in green, CD146 (a marker of pericytes) in red. C: Stabilization of capillaries by perivascular cells after 

7 days of co-culture; VE-cadherin in green, SM α-actin in red. D: Detail of the close contact between perivascular cells and 
endothelial cells; VE-cadherin in green, SM α-actin in red. Nikon Ti-E inverted fluorescence microscope with a CARV 
II confocal scanner.

density than in the static culture (Figure 5A and C). The ASCs were positively stained for SM 

α-actin on all samples. Moreover, increased numbers of cells positively stained for calponin 
were found in ASCs cultured in fibrin gel under pulse pressure on day 7 (Figure 5D). This sug-

gests that the differentiation of ASCs into VSMCs in the presence of TGF-β1 and BMP-4 was 
significantly enhanced by dynamic pressure loading.

3.3. Differentiation of ASCs in co-culture with vascular endothelial cells

In our third set of experiments, we studied the behavior of ASCs in co-culture with vascu-

lar endothelial cells. ASCs are known to possess the ability to stimulate endothelial cells to 

form capillaries. In a co-culture model of ASCs and endothelial cells, the ASCs in close con-

tact with endothelial cells differentiated after 7 days into pericyte-like cells, which stained 
positively for SM α-actin and stabilized the wall of newly formed capillaries (Figure 6). 

Similar results were achieved in a study by Rohringer et al. [70], who co-cultured ASCs 
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and vascular endothelial cells in a fibrin gel and demonstrated that the proximity of ASCs 
and endothelial cells stimulated the formation of tubular structures by endothelial cells, 

which were stabilized by ASCs developing the characteristics of pericytes. Recent studies 
have documented similarities between mesenchymal stem cells and pericytes. Pericytes 

are contractile cells that are in close contact with endothelial cells in capillaries and serve 

to control the blood flow. When grown in vitro, pericytes express similar surface antigens 
as ASCs (CD73, CD90 or CD105) [71] and lack hematopoietic markers (CD45) and endo-

thelial markers (CD31, von Willebrand factor, VE-cadherin). Pericytes are also capable 
of multipotential differentiation, for example, adipogenic, osteogenic, chondrogenic and 
myogenic differentiation [72]. However, the level of CD146, which is considered to be 

a marker of pericytes, differs greatly among different isolations of ASCs (in our experi-
ence from 0.5–90%). CD146 (also known as MCAM, S-endo-1, MUC18 or P1H12) is not 

expressed solely in pericytes. It is also considered to be a marker of endothelial progeni-

tor cells and endothelial cells. It was recently shown that CD146 acts as a receptor for 

Wnt5a and regulates cell migration [73] or that it is involved in controlling the formation 

of the blood–brain barrier, where it ensures communication between endothelial cells and 

pericytes [74]. In the co-culture model of endothelial cells with ASCs, it remains elusive 

whether every ASC that is in close contact with an endothelial cell can act as a pericyte, or 

whether pericytes form a subpopulation of the heterogeneous population of ASCs with a 

specific, irreplaceable function.

4. Conclusion

Vascular smooth muscle cells (VSMCs) are the most numerous component of the arterial and 

venous wall, and they ensure the physiological functions of blood vessels. Under pathological 

conditions, however, VSMCs lose their differentiation markers, which is accompanied by activa-

tion of migration and proliferation of these cells. This can lead to stenosis or obliteration of the 

injured blood vessels. For this reason, VSMCs were not included in the early generations of vas-

cular replacements, which were either cell-free or pre-endothelialized in vitro. Reconstruction 
of the tunica media containing VSMCs remains at the experimental level. The tunica media can 

be reconstructed with the use of differentiated VSMCs taken from blood vessels (usually sub-

cutaneous veins), isolated surgically or with the use of stem cells, which is a more advanced 

approach. Various types of stem cells have been used for differentiation into VSMCs and for con-

structing vascular replacements, including embryonic stem cells, induced pluripotent stem cells, 

stem cells from extrafetal tissues and stem cells isolated from adult tissues, such as bone marrow, 

skeletal muscle, epidermis and adipose tissue. Adipose-tissue derived stem cells (ASCs) seem to 

be the most promising source of VSMCs because they can be isolated in relatively large quanti-

ties, by relatively non-invasive methods (liposuction) and in autologous form. Differentiation of 
ASCs into VSMCs can be induced by appropriate scaffolds (preferably three-dimensional and 
compliant) by appropriate composition of the cell culture media (e.g., a low-serum medium 

supplemented with TGF-β1 and BMP-4) and particularly by mechanical stimulation in dynamic 
cell culture systems generating pulsatile stress, cyclic strain and pressure stress. In co-cultures 

with endothelial cell forming tubular structures, ASCs form pericyte-like cells.

Vascular Smooth Muscle Cells (VSMCs) in Blood Vessel Tissue Engineering: The Use…
http://dx.doi.org/10.5772/intechopen.77108

301



Acknowledgements

This study was supported by the Czech Health Research Council, Ministry of Health of the 
Czech Republic (project No. 15-33018A) and by the Grant Agency of Charles University 
(GAUK, project No. 642217). Further support was provided by the Ministry of Education, 
Youth and Sports of the Czech Republic within LQ1604 National Sustainability Program 
II (BIOCEV-FAR project) and within the framework of project No. LM2015062 (Czech-
BioImaging) and also by the European Regional Development Fund, OPPK Mikroskopický 
Systém (project No. CZ.2.16/3.1.00/28034). Mr. Robin Healey (Czech Technical University in 
Prague) is gratefully acknowledged for his language revision of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author details

Lucie Bacakova1*, Martina Travnickova1, Elena Filova1, Roman Matejka1, Jana Stepanovska1, 

Jana Musilkova1, Jana Zarubova1 and Martin Molitor2

*Address all correspondence to: lucie.bacakova@fgu.cas.cz

1 Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech 

Academy of Sciences, Prague, Czech Republic

2 Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Prague, Czech Republic

References

[1] Schwartz SM, Campbell GR, Campbell JH. Replication of smooth muscle cells in vascu-

lar disease. Circulation Research. 1986;58(4):427-444. DOI: 10.1161/01.RES.58.4.427

[2] Campbell JH, Campbell GR. Smooth muscle phenotypic modulation--a personal expe-

rience. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(8):1784-1789. DOI: 

10.1161/ATVBAHA.111.243212

[3] Shinohara S, Shinohara S, Kihara T, Miyake J. Regulation of differentiated phenotypes 
of vascular smooth muscle cells. In: Haruo Sugi, editor. Current Basic and Pathological 

Approaches to the Function of Muscle Cells and Tissues—From Molecules to Humans, 

InTech, 2012, Chapter 14, pp. 331-344. DOI: 10.5772/3003, ISBN 978-953-51-0679-1. 
Available from: https://www.intechopen.com/books/current-basic-and-pathological-
approaches-to-the-function-of-muscle-cells-and-tissues-from-molecules-to-humans/

regulation-of-differentiated-phenotypes-of-vascular-smooth-muscle-cells

Muscle Cell and Tissue - Current Status of Research Field302



[4] Saleh Al-Shehabi T, Iratni R, Eid AH. Anti-atherosclerotic plants which modulate the 
phenotype of vascular smooth muscle cells. Phytomedicine. 2016;23(11):1068-1081. DOI: 

10.1016/j.phymed.2015.10.016

[5] Chlupac J, Filova E, Bacakova L. Blood vessel replacement: 50 years of development and  
tissue engineering paradigms in vascular surgery. Physiological Research. 2009;58 
(Suppl 2):S119-S139. PMID: 20131930

[6] Filova E, Straka F, Mirejovsky T, Masin J, Bacakova L. Tissue-engineered heart valves. 
Physiological Research. 2009;58(Suppl 2):S141-S158. PMID: 20131932

[7] Bordenave L, Fernandez P, Rémy-Zolghadri M, Villars S, Daculsi R, Midy D. In vitro 
endothelialized ePTFE prostheses: Clinical update 20 years after the first realization. 
Clinical Hemorheology and Microcirculation. 2005;33(3):227-234. PMID: 16215288

[8] Deutsch M, Meinhart J, Zilla P, Howanietz N, Gorlitzer M, Froeschl A, Stuempflen A, 
Bezuidenhout D, Grabenwoeger M. Long-term experience in autologous in vitro endo-

thelialization of infrainguinal ePTFE grafts. Journal of Vascular Surgery. 2009;49(2):352-
362. discussion 362. DOI: 10.1016/j.jvs.2008.08.101

[9] Hegner B, Weber M, Dragun D, Schulze-Lohoff E. Differential regulation of smooth 
muscle markers in human bone marrow-derived mesenchymal stem cells. Journal of 
Hypertension. 2005;23(6):1191-1202. DOI: 10.1097/01.hjh.0000170382.31085.5d

[10] Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipo-

tent stem cells in human adipose tissue differentiate into functional smooth muscle 
cells. Proceedings of the National Academy of Sciences of the United States of America. 
2006;103(32):12167-12172. DOI: 10.1073/pnas.0604850103

[11] Harris LJ, Abdollahi H, Zhang P, McIlhenny S, Tulenko TN, DiMuzio PJ. Differentiation 
of adult stem cells into smooth muscle for vascular tissue engineering. The Journal of 
Surgical Research. 2011;168(2):306-314. DOI: 10.1016/j.jss.2009.08.001

[12] Neff LP, Tillman BW, Yazdani SK, Machingal MA, Yoo JJ, Soker S, Bernish BW, Geary 
RL, Christ GJ. Vascular smooth muscle enhances functionality of tissue-engineered 
blood vessels in vivo. Journal of Vascular Surgery. 2011;53(2):426-434. DOI: 10.1016/j.
jvs.2010.07.054

[13] Yamamoto M, Nakamura H, Yamato M, Aoyagi M, Yamamoto K. Retardation of phe-

notypic transition of rabbit arterial smooth muscle cells in three-dimensional primary 

culture. Experimental Cell Research. 1996;225(1):12-21. DOI: 10.1006/excr.1996.0152

[14] Hu J, Sun X, Ma H, Xie C, Chen YE, Ma PX. Porous nanofibrous PLLA scaffolds for vas-

cular tissue engineering. Biomaterials. 2010;31(31):7971-7977. DOI: 10.1016/j.biomaterials. 
2010.07.028

[15] Bono N, Pezzoli D, Levesque L, Loy C, Candiani G, Fiore GB, Mantovani D. Unraveling 
the role of mechanical stimulation on smooth muscle cells: A comparative study between 

2D and 3D models. Biotechnology and Bioengineering. 2016;113(10):2254-2263. DOI: 
10.1002/bit.25979

Vascular Smooth Muscle Cells (VSMCs) in Blood Vessel Tissue Engineering: The Use…
http://dx.doi.org/10.5772/intechopen.77108

303



[16] Tschoeke B, Flanagan TC, Koch S, Harwoko MS, Deichmann T, Ellå V, Sachweh JS, 
Kellomåki M, Gries T, Schmitz-Rode T, Jockenhoevel S. Tissue-engineered small-caliber 
vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. 
Tissue Engineering. Part A. 2009;15(8):1909-1918. DOI: 10.1089/ten.tea.2008.0499

[17] Aper T, Wilhelmi M, Gebhardt C, Hoeffler K, Benecke N, Hilfiker A, Haverich A. Novel 
method for the generation of tissue-engineered vascular grafts based on a highly com-

pacted fibrin matrix. Acta Biomaterialia. 2016;29:21-32. DOI: 10.1016/j.actbio.2015.10.012

[18] Parizek M, Novotna K, Bacakova L. The role of smooth muscle cells in vessel wall 
pathophysiology and reconstruction using bioactive synthetic polymers. Physiological 

Research. 2011;60(3):419-437. PMID: 21401306

[19] Huang AH, Niklason LE. Engineering of arteries in vitro. Cellular and Molecular Life 
Sciences. 2014;71(11):2103-2118. DOI: 10.1007/s00018-013-1546-3

[20] Thottappillil N, Nair PD. Scaffolds in vascular regeneration: Current status. Vascular 
Health and Risk Management. 2015;11:79-91. DOI: 10.2147/VHRM.S50536

[21] Yamamoto M, Yamamoto K, Noumura T. Type I collagen promotes modulation of cul-
tured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. 

Experimental Cell Research. 1993;204(1):121-129. DOI: 10.1006/excr.1993.1016

[22] Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, Keating 
MT, Li DY. A critical role for elastin signaling in vascular morphogenesis and disease. 

Development. 2003;130(2):411-423. DOI: 10.1242/dev.00223

[23] Raines EW, Koyama H, Carragher NO. The extracellular matrix dynamically regulates 
smooth muscle cell responsiveness to PDGF. Annals of the New York Academy of 
Sciences. 2000;902:39-51. discussion 51-52. DOI: 10.1111/j.1749-6632.2000.tb06299.x

[24] Boccafoschi F, Botta M, Fusaro L, Copes F, Ramella M, Cannas M. Decellularized bio-

logical matrices: An interesting approach for cardiovascular tissue repair and regenera-

tion. Journal of Tissue Engineering and Regenerative Medicine. 2017;11(5):1648-1657. 

DOI: 10.1002/term.2103

[25] Babij P, Kawamoto S, White S, Adelstein RS, Periasamy M. Differential expression of 
SM1 and SM2 myosin isoforms in cultured vascular smooth muscle. The American 

Journal of Physiology. 1992;262(3 Pt 1):C607-C613. DOI: 10.1152/ajpcell.1992.262.3.C607

[26] Topouzis S, Majesky MW. Smooth muscle lineage diversity in the chick embryo. Two 

types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional 
responses to transforming growth factor-beta. Developmental Biology. 1996;178(2):430-
445. DOI: 10.1006/dbio.1996.0229

[27] Gairhe S, Bauer NN, Gebb SA, McMurtry IF. Myoendothelial gap junctional signaling 
induces differentiation of pulmonary arterial smooth muscle cells. American Journal 
of Physiology. Lung Cellular and Molecular Physiology. 2011;301(4):L527-L535. DOI: 
10.1152/ajplung.00091.2011

[28] Tang Y, Yang X, Friesel RE, Vary CP, Liaw L. Mechanisms of TGF-β-induced differentia-

tion in human vascular smooth muscle cells. Journal of Vascular Research. 2011;48(6):485-

494. DOI: 10.1159/000327776

Muscle Cell and Tissue - Current Status of Research Field304



[29] Delmolino LM, Stearns NA, Castellot JJ Jr. COP-1, a member of the CCN family, is a 
heparin-induced growth arrest specific gene in vascular smooth muscle cells. Journal of 
Cellular Physiology. 2001;188(1):45-55. DOI: 10.1002/jcp.1100

[30] Yao Y, Wang J, Cui Y, Xu R, Wang Z, Zhang J, Wang K, Li Y, Zhao Q, Kong D. Effect of 
sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on 

anti-thrombogenic property and endothelialization. Acta Biomaterialia. 2014;10(6):2739-
2749. DOI: 10.1016/j.actbio.2014.02.042

[31] Bacakova L, Novotna K, Parizek M. Polysaccharides as cell carriers for tissue engi-
neering: The use of cellulose in vascular wall reconstruction. Physiological Research. 
2014;63(Suppl 1):S29-S47. PMID: 24564664

[32] Sugimoto M, Yamanouchi D, Komori K. Therapeutic approach against intimal hyper-

plasia of vein grafts through endothelial nitric oxide synthase/nitric oxide (eNOS/NO) 
and the rho/rho-kinase pathway. Surgery Today. 2009;39(6):459-465. DOI: 10.1007/s00 

595-008-3912-6

[33] Uzarski JS, Cores J, McFetridge PS. Physiologically modeled pulse dynamics to improve 
function in vitro-endothelialized small-diameter vascular grafts. Tissue Engineering. 

Part C, Methods. 2015;21(11):1125-1134. DOI: 10.1089/ten.TEC.2015.0110

[34] Rama A, Matsushita T, Charolidi N, Rothery S, Dupont E, Severs NJ. Up-regulation of 
connexin43 correlates with increased synthetic activity and enhanced contractile differ-

entiation in TGF-beta-treated human aortic smooth muscle cells. European Journal of 
Cell Biology. 2006;85(5):375-386

[35] Zhang Z, Chen Y, Zhang T, Guo L, Yang W, Zhang J, Wang C. Role of Myoendothelial 
gap junctions in the regulation of human coronary artery smooth muscle cell differentia-

tion by laminar shear stress. Cellular Physiology and Biochemistry. 2016;39(2):423-437. 
DOI: 10.1159/000445636

[36] Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and 
mesenchymal stem cells by mechanical strain. Molecular and Cellular Biomechanics. 

2006;3(1):21-34. PMID: 16711069

[37] Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, 
Choi CY, Kim SJ. Mechano-active tissue engineering of vascular smooth muscle using 
pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials. 2005;26(12):1405-

1411. DOI: 10.1016/j.biomaterials.2004.04.036

[38] Scott D, Tan Y, Shandas R, Stenmark KR, Tan W. High pulsatility flow stimulates 
smooth muscle cell hypertrophy and contractile protein expression. American Journal 
of Physiology. Lung Cellular and Molecular Physiology. 2013;304(1):L70-L81. DOI: 

10.1152/ajplung.00342.2012

[39] Bono N, Meghezi S, Soncini M, Piola M, Mantovani D, Fiore GB. A dual-mode bioreac-

tor system for tissue engineered vascular models. Annals of Biomedical Engineering. 

2017;45(6):1496-1510. DOI: 10.1007/s10439-017-1813-9

[40] Stegemann JP, Nerem RM. Phenotype modulation in vascular tissue engineering 
using biochemical and mechanical stimulation. Annals of Biomedical Engineering. 

2003;31(4):391-402. PMID: 12723680

Vascular Smooth Muscle Cells (VSMCs) in Blood Vessel Tissue Engineering: The Use…
http://dx.doi.org/10.5772/intechopen.77108

305



[41] Yao QP, Zhang P, Qi YX, Chen SG, Shen BR, Han Y, Yan ZQ, Jiang ZL. The role of 
SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain. 
The International Journal of Biochemistry and Cell Biology. 2014;49:98-104. DOI: 10.1016/ 
j.biocel.2014.01.016

[42] Qi YX, Qu MJ, Yan ZQ, Zhao D, Jiang XH, Shen BR, Jiang ZL. Cyclic strain modulates 
migration and proliferation of vascular smooth muscle cells via rho-GDIalpha, Rac1, 
and p38 pathway. Journal of Cellular Biochemistry. 2010;109(5):906-914. DOI: 10.1002/
jcb.22465

[43] Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth 
muscle cells. The Journal of Physiology. 2015;593(14):3013-3030. DOI: 10.1113/JP270033

[44] Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr, Daum G. The adventitia: A 
dynamic interface containing resident progenitor cells. Arteriosclerosis, Thrombosis, 
and Vascular Biology. 2011;31(7):1530-1539. DOI: 10.1161/ATVBAHA.110.221549

[45] Psaltis PJ, Harbuzariu A, Delacroix S, Holroyd EW, Simari RD. Resident vascular pro-
genitor cells--diverse origins, phenotype, and function. Journal of Cardiovascular 
Translational Research. 2011;4(2):161-176. DOI: 10.1007/s12265-010-9248-9

[46] de Villiers JA, Houreld N, Abrahamse H. Adipose derived stem cells and smooth muscle 
cells: Implications for regenerative medicine. Stem Cell Reviews. 2009;5(3):256-265. DOI: 
10.1007/s12015-009-9084-y

[47] Wanjare M, Agarwal N, Gerecht S. Biomechanical strain induces elastin and collagen 
production in human pluripotent stem cell-derived vascular smooth muscle cells. 
American Journal of Physiology. Cell Physiology. 2015;309(4):C271-C281. DOI: 10.1152/
ajpcell.00366.2014

[48] Steinbach SK, Husain M. Vascular smooth muscle cell differentiation from human stem/
progenitor cells. Methods. 2016;101:85-92. DOI: 10.1016/j.ymeth.2015.12.004

[49] Wang Y, Hu J, Jiao J, Liu Z, Zhou Z, Zhao C, Chang LJ, Chen YE, Ma PX, Yang B. 
Engineering vascular tissue with functional smooth muscle cells derived from human 
iPS cells and nanofibrous scaffolds. Biomaterials. 2014;35(32):8960-8969. DOI: 10.1016/j.
biomaterials.2014.07.011

[50] Dash BC, Jiang Z, Suh C, Qyang Y. Induced pluripotent stem cell-derived vascular 
smooth muscle cells: Methods and application. The Biochemical Journal. 2015;465(2):185-
194. DOI: 10.1042/BJ20141078

[51] Maguire EM, Xiao Q, Xu Q. Differentiation and application of induced pluripotent stem 
cell-derived vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular 
Biology. 2017;37(11):2026-2037. DOI: 10.1161/ATVBAHA.117.309196

[52] Chen CY, Liu SH, Chen CY, Chen PC, Chen CP. Human placenta-derived multipotent mes-
enchymal stromal cells involved in placental angiogenesis via the PDGF-BB and STAT3 
pathways. Biology of Reproduction. 2015;93(4):103. DOI: 10.1095/biolreprod.115.131250

[53] Mesure B, Huber-Villaume S, Menu P, Velot É. Transforming growth factor-beta 1 or 
ascorbic acid are able to differentiate Wharton's jelly mesenchymal stem cells towards 

Muscle Cell and Tissue - Current Status of Research Field306



a smooth muscle phenotype. Bio-medical Materials and Engineering. 2017;28(s1):S101-

S105. DOI: 10.3233/BME-171630

[54] Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone mar-

row-derived mesenchymal stem cells (hMSCs). The FASEB Journal. 2008;22(6):1635-
1648. DOI: 10.1096/fj.07-087924

[55] Hamilton DW, Maul TM, Vorp DA. Characterization of the response of bone marrow-

derived progenitor cells to cyclic strain: Implications for vascular tissue-engineering 

applications. Tissue Engineering. 2004;10(3-4):361-369. DOI: 10.1089/107632704323061726

[56] Xu ZC, Zhang Q, Li H. Human hair follicle stem cell differentiation into contractile 
smooth muscle cells is induced by transforming growth factor-β1 and platelet-derived 
growth factor BB. Molecular Medicine Reports. 2013;8(6):1715-1721. DOI: 10.3892/
mmr.2013.1707

[57] Soletti L, Hong Y, Guan J, Stankus JJ, El-Kurdi MS, Wagner WR, Vorp DA. A bilay-

ered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta 
Biomaterialia. 2010;6(1):110-122. DOI: 10.1016/j.actbio.2009.06.026

[58] Kim YM, Jeon ES, Kim MR, Jho SK, Ryu SW, Kim JH. Angiotensin II-induced differen-

tiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. 

The International Journal of Biochemistry and Cell Biology. 2008;40(11):2482-2491. DOI: 

10.1016/j.biocel.2008.04.016

[59] Kim YM, Jeon ES, Kim MR, Lee JS, Kim JH. Bradykinin-induced expression of 
alpha-smooth muscle actin in human mesenchymal stem cells. Cellular Signalling. 

2008;20(10):1882-1889. DOI: 10.1016/j.cellsig.2008.06.021

[60] Kim MR, Jeon ES, Kim YM, Lee JS, Kim JH. Thromboxane a(2) induces differentiation of 
human mesenchymal stem cells to smooth muscle-like cells. Stem Cells. 2009;27(1):191-

199. DOI: 10.1634/stemcells.2008-0363

[61] Nincheri P, Luciani P, Squecco R, Donati C, Bernacchioni C, Borgognoni L, Luciani G, 
Benvenuti S, Francini F, Bruni P. Sphingosine 1-phosphate induces differentiation of adi-
pose tissue-derived mesenchymal stem cells towards smooth muscle cells. Cellular and 

Molecular Life Sciences. 2009;66(10):1741-1754. DOI: 10.1007/s00018-009-9181-8

[62] Wang C, Yin S, Cen L, Liu Q, Liu W, Cao Y, Cui L. Differentiation of adipose-derived 
stem cells into contractile smooth muscle cells induced by transforming growth factor-

beta1 and bone morphogenetic protein-4. Tissue Engineering. Part A. 2010;16(4):1201-

1123. DOI: 10.1089/ten.TEA.2009.0303

[63] Aji K, Maimaijiang M, Aimaiti A, Rexiati M, Azhati B, Tusong H, Cui L. Differentiation of 
human adipose derived stem cells into smooth muscle cells is modulated by CaMKIIγ. 
Stem Cells International. 2016;2016:1267480. DOI: 10.1155/2016/1267480

[64] Elçin AE, Parmaksiz M, Dogan A, Seker S, Durkut S, Dalva K, Elçin YM. Differential 
gene expression profiling of human adipose stem cells differentiating into smooth mus-

cle-like cells by TGFβ1/BMP4. Experimental Cell Research. 2017;352(2):207-217. DOI: 

10.1016/j.yexcr.2017.02.006

Vascular Smooth Muscle Cells (VSMCs) in Blood Vessel Tissue Engineering: The Use…
http://dx.doi.org/10.5772/intechopen.77108

307



[65] Lachaud CC, López-Beas J, Soria B, Hmadcha A. EGF-induced adipose tissue meso-

thelial cells undergo functional vascular smooth muscle differentiation. Cell Death and 
Disease. 2014;5:e1304. DOI: 10.1038/cddis.2014.271

[66] Wang C, Cen L, Yin S, Liu Q, Liu W, Cao Y, Cui L. A small diameter elastic blood ves-

sel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth 

muscle cells differentiated from adipose-derived stem cells. Biomaterials. 2010;31(4):621-

630. DOI: 10.1016/j.biomaterials.2009.09.086

[67] Rashidi N, Tafazzoli-Shadpour M, Haghighipour N, Khani MM. Morphology and con-

tractile gene expression of adipose-derived mesenchymal stem cells in response to short-

term cyclic uniaxial strain and TGF-β1. Biomed Tech (Berl); 2017, in press. pii: /j/bmte.
ahead-of-print/bmt-2016-0228/bmt-2016-0228.xml. DOI: 10.1515/bmt-2016-0228

[68] Estes BT, Diekman BO, Gimble JM, Guilak F. Isolation of adipose-derived stem cells 
and their induction to a chondrogenic phenotype. Nature Protocols. 2010;5(7):1294-1311. 
DOI: 10.1038/nprot.2010.81

[69] Przekora A, Vandrovcova M, Travnickova M, Pajorova J, Molitor M, Ginalska G, 
Bacakova L. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite mate-

rial as a scaffold for living bone graft production in vitro by comparison of ADSC 
and BMDSC behaviour on its surface. Biomedical Materials. 2017;12(1):015030. DOI: 
10.1088/1748-605X/aa56f9

[70] Rohringer S, Hofbauer P, Schneider KH, Husa AM, Feichtinger G, Peterbauer-Scherb 
A, Redl H, Holnthoner W. Mechanisms of vasculogenesis in 3D fibrin matrices medi-
ated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis. 

2014;17(4):921-933. DOI: 10.1007/s10456-014-9439-0

[71] Corselli M, Chen CW, Crisan M, Lazzari L, Péault B. Perivascular ancestors of adult mul-

tipotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(6):1104-

1109. DOI: 10.1161/ATVBAHA.109.191643

[72] Avolio E, Alvino VV, Ghorbel MT, Campagnolo P. Perivascular cells and tissue engi-
neering: Current applications and untapped potential. Pharmacology and Therapeutics. 

2017;171:83-92. DOI: 10.1016/j.pharmthera.2016.11.002

[73] Ye Z, Zhang C, Tu T, Sun M, Liu D, Lu D, Feng J, Yang D, Liu F, Yan X. Wnt5a uses CD146 
as a receptor to regulate cell motility and convergent extension. Nature Communications. 
2013;4:2803. DOI: 10.1038/ncomms3803

[74] Chen J, Luo Y, Hui H, Cai T, Huang H, Yang F, Feng J, Zhang J, Yan X. CD146 coor-

dinates brain endothelial cell-pericyte communication for blood-brain barrier develop-

ment. Proceedings of the National Academy of Sciences of the United States of America. 
2017;114(36):E7622-E7631. DOI: 10.1073/pnas.1710848114

Muscle Cell and Tissue - Current Status of Research Field308


