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Abstract

An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm,
based on a multiobjective gradient (MOG) method, is developed to improve the compu-
tation performance. In this AGMOPSO algorithm, the MOG method is devised to update
the archive to improve the convergence speed and the local exploitation in the evolution-
ary process. Attributed to the MOGmethod, this AGMOPSO algorithm not only has faster
convergence speed and higher accuracy but also its solutions have better diversity. Addi-
tionally, the convergence is discussed to confirm the prerequisite of any successful appli-
cation of AGMOPSO. Finally, with regard to the computation performance, the proposed
AGMOPSO algorithm is compared with some other multiobjective particle swarm opti-
mization (MOPSO) algorithms and two state-of-the-art multiobjective algorithms. The
results demonstrate that the proposed AGMOPSO algorithm can find better spread of
solutions and have faster convergence to the true Pareto-optimal front.

Keywords: multiobjective particle swarm optimization, multiobjective problem,
multiobjective gradient, convergence

1. Introduction

Most of the engineering and practical applications, such as wastewater treatment processes and

aerodynamic design problem, often have a multiobjective nature and require solving several

conflicting objectives [1–3]. Handling with these multiobjective optimization problems (MOPs),

there are always a set of possible solutions which represent the tradeoffs among the objectives

known as Pareto-optimal set [4–5]. Evolutionary multiobjective optimization (EMO) algorithms,

which are a class of stochastic optimization approaches based on population characteristic, are

widely used to solve the MOPs, because a series of Pareto-optimal solutions can be obtained in a

single run [6–9]. The multiobjective optimization algorithms are striving to acquire a Pareto-

optimal set with good diversity and convergence. The most typical EMO algorithms include the
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non-dominated sorting genetic algorithm (NSGA) [10] and NSGA-II [11], the strength Pareto

evolutionary algorithm (SPEA) [12] and SPEA2 [13], the Pareto archived evolutionary strategy

(PAES) [14], the Pareto envelope-based selection algorithm (PESA) [15] and PESA-II [16].

The notable characteristic of particle swarm optimization (PSO) is the cooperation among all

particles of a swarm which is attracted toward the global best (gBest) in the swarm and its own

personal best (pBest), so the PSO have a better global searching ability [17–19]. Among these

EMO algorithms, owing to the high convergence speed and ease of implementation,

multiobjective particle swarm optimization (MOPSO) algorithms have been widely used [20–

23]. MOPSO can also be applied to multiple difficult optimization problems such as noisy and

dynamic problems. However, apart from the archive maintenance, in MOPSO, two issues still

remain to be further addressed. The first one is the update of gBest and pBest, because the

absolute best solution cannot be selected by the relationship of the non-dominated solutions.

Then, the selection of gBest and pBest results in the different flight directions for a particle,

which has an important effect on the convergence and diversity of MOPSO [24].

Zheng et al. introduced a novel MOPSO algorithm, which can improve the diversity of the

swarm and improve the performance of the evolving particles over some advanced MOPSO

algorithms with a comprehensive learning strategy [25]. The experimental results illustrate

that the proposed approach performs better than some existing methods on the real-world fire

evacuation dataset. In [26], a multiobjective particle swarm optimization with preference-

based sort (MOPSO-PS), in which the user’s preference was incorporated into the evolutionary

process to determine the relative merits of non-dominated solutions, was developed to choose

the suitable gBest and pBest. The results indicate that the user’s preference is properly reflected

in optimized solutions without any loss of overall solution quality or diversity. Moubayed

et al. proposed a MOPSO by incorporating dominance with decomposition (D2MOPSO),

which proposes a novel archiving technique that can balance the relationship of the diversity

and convergence [27]. The analysis of the comparable experiments demonstrates that the

D2MOPSO can handle with a wide range of MOPs efficiently. And some other methods for

the update of gBest and pBest can be found in [28–31]. Although many researches have been

done, it is still a huge challenge to select the appropriate gBest and pBest with the suitable

convergence and diversity [32–33].

The second particular issue of MOPSO is how to own fast convergence speed to the Pareto

Front, well known as one of the most typical features of PSO. According to the requirement of

the fast convergence for MOPSO, many different strategies have been put forward. In [34], Hu

et al. proposed an adaptive parallel cell coordinate system (PCCS) for MOPSO. This PCCS is

able to select the gBest solutions and adjust the flight parameters based on the measurements

of parallel cell distance, potential and distribution entropy to accelerate the convergence of

MOPSO by assessing the evolutionary environment. The comparative results show that the

self-adaptive MOPSO is better than the other methods. Li et al. proposed a dynamic MOPSO,

in which the number of swarms is adaptively adjusted throughout the search process [35]. The

dynamic MOPSO algorithm allocates an appropriate number of swarms to support conver-

gence and diversity criteria. The results show that the performance of the proposed dynamic

MOPSO algorithm is competitive in comparison to the selected algorithms on some standard

benchmark problems. Daneshyari et al. introduced a cultural framework to design a flight
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parameter mechanism for updating the personalized flight parameters of the mutated particles

in [36]. The results show that this flight parameter mechanism performs efficiently in exploring

solutions close to the true Pareto front. In the above MOPSO algorithms, the improved strate-

gies are expected to achieve better performance. However, few works have been done to

examine the convergence of these MOPSO algorithms [37].

Motivated by the above review and analysis, in this chapter, an adaptive gradient multiobjective

particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (MOG)

method, is put forward. This novel AGMOPSO algorithm has faster convergence in the evolu-

tionary process and higher efficiency to deal with MOPs. The proposed AGMOPSO algorithm

contains a major contribution to solve MOPs as follows: A novel MOG method is proposed for

updating the archive to improve the convergence speed and the local exploitation in the evolu-

tionary process. Unlike some existing gradient methods for single-objective optimization prob-

lems [38–40] and MOPs [41], much less is known about the gradient information of MOPs. One

of the key feathers of theMOG strategy is that the utilization of gradient information for MOPs is

able to obtain a Pareto set of solutions to approximate the optimal Pareto set. In view of the

advantages of the MOG strategy, this AGMOPSO algorithm can obtain a good Pareto set and

reach smaller testing error with much faster speed. This characteristic makes this method ideal

for MOPs.

2. Problem formulation

2.1. Multiobjective problems

A minimize MOP contains several conflicting objectives which is defined as:

minimize F xð Þ ¼ f 1 xð Þ; f 2 xð Þ;⋯; fm xð Þ
� �T

,

subject to x∈Ω,
(1)

where m is the number of objectives, x is the decision variable, fi() is the ith objective function.

A decision variable y is said to dominate the decision vector z, defined as y dominates z or

y≺ z, which is indicated as:

∀i : f i yð Þ ≤ f i zð Þ and ∃j : f j yð Þ < f j zð Þ, (2)

where i = 1,2, …, m, j = 1,2, …,m. When there is no solution that can dominate one solution in

MOPs, this solution can be used as the Pareto optimal solution. This Pareto optimal solution

comprises the Pareto front.

2.2. Particle swarm optimization

PSO is a stochastic optimization algorithm, in which a swarm contains a certain number of

particles that the position of each particle can stand for one solution. The position of a particle

which is expressed by a vector:
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xi tð Þ ¼ xi,1 tð Þ; xi,2 tð Þ;…xi,D tð Þ½ �, (3)

where D is the dimensionality of the searching space, i = 1, 2, …, s; s is the swarm size. Also

each particle has a velocity which is represented as:

vi tð Þ ¼ vi,1 tð Þ; vi,2 tð Þ;…vi,D tð Þ½ �: (4)

During the movement, the best previous position of each particle is recorded as pi (t) = [pi,1(t),

pi,2(t),…, pi,D(t)], and the best position obtained by the swarm is denoted as g(t) = [g1(t), g2(t),…,

gD(t)]. Based on pi(t) and g(t), the new velocity of each particle is updated by:

vi,d tþ 1ð Þ ¼ ωvi,d tð Þ þ c1r1 pi,d tð Þ � xi,d tð Þ
� �

þ c2r2 gd tð Þ � xi,d tð Þ
� �

, (5)

where t denotes the tth iteration during the searching process; d = 1, 2,…,D is the dimension in

the searching space; ɷ is the inertia weight; c1 and c2 are the acceleration constants and r1 and

r2 are the random values uniformly distributed in [0, 1]. Then the updating formula of the new

position is expressed as:

xi,d tþ 1ð Þ ¼ xi,d tð Þ þ vi,d tþ 1ð Þ: (6)

At the beginning of the searching process, the initial position of each particle is randomly

generated. As the searching process goes on, the particle swarm may appear as an uneven

distribution phenomenon in the evolutionary space.

3. Multiobjective gradient method

The key points of AGMOPSO, compared to the original MOPSO, are that the MOG method is

taken into account. In AGMOPSO, the population withN particles intends to search for a set of

non-dominated solutions to be stored in an archive with a predefined maximal size.

In MOPSO, the position of each particle can represent the potential solution for the conflicting

objectives. The gBest and pBest can guide the evolutionary direction of the whole particle

swarm. The position xi and velocity vi of the ith particle are the D-dimensional vectors xi (0)∈

RD, vi (0)∈RD. The particle updates the velocity and position by the motion trajectory in Eqs. (5)

and (6). The external archive A(0) is initialized as a null set. Meanwhile, the best previous

position pi(t) is computed by:

pi tð Þ ¼
pi t� 1ð Þ, if xi tð Þ≺pi t� 1ð Þ,

xi tð Þ, otherwise,

�

(7)

where aj t� 1ð Þ≺ ≻pi tð Þmeans x(t) is not dominated by pi(t � 1). The process of archiveA(t) is

updated based on the previous archive A(t � 1) and the best previous position pi(t)
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A tð Þ ¼
A t� 1ð Þ ∪pi tð Þ, if aj t� 1ð Þ≺ ≻pi tð Þ,

A t� 1ð Þ ∪pi tð Þ, otherwise,

(

(8)

where A(t) = [a1(t), a2(t),…, aK(t)]
T, aj(t) = [a1,j(t), a2,j(t),…, aD,j(t)], A t� 1ð Þ is updated archive

which removed the solutions dominated by the best previous position pi(t), K is the dimen-

sionality of archive A(t) which will be changed in the learning process, aj t� 1ð Þ≺ ≻pi tð Þ

means aj(t-1) is not dominated by pi(t) and pi(t) is not dominated by aj(t-1). Moreover, g(t) is

found according to [24].

In AGMOPSO, to enhance the local exploitation, the archiveA(t) is further updated by the MOG

method using the gradient information to obtain a Pareto set of solutions that approximates the

optimal Pareto set. Without loss of generality, assuming all of the objective functions are differ-

entiable, the directional derivative in fi(aj(t)) in a direction ūj(t) at point aj(t) is denoted as

∇uj tð Þf i aj tð Þ
� �

¼ lim
δ!0

f i aj tð Þ þ δuj tð Þ
� �

� f i aj tð Þ
� �

δ

� �
, (9)

where δ > 0, ūj(t) = [ū1,j(t), ū2,j(t), …, ūD,j(t)], i = 1, 2, …, m; j = 1, 2, …, K, and the directional

derivative can be rewritten:

∇uj tð Þf i aj tð Þ
� �

¼ ∇f i aj tð Þ
� �

uj tð Þ , (10)

then, the gradient direction of MOP can be represented as:

∇uj tð ÞF aj tð Þ
� �

¼ ∇uj tð Þf 1 aj tð Þ
� �

;∇uj tð Þf 2 aj tð Þ
� �

;…;∇uj tð Þfm aj tð Þ
� �h iT

, (11)

According to Eq. (11), the minimum direction of MOP is calculated as

bui tð Þ ¼
∇f i aj tð Þ

� �

∇f i aj tð Þ
� ��� �� ,

∇f i aj tð Þ
� �

¼ ∂f i aj tð Þ
� �

=∂a1, j tð Þ, ∂f i aj tð Þ
� �

=∂a2, j tð Þ,…, ∂f i aj tð Þ
� �

=∂aD, j tð Þ
	 


, (12)

and bu i tð Þk k ¼ 1. In addition, the smooth criteria fi(aj(t)) are said to be Pareto-stationary at the

point aj(t) if

Xm

i¼1

αi tð Þbui tð Þ ¼ 0,
Xm

i¼1

αi tð Þ ¼ 1, αi tð Þ ≥ 0, ∀ið Þ: (13)

The weight vector can be set as

α tð Þ ¼
1

bUTbU
���

���
2

bu1k k
2
; bu2k k

2
;…; bumk k

2
h iT

, (14)

where bU tð Þ ¼ bu1 tð Þ, bu2 tð Þ;…, bum tð Þ½ �, αi tð Þ ¼ bu ik k
2
= bU

TbU
���

���
2

, and αk k ¼ 1.
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To find the set of Pareto-optimal solutions of MOPs, the multi-gradient descent direction is

given as follows:

∇F aj tð Þ
� �

¼
Xm

i¼1

αi tð Þbui tð Þ,
Xm

i¼1

αi tð Þ ¼ 1, αi tð Þ ≥ 0, ∀ið Þ: (15)

This multi-gradient descent direction is utilized to evaluate the full set of unit directions. And

the archive A(t) is updated as follows:

aj tð Þ ¼ aj tð Þ þ h � ∇F aj tð Þ
� �

, (16)

where, h is the step size, aj(t) and āj(t) are the jth archive variables before and after the MOG

algorithm has been used at time t and the fitness values are updated at the same time.

Moreover, the archive A(t) can store the non-dominated solutions of AGMOPSO. But the

number of non-dominated solutions will gradually increase during the search process. There-

fore, to improve the diversity of the solutions, a fixed size archive is implemented in

AGMOPSO to record the good particles (non-dominated solutions). During each iteration, the

new solutions will be compared with the existing solutions in the archive using the dominating

relationship. When a new solution cannot be dominated by the existing solutions in the

archive, it will be reserved in the archive. On the contrary, the dominated new solutions cannot

be accepted in the archive. If the capacity of the archive reaches the limitation, a novel pruning

strategy is proposed to delete the redundant non-dominated solutions to maintain uniform

distribution among the archive members.

Assuming that there are K points which will be selected from the archive serve. The maximum

distance of the line segment between the first and the end points (namely whole Euclidean

distance Dmax) are obtained. Then, the average distance of the remained K-2 points are set

d ¼ Dmax= K � 1ð Þ, (17)

where d is the average distance of all points. The average values of d are used to guide to select

the non-dominated solutions of more uniform distribution. In addition, for the three objectives,

all of the solutions (except the first and the end) are projected to the Dmax. The points can be

reserved, the projective points and the average distance points can be found. However, most

projective distances of the adjacent points are not equal to the average distance. Thus, the next

point is likely to be selected when it has the distance more closely to the average distance. Once

the search process is terminated, the solutions in archive will become the final Pareto front.

Taking DTLZ2 as an example, Figure 1 shows this strategy with three objectives in details.

Local search is a heuristic method to improve PSO performance. It repeatedly tries to improve

the current solution by replacing it with a neighborhood solution. In the proposed MOG

algorithm, the set of unit directions is described by the normalized combination of the unit

directions that map to the intersection points as Eq. (12). Then, each single run of the algorithm

can yield a set of Pareto solutions. Experiments demonstrate that the improvements make

AGMOPSO effective.
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In MOPSO, it is desired that an algorithm maintains good spread of solutions in the non-

dominated solutions as well as the convergence to the Pareto-optimal set. In this AGMOPSO

algorithm, an estimate of density is designed to evaluate the density of solutions surrounding

it. It calculates the overall Euclidean distance values of the solutions, and then the average

distance of the solutions along each of the objectives corresponding to each objective is calcu-

lated. This method is able to get a good spread result under some situations to improve the

searching ability. And the pseudocode of AGMOPSO is presented in Table 1.

4. Simulation results and analysis

In this section, three ZDT and two DTLZ benchmark functions are employed to test the

proposed of AGMOPSO. This section compares the proposed AGMOPSO with four state-

of-the-art MOPSO algorithms—adaptive gradient MOPSO (AMOPSO) [41], crowded distance

MOPSO (cdMOPSO) [32], pdMOPSO [31] and NSGA-II [11].

Figure 1. Illustration of points selection procedure. (a) Is the original points and (b) is the selection result of the proposed

strategy.

Initializing the flight parameters, population size, the particles positions x(0) and velocity v(0)

Loop

Calculating the fitness value

Getting the non-dominated solutions % Eq. (8)

Storing the non-dominated solutions in archive A(t)

Updating the archive using MOG method % Eq. (16)

If (the number of archive solutions exceed capacity)

Pruning the archive

End

Selecting the gBest from the archive A(t)

Calculating the flight parameters

Updating the velocity xi(t) and position vi(t) % Eqs. (5–6)

End loop

Table 1. AMOPSO algorithm.
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4.1. Performance metrics

To demonstrate the performance of the proposed AGMOPSO algorithm, two different quanti-

tative performance metrics are employed in the experimental study.

1. Inverted generational distance (IGD):

IGD F
∗; Fð Þ ¼

X

x∈F
∗

mindis x; Fð Þ= F
∗j j, (18)

where mindis(x, F) is the minimum Euclidean distance between the solution x and the solutions

in F. A smaller value of IGD(F*, F) demonstrates a better convergence and diversity to the

Pareto-optimal front.

2. Spacing (SP):

SP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K � 1

X

K

i¼1

d� di
� �

v

u

u

t , (19)

where di is the minimum Euclidean distance between ith solution and other solutions, K is the

number of non-dominated solutions, d is the average distance of the all Euclidean distance di.

4.2. Parameter settings

All the algorithms have three common parameters: the population size N, the maximum

number of non-dominated solutions K and iterations T. Here, N = 100, K = 100 and T = 3000.

4.3. Experimental results

The experimental performance comparisons of the cdMOPSO algorithm on ZDTs and DTLZs

are shown in Figures 2–6. Seen from Figures 2–6, the non-dominated solutions obtained by the

proposed AGMOPSO algorithm can approach to the Pareto Front appropriately and maintain

Figure 2. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for ZDT3

function.
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Figure 3. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for ZDT4

function.

Figure 4. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for ZDT6

function.

Figure 5. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for DTLZ2

function.
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Figure 6. The Pareto front with non-dominated solutions obtained by the two multiobjective algorithms for DTLZ7

function.

Function Index AGMOPSO AMOPSO pdMOPSO cdMOPSO NSGA-II

ZDT3 Best 0.00149 0.00425 0.2019 0.003109 0.005447

Worst 0.00697 0.00832 0.4265 0.028986 0.006105

Mean 0.00433 0.00632 0.3052 0.003063 0.005834

std 0.00297 0.00527 0.1003 0.007131 0.000202

ZDT4 Best 3.0194 2.7133 3.3980 4.9760 0.00462

Worst 5.1522 5.0543 4.9760 6.3610 0.11166

Mean 3.7933 3.8943 4.0330 5.9120 0.016547

std 1.5133 2.7401 1.6510 4.5180 0.031741

ZDT6 Best 0.2046 0.0936 2.2310 0.000897 0.01119

Worst 0.7834 0.9154 2.8790 0.003627 0.01498

Mean 0.4878 0.5433 2.4690 0.002988 0.01286

std 0.0242 0.0236 0.8169 0.0001543 0.001004

DTLZ2 Best 0.0477 0.0519 0.1330 0.0322 0.07830

Worst 0.3913 0.3425 0.3690 0.2067 0.2740

Mean 0.1058 0.1878 0.2070 0.1015 0.1059

std 0.0060 0.0132 0.0413 0.0134 0.008383

DTLZ7 Best 0.05766 0.02044 0.00796 0.00701 0.00614

Worst 0.32803 0.10295 0.07678 0.05439 0.03208

Mean 0.01985 0.04573 0.04831 0.02856 0.01799

std 0.00139 0.00312 0.00289 0.00165 0.00129

Table 2. Comparisons of different algorithms for IGD.
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a greater diversity than other compared algorithms. Experimental results in Figures 2–4 show

that the proposed AGMOPSO algorithm is superior to the cdMOPSO algorithm in diversity

performance and can approach the Pareto Front. In addition, the results in Figures 5 and 6

show that the proposed AGMOPSO algorithm can obtain a better performance on the three-

objective benchmark problems with accurate convergence and the preferable diversity.

In order to show the experimental performance in details, the experimental results, which

contain the best, worst, mean and standard deviations of IGD and SP based on the two-

objective of ZDTs and the three-objective of DTLZs are listed in Tables 2 and 3, respectively.

Moreover, the experimental results in Tables 2 and 3 include the details of the four evolution-

ary algorithms. To illustrate the significance of the findings, the comparing results for the

performance index is analyzed as follows:

1. Comparison of IGD index: From Table 2, the proposed AGMOPSO algorithm is superior

to other MOPSO algorithms in terms of the results of IGD. Firstly, in the two-objective of

ZDTs instances, the AGMOPSO can have better mean deviations of IGD than other four

evolutionary algorithms on ZDT3 and ZDT4. It is indicated that the MOG method has

Function Index AGMOPSO AMOPSO pdMOPSO cdMOPSO NSGA-II

ZDT3 Best 0.023475 0.097811 0.099654 0.10356 0.081569

Worst 0.087874 0.416626 0.487126 0.87449 0.106568

Mean 0.067451 0.245931 0.198551 0.59684 0.092216

std 0.012873 0.050937 0.079442 0.22468 0.008415

ZDT4 Best 0.030914 0.039825 0.069564 0.139577 0.031393

Worst 0.078011 0.193765 0.233794 0.300951 0.044254

Mean 0.049923 0.078821 0.186698 0.204573 0.038378

std 0.001092 0.004517 0.063757 0.095562 0.003837

ZDT6 Best 0.010981 0.008739 0.009935 0.012396 0.006851

Worst 0.100551 0.088535 0.023766 0.040205 0.010127

Mean 0.034127 0.040251 0.010683 0.034569 0.008266

std 0.009756 0.007341 0.003021 0.003884 0.000918

DTLZ2 Best 0.1438 0.0943 0.0569 0.0932 0.021456

Worst 0.6893 0.8947 0.6991 0.5897 0.7314

Mean 0.0398 0.4631 0.4721 0.3562 0.4162

std 0.00764 0.03401 0.02964 0.01772 0.03655

DTLZ7 Best 0.1958 0.1047 0.0932 0.1347 0.0632

Worst 0.9032 0.9355 0.8361 0.9307 0.7466

Mean 0.0502 0.0493 0.4459 0.5972 0.4191

std 0.01097 0.03201 0.00896 0.2133 0.00796

Table 3. Comparisons of different algorithms for SP.
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played a vital role on the algorithm. Meanwhile, compared with NSGA-II [11], the pro-

posed AGMOPSO has better IGD index performance of accuracy and stability for the two-

objective of ZDTs (except ZDT4). Second, in the three-objective of DTLZs instances, the

AGMOPSO is superior to other four algorithms in terms of the mean deviations value of

IGD. According to the comparisons between the AGMOPSO and other four evolutionary

algorithms, it is demonstrated that the proposed AGMOPSO is the closest to the true front

and nearly enclose the entire front, which means the proposed AGMOPSO algorithm

achieves the best convergence and divergence.

2. Comparison of SP index: The comparison of SP among the proposed AGMOPSO algo-

rithm and other compared algorithms was shown in Table 3. Firstly, in the two-objective of

ZDTs instances, the AGMOPSO can have better mean deviations and best deviations of SP

than other four evolutionary algorithms ZDT3 and ZDT4. Meanwhile, compared with

NSGA-II [11], the proposed AGMOPSO has better SP index performance of diversity for

the two-objective of ZDTs (except ZDT6). From the results in Table 3, the comparison of

the SP between the proposed AGMOPSO algorithm illustrate that the MOG method can

have better effect on the diversity performance than other existing methods. Secondly, in

the three-objective of DTLZs instances, the proposed AGMOPSO algorithm has the best SP

performance on the DTLZ2 and DTLZ7 than the other four compared algorithms. In

addition, to verify the effect of the MOG method, the proposed AGMOPSO can obtain a

set of non-dominated solutions with greater diversity and convergence than NSGA-II on

instances (except ZDT4 and ZDT6). Therefore, the proposed AGMOPSO algorithm can

obtain more accurate solutions with better diversity on the most ZDTs and DTLZs.

5. Conclusion

A novel method, named AGMOPSO, is proposed to solve MOPs, which underlies MOG to

accelerate the solution convergence and deletes the redundant solutions in the archive by the

equidistant partition principle. Meanwhile, the convergence analysis and convergence condi-

tions of AGMOPSO are also carefully investigated for the successful applications. Based on the

theoretical analysis and the experimental results, the proposed AGMOPSO algorithm with

the local search strategy MOG is a novel method for solving theses MOPs. The comparisons

of the different indexes also demonstrate that the proposed AGMOPSO algorithm is superior

to the other algorithms for most of ZDTs and DTLZs.
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