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Abstract

In recent years malaria initiatives have increasingly shifted from malaria control to a 
focus on achieving malaria elimination in the Southeast Asia region. However, this 
region experiences unique challenges in this transition due to its distinctive malaria 
ecosystem (mainly related to forests) and high volume of population movement (both 
within and between countries). These bioenvironmental factors increase the exposure of 
populations at higher risk due to their close association with forest, and contributes to 
outdoor and residual transmission. Given that this region has also historically been the 
source of resistance to anti-malarial drugs, the potential spread of artemisinin resistance 
via global transportation routes would pose a major threat to malaria control and elimi-
nation efforts worldwide. In addition, other factors also hinder the malaria elimination 
goal such as importation of parasite infection, uncontrolled monkey malaria (Plasmodium 

knowlesi), or the fact that many countries in this region experience mixed infections 
where P. vivax becomes a more predominant species as overall malaria transmission 
decreases. This chapter addresses these challenges in detail and provide recommenda-
tions and key priorities to overcome these obstacles to accelerate efforts for achieving 
malaria elimination.
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1. Introduction

In the Greater Mekong Subregion (GMS)1, malaria is still a substantial public health prob-

lem, especially along international borders and forested areas, adversely putting popula-

tions such as migrants, refugees, and forest workers most at risk. In 2013, there were 447,800 

malaria cases and 342 deaths in the GMS, with close to 700 million people living in risk areas 

[1]. Between 2012 and 2016, the reported number of malaria cases in the GMS fell by 74% 

(Figure 1) and malaria deaths by 91% in the same period (Figure 2).

Mid-year estimates for 2017 point to a further decline in cases [2]. Contributing to these 

impressive results, all six countries of the Subregion are making significant headway towards 
a common target: eliminating malaria by the year 2030 at the latest.

1Cambodia, The People’s Republic of China (specifically Yunnan Province), the Lao People’s Democratic Republic (Lao 
PDR), Myanmar, Thailand, and Vietnam.

Figure 2. Declining trend of malaria deaths in the Greater Mekong Subregion (GMS) since 2012 (source: [2]).

Figure 1. Declining trends of malaria transmission in the Greater Mekong Subregion (GMS) since 2012 (source: [2]).

Towards Malaria Elimination - A Leap Forward96



These goals will not be easy to achieve. Despite these reductions and the subsequent move 
towards elimination, malaria remains an important cause of morbidity for an estimated 32 

million inhabitants, especially in remote areas with low population densities and limited 

healthcare services and infrastructure, located in and near forested areas, which often lie close 

to international borders [3, 4]. In many places, the population groups most affected are ethnic 
minorities and forest-goers who are rapidly becoming the most important source of transmis-

sion in areas where main vectors are present. Within these groups, cultural and linguistic 

barriers often constrain malaria control efforts due to their high mobility and low access to 
interventions to prevent, diagnose and treat malaria.

In some areas the malaria situation has deteriorated by armed conflict affecting access to 
malaria control services. Population movements are a key feature in the GMS and are largely 

occupationally/economically driven; occur within borders and across borders; involve mul-

tiple factors and complex dynamics of movement; and affect different subsets of moving pop-

ulations [5], thus further complicating the epidemiology and control of the disease [6]. The 

rapid increase in the number of large infrastructure and agricultural development projects 

in the region is also having a significant impact on the epidemiology of communicable dis-

eases in general, and malaria in particular [7]. This chapter addresses several key challenges 

faced by elimination programmes to contain the unacceptably high disease burden against 

the background of rapidly declining incidence.

2. Resistance to artemisinin and ACT: current and future approaches

Antimalarial drug resistance is not a new biological phenomenon. In the 1970s and 1980s, 

Plasmodium falciparum—the parasite species responsible for the most common and deadliest 

form of malaria—developed widespread resistance to previous antimalarial medicines, such as 

chloroquine and sulfadoxine-pyrimethamine (SP) [8]. Artemisinin based combination therapies 

(ACTs), introduced in the 1990s, are currently the most effective antimalarial drugs [9] and rep-

resent the first line-treatment for uncomplicated falciparum malaria in all endemic countries.

Although artemisinin usually kills all malaria parasites, the use of a combination of drugs—

as opposed to monotherapy—helps ensure that any remaining parasites will be killed by 

the partner drug before the resistant parasites can spread. According to the World Health 

Organisation (WHO), clinical artemisinin (and its derivatives) resistance is defined as delayed 
parasite clearance and represents a partial/relative resistance that has thus far only affected 
ring-stage malaria parasites [10]. In Southeast Asia, however, some malaria parasites have 

already developed resistance to artemisinin-based drugs; a recent report of a single multi-

drug resistant malaria parasite lineage (PfPailin) with associated piperaquine resistance in 

Vietnam and its implications of subsequent transnational spread is of international concern 
[11]. Artemisinin resistance was first reported along the Thailand-Cambodia border in 2008 
[12, 13] and has continued to spread in all Greater Mekong Subregion countries [14–18]. In 

addition, artemisinin resistance has been involved in selecting for resistance to ACT partner 

drugs, resulting in high late treatment failure rates with dihydroartemisinin-piperaquine in 

Cambodia [14, 19–25] and with artesunate-mefloquine on the Thai-Myanmar border [26].

Human and Simian Malaria in the Greater Mekong Subregion and Challenges for Elimination
http://dx.doi.org/10.5772/intechopen.76901

97



There are many factors that are thought to have contributed to the emergence and spread of 

artemisinin resistance in the GMS. One important factor is thought to be the use of oral artemis-

inin monotherapy (AMT) in place of WHO-recommended ACTs (as unregulated artemisinin 

or artesunate monotherapy has been available since mid-1970s in the region). In Myanmar, pri-

vate healthcare facilities and healthcare providers who prioritize consumers’ demand instead 

of recommended practices were more likely to stock oral AMT [26, 27]. Malaria elimination 

strategies should include targeted interventions to effectively reach these outlets. Fortunately, 
a major achievement during the resistance containment (and more recently elimination) activi-

ties has ceased the use of artemisinin monotherapies. ACT watch methods are monitoring dis-

placement of oral AMTs, a major objective of the resistance containment strategy [28], and data 

will feed into regional score cards such as the Asia Pacific Leaders Malaria Alliance Access 
to Quality Medicines Task Force and the World Health Organisation (WHO) Emergency 
Response to Artemisinin Resistance (ERAR), which are vested in supporting national programs 
in tracking progress towards halting the availability and use of oral AMTs [28]. In Southeast 

Asia, where malaria transmission is generally low and emergence of resistance has been docu-

mented in multiple independent locations [29]; containment programmes have been converted 

into elimination of P. falciparum strategies to ensure halting the spread of resistance entirely.

Other contributing factors are the use of substandard and counterfeit anti-malarial drugs and the 

difficulty of controlling malaria within migrant and hard-to-reach populations [30]. Given the 

transnational nature of this problem, the establishment of effective mechanisms for cross-country 
surveillance, information exchange and coordinated action is also necessary. This includes reinforc-

ing existing institutional frameworks for regional health cooperation, particularly the Association 

of Southeast Asian Nations, and their potential to support enhanced capacities and cooperation to 

address this challenge [31]. Lastly, selection pressure—genetic mutations of wild-type genes in the 
parasite render them insusceptible to antimalarial drug treatment—is also thought to be impor-

tant. The use of antimalarial drugs in patients with parasites containing mutations can eliminate 

susceptible parasites but leave resistant mutants to survive and reproduce [32].

More recently another potential contributing factor has been hypothesized. Given that there are 

parasite isolates that do not infect some Anopheles species, it is thought that artemisinin-resistant 

parasites are spreading so fast in Southeast Asia because they infect most or all native Anopheles 

species (e.g., Anopheles dirus and An. minimus), including African vector counterparts such as An. 

coluzzii (formerly Anopheles gambiae M form) [33]. The ability of artemisinin-resistant parasite 

clones to infect three highly genetically diverse vectors suggests that these resistant parasites 

have enhanced their transmission in the region and could effectively spread in sub-Saharan 
Africa, where most of the world’s malaria mortality, morbidity, and transmission occurs [33, 34].

Since there are no equally effective alternative drugs to treat malaria, the spread of artemis-

inin resistance through India (Asia) to Africa and beyond could be a catastrophic setback to 

global efforts to control and eliminate the disease. Infection and mortality rates could dra-

matically increase in both regions, reversing the progress made towards malaria control and 

elimination efforts. The spread of artemisinin resistance would in turn expose the partner 
drugs in ACTs to greater selection pressure for the development of resistance and increased 

failure rates for the treatment of uncomplicated malaria. For severe malaria, the recent change 
in recommended treatment from quinine to artesunate [35] increased survival by 25%, and 
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many endemic countries have adopted (or are adopting) this policy [36, 37]. Reverting back 

to quinine because of artemisinin resistance would also jeopardise all these gains achieved in 

the management of severe malaria.

The spread of ACT resistance requires constant and comprehensive monitoring across 

regions. Continuous monitoring of drug resistance in malaria-endemic countries along with 

contributing factors is a key and will enable health authorities and practitioners to prevent 

drug resistance from spreading. WHO issues regular reports about the status of artemisinin 

resistance in malaria endemic countries [38], provides updates on the status of resistance to 

artemisinins and ACT, and maintains a network of sentinel sites performing therapeutic effi-

cacy studies of first and second-line antimalarial drugs [38, 39].

3. Targeting interventions in hard-to-reach population groups

Although most of malaria endemic countries in Southeast Asia have incorporated malaria 

elimination goals in their national strategic plans, yet this region experiences high volume 

of population movement (both within and between countries) causing a great hindrance in 

achieving their elimination targets given the increased risk of importation of infection, spread 

of drug resistance, and challenges in providing healthcare services to mobile populations at 

higher risk of malaria [40, 41].

It is the movement of populations that results in importation of new infections leading to a 

source of local transmission [42, 43]. Cross-border movement of populations has contributed 

to establishment of “hot-spots” of high transmission along international borders [44, 45], and 

spread of drug resistance [6], because mobile populations often experience delays in receiv-

ing diagnosis and treatment, have improper health-seeking behaviour or self-medicate [88], 

and are subject to lower levels of surveillance [41, 46, 47]. Population mobility in the GMS is 

strongly associated with shifting land use, including large rural infrastructure projects and 

agricultural industries that attract migrant labor and influence human-vector contact. With 
the recent Association of Southeast Asian Nations (ASEAN) Economic Community agree-

ment, allowing free movement of goods, services and labor between ASEAN countries [48]; 

population movement is expected to rise even more in the coming years [6].

In addition, the epidemiology of malaria in many parts of Southeast Asia is shifting toward 

migratory labor force that gets exposed to vectors in the forest, construction sites, and has 

variable access to healthcare services [46, 47, 49–53]. Since forested regions are concen-

trated along borders and much of the cross-border movement is from the migrant labor 

population, malaria prevalence in these pockets was hypothesized to represent foci of hot-

spots. Following this rationale, the increased malaria risk in these groups was recently 
documented in a cross-border malaria project conducted in the Thai-Cambodian, Lao-
Cambodia and Vietnam-Cambodian borders. In this study [45], it was observed that the 

odds of infection in security/armed forces and forest-goers was 8 and 13 times higher com-

pared to low-risk occupations (e.g., teachers, traders, salesmen, etc.). Mechanisms and risk 

reduction strategies should be in place to appropriately cover these special occupational 

high-risk groups.

Human and Simian Malaria in the Greater Mekong Subregion and Challenges for Elimination
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Therefore, although population mobility is a key factor to take into account when address-

ing drug resistance, it suffers from a range of challenges that limit countries’ capacity to 
effectively engage and deliver interventions to migrant and mobile populations (MMPs). In 
addition, outdoor biting mosquitoes represent a major challenge for vector control for MMPs 

working during the night or sleeping outdoors, as well as forest-fringe communities.

Another challenge is the large proportion of asymptomatic infections within geographi-

cal clusters of high malaria transmission (hot-spots), where infections with low and sub-

microscopic parasite densities are highly prevalent in MMP and other risk groups [54]. 

Asymptomatic carriers can repeatedly fuel transmission to surrounding areas as the vector 

population expands during the wet season [55–57]. Whilst groups of homesteads consisting 

of asymptomatic carriers can act as stable clusters over several years [7], it is likely that the 

flight range of 800 m for An. dirus may account for increased probability of repeated mos-

quito feeding in the same house and clustering of cases over the dry season in Southeastern 

Thailand [58]. Recent clusters of malaria infection among the parasite reservoir responsible 

for preserving malaria over the dry season in Ratanakiri Province (northeastern Cambodia) 

may also explain recurrent transmission at the onset of the rainy season when the vector 

populations expand [59]. This reservoir is often not (completely) covered by control strategies 

[60] and parasite specific approaches are non-existent [61]. Programmatic interventions to 

interrupt transmission in “hidden” asymptomatic reservoir must focus on individuals with 

malaria infection at early stage, as asexual parasitemia left untreated will eventually produce 

gametocytes, and diagnostics for the sexual stage are limited [62].

This represents an important hindrance to malaria elimination as these infections are unlikely 

to be detected by passive surveillance and conventional diagnostic tools, and therefore require 

additional approaches to effectively reach all infections [63]. A combination of methods, or new 

diagnostics, may be required to detect infections in these asymptomatic parasite reservoirs. Also, 

a cross-sectoral response, involving non-health government agencies and the private sector 

addressing the links between malaria transmission, mobility and labor, will play an important 

role in responding to drug resistance and achieving elimination in the Southeast Asia region. 

Preliminary studies of the use of peer outreach workers to conduct screening of suspected cases, 

providing health education, and distributing nets in hot-spot areas in or near the forest, suggest 

that it is feasible to target high-risk populations in a culturally appropriate and evidence-based 

manner to reach the goal of elimination in Pursat Province, Cambodia [64]. Mobile Malaria 

Workers or peer outreach activities often face logistic challenges including muddy roads, river 

crossings, and transportation difficulties that make it hard to quickly respond to all infections. 
The recent President Malaria Initiative (PMI) studies show this is a potential resource that can 

be piloted or replicated across GMS countries (John Hustedt, personal communication).

Lastly, persisting low health-care coverage and access in remote locations remains an important 
challenge for mobile populations and migrant workers in some Southeast Asian countries, lim-

iting the ability of malaria programmes to effectively capture these groups through the routine 
surveillance system, but most importantly to adequately provide the necessary preventive mea-

sures and care needed [65]. It is encouraging, however, to see that malaria infection rates in peo-

ple who had sought treatment, or blood-smear examined in a previous malaria episode, and/or 

who knew how to prevent malaria (e.g., sleeping under a mosquito net), tend to be lower than 

those that did not seek treatment or had inadequate malaria knowledge [45]. This highlights the 
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importance of scaling up and expanding the reach of point of access care and dissemination of 

information, such as through border posts or at large development or construction areas that 

are likely to host high-risk malaria occupational groups. These posts can potentially be used 

as effective channels to target and deliver specific interventions such as Behavioral Change 
Communication (BCC) materials, insecticide-treated uniforms or hammock nets.

Therefore, there is an urgent need to develop appropriate and sustainable malaria services for 

MMPs in different settings, in the context of the spread of artemisinin resistance and malaria 
elimination in the GMS. Different types of mobility require different malaria control interven-

tions and therefore elimination strategies that should be based on an in-depth understanding 

of malaria risk in each group [66]. A population movement framework can assist in improved 

targeting of malaria (and other public health interventions) by going beyond a simple labeling 

of risk groups to develop a better understanding of risk behaviour and vulnerabilities. The 
implementation of the framework should be carefully evaluated to identify the changes in 

coverage, access, and effectiveness of the programme efforts to serve MMPs [67].

4. Residual and outdoor transmission: how much and where?

In 2012, global malaria transmission was reported as mainly attributable to 51 Anopheles 
species, with an average of about 3 major species per country [68]. Biological factors that 

determine whether a species becomes a major local threat are its competence for transmitting 
human malaria parasites, its anthropophilic versus zoophilic preference, and its abundance 

in relation to its ability to multiply, survive, and compete for resources with other Anopheles 

species. The third of these factors is regulated by the ecosystem’s carrying capacity for potent 

vectors depending on their ecological niches [69]. Species of several Anopheles complexes are 

either major or secondary malaria vectors depending on their geographical range of distri-

bution [70]. The peculiarity of these sibling species within a complex is that they cannot be 

distinguished using morphological criteria. However, several Asian malaria vectors within 

the Dirus, Leucosphyrus, Minimus, Maculatus, Culicifacies, Sundaicus, Subpictus complexes 
or groups show similar morphological characteristics, different ecological traits and vector 
competencies and overlapping geographical distribution with other vectors and non-vectors 

[70, 85, 92]. As some of these sibling species occur sympatrically and differ in their ability to 
transmit malaria and in their behaviour, the use of molecular tools to differentiate the vectors 
from the non-vectors is essential to target the correct species in vector control programs.

Malaria vector control relies largely on Long-Lasting Insecticidal Nets (LLINs) and Indoor 
Residual Spraying (IRS), along with Larval Source Management (LSM) as a supplementary 
measure appropriate in certain settings. These core interventions are highly efficacious for 
control of susceptible malaria vectors when implemented at universal coverage; LLINs and 
IRS contributed to a 48% reduction in malaria infection prevalence and 47% reduction in 

mortality worldwide between 2000 and 2013 [71]. However, malaria transmission can persist 

even when LLINs and/or IRS are effectively implemented and malaria vectors are susceptible 
to the insecticides used. This may be due to a combination of vector and human behaviour 

and bionomical characteristics, which compromise inadequate control measures against early 

and/or outdoor biting mosquitoes, and human activity away from protected houses or places 
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at peak biting times. With current efforts focusing on malaria elimination [72], there is consid-

erable interest in vector behaviour that is not influenced by application of core interventions 
(i.e., conventional IRS and Insecticide Treated Nets (ITNs)), such as feeding earlier and resting 

outdoors when humans are not protected. For example, an unprecedented malaria outbreak, 
related to illegal rosewood logging, occurred in 2014 with a seven-fold increase of cases in 1 

year in Ubon Ratchathani Province, Northeastern Thailand [73]. Insecticide-susceptible and 

exophilic An. dirus s.l. were collected from a forested area in Ban Pakla and Chong Ta Ou Thai 

border control station, including An. maculatus s.l. collected remote villages with potentially 

low insecticide pressure [73]. These susceptible vector species are less amenable to control 

interventions due to their behaviour and their interactions with humans contribute to persis-

tent residual transmission and represent barrier to success [74, 75].

From a geographical perspective, residual malaria parasite transmission has been reported 
across numerous transmission settings, even with good access and usage of LLINs or well-
implemented IRS [76–80]. From the programmatic perspective, residual malaria transmission 
(RMT) is defined as the persistent malaria transmission that occurs once universal coverage 
of LLINs and maximal coverage of IRS have been achieved. Identification and elucidation of 
RMT requires the following pre-conditions: (a) comprehensive and up-to-date LLIN and IRS 
coverage data, where coverage is defined as 100% access and usage of ITN/LLIN or IRS [81]; 

(b) outdoor human activity or behaviour to allow identification of outdoor sites and “gaps” 
in protection, not only before sleeping time, but also for people that remain outdoors dur-

ing the night. In many countries of the GMS, LLIN and IRS distribution data are sparse or 
not readily available. Where these data are available, it is often compiled at a relatively high 

administrative level, such as district or province. Malaria transmission at the community level 

can vary considerably within a small area and thus to investigate RMT at this level, LLIN and 
IRS coverage data by village are necessary. Furthermore, LLIN coverage figures quoted at 
the province or district level often do not match the actual situation at the community level, 

perhaps due to inequities in distribution, inaccurate population estimates, and calculation 

of procurement need, limited replacement of outdated and damaged LLIN; the outcome of 
which could lead to an underestimation of the magnitude of RMT.

As malaria is becoming more and more restricted to hard-to-reach population groups, alter-

native or adapted control strategies are required who are somehow marginalised, poor, on 

the fringes of the public health system, living in dwellings that are either very close to the 

forest or harbour people who are exposed to the forest through their occupation (e.g., devel-

opment sites and seasonal labour areas) or mobility behaviour. As shown in Table 1, the 

risk of RMT in the malaria foci is spread over the entire night, from dusk-to-dawn, requiring 

a combination of complementary vector control measures, such as long-lasting insecticide 

hammock nets (LLIHN) that can be used during different periods of the night. However, the 
use of LLIHN, single LLIN/ITN or topical repellents in the field may not be acceptable due to 
cultural and linguistic barriers of ethnic minorities and MMPs for which specific acceptability 
studies should be conducted to guide the feasibility of these vector control tools.

Another driver of RMT is mega and micro-development projects impacting the forest or cre-

ating new conditions suitable for vector species, and often attracting a substantial workforce 
from various horizons across borders and cultural boundaries [6]. Their sleeping or residen-

tial places can have additional vulnerabilities if they are remote, comprising mainly ethnic 
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minorities, or in conflict areas, all of which can hinder access to the public health system. 
Another key concern is to restrict or mitigate the widespread dispersal of parasites by these 

elusive population groups.

Just as forest workers often stay in the forests for several days and sleep exposed to vectors 

[84], rubber tappers also work in plantations at night with higher likelihoods of being bitten by 
Anopheles mosquitoes, in particular vector species of the Dirus Complex [3, 85]; they all have 

poor access to healthcare services [86]. Plantation work is seasonal, and manpower is often 

composed of highly mobile seasonal migrants, but little is known about their patterns of move-

ment. More malaria infections were observed in people with temporary labour positions and 

plantation workers at the Thailand-Myanmar border [87], but this was not confirmed due to a 
very high proportion of the study participants opting to perform forest or field activities, and a 
very low number opting to work in rubber plantation [59]. Many migrants that arrive for rubber 

tapping settle beyond the harvest season [87] and go on to work on other cash crops (e.g., rice, 

District, province, 

country

Ecotype % Access to LLIN % Use of 

LLIN

Proportion of 

Anopheles bites or 

infective bites in 

relation to sleeping 

time

Reference

Eastern region: Borkeo 
& O’Chum districts, 

Rattanakiri Province; 
Western region: Pailin 

& Pursat Provinces; 

Cambodia

Forest plots & 
villages

68.4% (Ratanakiri) 70.7% (forest 

workers)

After 22:00 h 71% [53, 102]

Forest plots 69.2% (Pailin); 

81.8% (Pursat)

66.3% (forest 

workers)

Before 22:00 h 29%

Ma Noi and Phuoc Binh 

communes, Ninh Thuan 

Province, south-central 

Vietnam

Village NA 85% Before 22:00 h 45% 

(bites only)

[83]

Way to the 

forest

NA NA Before 19:00 h 13% 

(bites of An maculatus)

Forest plots NA 53% Before 21:00 h 64% 

(bites only)

Tha Song Yang, Tak 
Province, Thailand

Villagea 78% 80% Before 21:00 h and 

05:00 h

20.0% Suan Oi

33.7% Pha Man

37.6% farm huts

[82]

Hamletsb 100% 75–95%

Farm huts NA NA

Son Thai commune, Khan 

Hoa Province, central 

Vietnam

Village 78% 95% Before 20:00 and 05:00 h

26% farm huts

37% forest

Farm huts NA 62.7%c

Forest NA 25%c

NA: not available.
aSuan Oi village.
bPha Man & Komonae hamlets, Thailand [82].
cRegular use of LLIN.

Table 1. Overview of residual malaria parasite transmission (RMT) in various ecological settings in Greater Mekong 
Subregion.
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cassava, fruit orchards). On return to their usual settlements, they contribute to the spread of 
malaria within and across international borders [41, 43]. By creating hot-spots of malaria and 

disproportionately affecting people with certain high-risk occupations [86, 89], residual trans-

mission under these circumstances has so far hindered progress towards elimination.

5. Correct identification of malaria vectors and Plasmodium 

detection

High levels of malaria transmission occurring in forest-fringe areas of Southeast Asia is explained 

by movements of people in search of forest products and exposure to many highly efficient 
vector species that have adapted to forest ecotypes [66, 85, 102, 103]. The wide diversity of both 

the deep-forest (e.g., Leucosphyrus Group of mosquitoes), forest-fringe and deforested area 
main vectors (e.g., An. minimus, An. maculatus s.l., An. culicifacies s.l., An. fluviatilis s.l., An. letifer,  

An. donaldi), as well as their great potential to adapt to habitat changes, means that the conse-

quences of deforestation on malaria transmission in Southeast Asia are difficult to predict and 
unlikely to be unidirectional [104]. Whilst An. dirus and An. baimaii, main vectors of the Dirus 
complex, can find tree-crop plantations suitable for breeding, a close association between 
malaria and rubber plantations has been demonstrated [4, 105–108], contributing to high lar-

val and pupal density during the rainy season [90, 91] and low numbers during the cool-dry 

season [92, 109], or provide conditions that are similar to this vector’s natural habitat [110]. 

This ecological adaptation in human settlements and shaded plantations contributes to out-
door transmission among rubber tappers.

The identification of secondary or incidental vector species poses new challenges as shown by 
mixed results of sporozoite-positivity using nested Polymerase chain reaction (PCR) and routine 

circumsporozoite enzyme-linked immunosorbent assay (CSP-ELISA) (Table 2). Confirmation 
of all positive CSP-ELISA results by a second CSP-ELISA test on the heated ELISA lysate, 
especially in zoophilic species showed a relatively high proportion of false positives (40%) [93]. 

On the other hand, PCR analysis of Deoxyribonucleic acid (DNA) extracted from the head and 
thorax alone, along with sequence data, revealed five Anopheles species (An. hyrcanus, An. barbi-

rostris s.s., An. barbirostris clade III, An. nivipes, and An. peditaeniatus) infected with Plasmodium 

falciparum, which are not considered major vectors in the GMS [94]. Similarly, out of 11  

P. falciparum CSP positive samples from Bangladesh, seven turned out to be positive by PCR 

suggesting that An. maculatus, An. jeyporiensis and An. nivipes play important roles in malaria 

transmission in Kuhalong District [95]. In Vietnam, the role of a secondary vector, An. pampanai 

infected with P. vivax, was also reported in the Binh Phuoc Province [96]. Morphological mis-

identification of the closely related sympatric species, such as An. aconitus, An. pampanai and 

An. varuna are common [99, 100]. Morphological identification of Anopheles specimens prior to 

PCR assays allows them to be sort out at the group or complex level but does not permit spe-

cies identification [85]. PCR assays must be applied for a reliable identification to the species 
level, which ensures that data received by malaria vector control programmes are suitable for 

targeting the correct vector species [101]. Given the low infection rates among many of these 

species especially in elimination phase, it is important for field entomologists to assess various 
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species’ role in malaria transmission in the eco-epidemiological context. When changing 

objectives from control to elimination of malaria in Southeast Asia, the need to focus not only 

in the so-called main vector species, but also on secondary vectors is increasingly important.

Deforestation may deplete the populations of deep-forest vectors and so initially reduce malaria 
transmission; in some localities this depletion may be followed by the invasion of other efficient 
vector species resulting in increased transmission. With the exception of two longitudinal stud-

ies examining the effects of progressive land use changes from pre-development forest to oil 
palm cultivation on the distribution of disease vectors and malaria incidence [111], there is a 

striking lack of primary research directly measuring the impact of deforestation on malaria in 

Southeast Asia [104]. Recent studies showed that An. dirus s.l. was abundant in rubber planta-

tions in Myanmar [109] and An. baimaii (molecularly identified) adults were caught from human 
landing collections in Wae Kha Mi, Mon State, the site of an acceptability study of permethrin-

treated clothing [110]. In Lao PDR, a total of 46 An. dirus s.l. were collected, of which 31 were 

Morphological 

Anopheles 
species*

Nested PCR, 

Cambodia [93]

Circumsporozoite 

ELISA, Thailand [97]

Prior heating of eluate 

and circumsporozoite 

ELISA, Bangladesh 

[98]

PCR confirmation 
of ELISA-positives 

Bangladesh [95]

Total 

collection 

(%)

Positive/

total

Total 

collection 

(%)

Positive 

/total

Total 

collection 

(%)

Positive 

/total

Total 

collection 

(%)

Positive /

total

An. maculatus 

s.l

21.43 4/640 4.3 2/97

An. annularis 

s.l.

14.43 3/431 0.78 1/19

An. kochi 0.93 1/44

An. barbirostris 

s.s.

6.6 3/55 3.52 1/105 2.9 1/140 7.4 1/186

An. 

peditaeniatus

5.08 3/139

An. hyrcanus 0.09 2/2

An. nigerrimus 0.87 1/21 4.1 1/104

An. 

philippinensis

3/219 24.7 25/1169

An. vagus 41.9 25/1978

An. nivipes 10.8 1/264

An. jeyporiensis 3.1 1/142 18.9 2/479

An. karwari 5.16 11/244 1.7

*Molecular identification was specifically conducted on Anopheles barbirostris s.s. and An. barbirostris clade III; An. hyrcanus 

and An. hyrcanus s.s; An. peditaeniatus and An. nivipes, and morphological identification for the other Anopheles species.

Table 2. Sporozoite infectivity rates of less known (secondary) vectors along the Bangladesh-Thailand-Cambodia 

corridor.
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from immature rubber plantations, nine from mature rubber plantations, five from secondary 
forests and one from the rural village [105] (Tangena Julie-Ann, personal communication).

6. Plasmodium knowlesi: an additional challenge to malaria 

elimination

Plasmodium knowlesi, a simian malaria parasite, is now considered the 5th parasite affecting 
humans [112]. All countries in Southeast Asia have reported cases of P. knowlesi with the exception 

of Lao PDR and Timor Leste [113]. Since most countries are now working towards malaria elimi-

nation, it is pertinent to pay serious attention to malaria cases especially in areas where malaria 
has been reduced to very low levels. A good example is Sabah, Malaysian Borneo where large 

numbers of P. knowlesi were diagnosed in areas where P. falciparum and P. vivax were occurring 

in very low numbers [114]. Malaysia is working towards malaria elimination by 2020 and cur-

rently more than 60% of the malaria cases are due to P. knowlesi (MOH personal communication).

Recently, an increasing number of cases of P. knowlesi were reported from Kalimantan and 

Ache in Indonesia [115, 116] where malaria was in process of being eliminated. In Northern 

Sumatra, Indonesia where they are working towards malaria elimination, they recorded 

only 614 (16.5%) positive malaria cases by microscopy out of 3731 people examined [117]. 

However, PCR detected malaria parasites in 1169 (31.3%) individuals. Of these, 74.9% were 

mono-infection and 25.1% were multiple infection. P. falciparum constituted 24.8%, P. vivax 

33.9%, P. malariae 9.3%, and P. knowlesi 32% [114] of the cases. It was also found that the prim-

ers developed from the SICAvar gene were more sensitive than the SSU rRNA gene [117]. It is 

obvious that parasite species are being mis-identified and many people who are asymptom-

atic are also missed by conventional microscopy [117, 118]. Thus, it is important to develop 

Rapid Diagnostic Tests (RDTs) that can be used by field workers to detect accurately malaria 
parasite species, especially P. knowlesi, and also additional laboratories should be established 

to conduct molecular assays for malaria diagnosis in the context of malaria elimination.

Deforestation and changes in the environment are the key factors leading to a surge of P. knowlesi 

malaria [119]. This parasite occurs in Macaca fascicularis (long-tailed) and Macaca nemestrina (pig-

tailed) monkeys and its distribution is limited by some species of the Leucosphyrus Group of 
Anopheles mosquitoes [120]. These species are found biting in greater abundance in forest and 

farms compared to villages [121, 122]. However, in Sabah, Malaysian Borneo, it was found that 

An. balabacensis was abundant in villages as well [123], and sporozoite-positive specimens were 

reported in addition to farms and forest [123], while infective mosquitoes were found only in 

the forested sites and farms in Sarawak (Borneo) and Pahang (Peninsular), Malaysia [121, 122]. 

In addition, vector studies have also been conducted in Vietnam [124, 125] where the species  

An. dirus has been incriminated as the simian malaria vector in Khanh Phu—South Central 

Vietnam. Studies were conducted in the forest and forest-fringe areas near Nga Hai village where 
both human malaria parasites, P. falciparum and P. vivax, were found along with P. knowlesi in 

order to determine the potential role of An. dirus as bridge vectors of Plasmodium parasites from 

monkeys to humans [126]. Based on these studies, it was possible for An. dirus to pick up infec-

tion from humans and macaques during the mosquito’s lifespan. However, since there have 

been no reports of epidemics of P. knowlesi, it is believed that humans are infected by mosquitoes 
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which acquired infection from the macaques. Perhaps even likely given that confirmed vectors of 
human plasmodia in Southeast Asia also become naturally infected by the monkey malaria spe-

cies [127]. A recent case control study conducted in Sabah revealed that the age group >15, pre-

dominantly males, working in farms, plantations, forested areas, and with travel history, were 

independently associated with the risk of acquiring knowlesi malaria [128]. It also highlighted 

that IRS was associated with decrease of risk [128].

There are only few investigations on record in understanding bionomics of vectors transmit-

ting P. knowlesi malaria. In order to implement vector control activities, the bionomics of the 

vectors must be understood. Based on few studies, it has been shown that the vectors are bit-

ing in the early part of the night from 18:00 h to 21:00 h and mostly outdoors [121–123, 129]. In 

these rural areas, people go to bed by 22:00 h and they are up by 05:00 h. The results showed 

that only 39.79% of An. balabacensis [123], 43.8% of An. latens [121] and 12.8% of An. cracens [122] 

were found biting during this sleeping time. Thus, current vector control measures like IRS 

and ITNs are not appropriate for the exophagic and exophilic vectors. The forests in Southeast 

Asia is providing a favorable environment with high percentage of macaques being positive for  

P. knowlesi [130–132], and with the presence of the vectors, it is going to be a daunting task to 

eliminate malaria. On a global scale, malaria has been reduced to low levels due to the scaling 

up of ITNs, IRS, ACTs, and intermittent preventive treatment to infants and pregnant women 
[133]. Thus, it is obvious that new tools are urgently required for successful malaria elimination.

It is known that the two human malaria species (P. falciparum and P. vivax), which infects mil-

lions of people actually were of zoonotic origin (from the African apes), which evolved thou-

sands of years ago [134, 135]. Thus, there is always a possibility that in the future P. knowlesi 

and other simian malarias may become established in humans, especially when human 

malaria is eliminated. However, currently human-to-human transmission of knowlesi malaria 

by mosquitoes has not been established. This is crucial in the light of malaria elimination and 

more focused research is needed on this topic if we are to succeed with malaria elimination.

Changing landscape affects Anopheles distribution, mosquito density and diversity in Malaysia, 

and more globally Southeast Asia [105, 111, 136–138]. It has been shown that with loss of forest 

cover, cases of P. knowlesi have increased in Sabah [119]. Land use change has also led to increase 
of malaria cases due to various factors such as increase of macaques in small forest patches 

along with the colonization of the main vectors [119, 136]. It is interesting to note that An. balaba-

censis, the predominant vector of human and simian malaria, was found in great abundance in 

logged forest, followed by thinly logged virgin jungle reserve and was lowest in primary forest 

[136]. This vector was also found to be biting humans more at ground level compared to canopy 

level [136]. It is therefore important to include both the public health and agro-forestry sectors in 

controlling malaria vectors in the country. Studies from Thailand also indicate that if landscape 

management should be used for malaria control in northern Thailand, large-scale reduction and 

fragmentation of forest cover would be needed [139, 140]. Such drastic actions, however, do not 

align with current global objectives concerning forest and biodiversity conservation.

The vectors of simian malaria described to date were An. hackeri (Leucosphyrus Group) [141] 

recorded biting mainly the macaques and large numbers were collected resting on Nipah palm 

trees in Selangor in 1960s; An. cracens (Dirus Complex) [122] biting both macaques and humans 

and found mainly in the forest and farms; An. latens (Leucosphyrus Complex) [121] was the 

Human and Simian Malaria in the Greater Mekong Subregion and Challenges for Elimination
http://dx.doi.org/10.5772/intechopen.76901

107



predominant mosquito in the forest compared to farm and village, and was biting macaques at 

ground level and at six meters in the canopy compared to three meters. The biting ratio of mon-

key versus human for An. latens was 1:1.3 [121]. An. introlatus (Leucosphyrus Complex)  [142]

was biting in the early part of the night from 19:00 h to 21:00 h and was the predominant mos-

quito in Hulu Selangor where cases of P. knowlesi were reported. Most recently, An. balabacensis 

(Leucosphyrus Complex) has been incriminated as vector of P. knowlesi in Sabah [123], as well 

as human malaria and Bancroftian lymphatic filariasis due to Wuchereria bancrofti [143–145].

Although an increased number of countries are successfully eliminating human malaria in recent 

years, no country has yet eliminated non-human malaria, which adds another layer of complex-

ity to be addressed. The complex situation of malaria is Southeast Asia is very unique from the 

rest of the tropical countries. More effort is needed to study the host switching mechanisms 
between the parasites in humans, macaques and vectors. A series of review papers have been 

published over the years and all these have indicated the importance of addressing the problem 

caused by P. knowlesi, if malaria elimination is to be successful in the region [113, 146–151].

7. Targeting vivax malaria: a bottleneck to malaria elimination

As opposed to P. falciparum infection, which does not have latency (dormant), P. vivax causes 

two distinct infection syndromes, one that actively proliferates and the other latent due to 

hypnozoites. Each of these P. vivax forms requires distinct therapeutic treatments and the 

latent form cannot be diagnosed [152]. Most acute attacks of P. vivax in endemic areas origi-

nate from hypnozoites, and unless that reservoir is aggressively attacked, elimination of 
transmission may be an unrealistic goal.

Treatment of latent vivax represents an important challenge as the only known therapies are 

8-aminoquinoline drugs, which results in acute hemolytic anemia in patients deficient in glu-

cose-6-phosphate dehydrogenase (G6PD)—a highly polymorphic inherited disorder affecting 
1–30% of residents of malaria-endemic nations [153]. The single low dose of primaquine against 

gametocytes of P. falciparum does not threaten the G6PD deficient subjects [154]. Another 

challenge is that the parasitemia of vivax malaria patients is typically an order of magnitude 

lower than falciparum malaria, causing larger proportions of parasitemia to fall below diagnos-

tics detection thresholds [152]. In addition, vivax malaria patients may exhibit very low parasit-

emia, and yet become severely ill. These fundamental distinctions between the two dominant 

human malarias explain why P. vivax is relatively unaffected by interventions tailored to con-

trol P. falciparum calling for new strategies needed for combatting vivax malaria [155].

In addition, P. vivax has the ability to develop at lower temperature than P. falciparum and has a 

shorter sporogonic cycle in the vector, which results in P. vivax extending beyond tropical climates 

into temperate regions. This ability, combined with its early-biting, outdoor-feeding and outdoor-

resting behavior of vector mosquito species, also makes them less susceptible to vector control 

measures such as IRS, which have proven effective against transmission of P. falciparum [156]. Also 

having dormant forms in the liver (hypnozoites) mean that one successful infection will generate 

a number of parasitological and clinical episodes without reinfection. Therefore, recurrent cases 

cannot be prevented via vector control, though, paradoxically, successful transmission control of 
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vivax malaria could reduce the disease burden more than that of P. falciparum, because avoiding 

one infection will result in preventing a number of clinical episodes over several years [155].

Vivax malaria is diagnosed late, because infected people get ill with low parasite densities, 
which cannot be detected with current diagnostics, such as RDTs and microscopy. Delayed 
diagnosis means not only delayed treatment (hence prolonged morbidity, especially anemia) 

but also ability to transmit over an extended period. This is further amplified by the fact that 
mature gametocytes appear simultaneously with asexual forms—hence transmission occurs 

before diagnosis and treatment [157, 158].

As recently described [156], an effective P. vivax control and elimination toolbox should 

include:

i. Practical point-of-care G6PD deficiency diagnostics allowing wider access to safe pri-
maquine therapy or with tafenoquine—a related single dose hypnozoitocide recently de-

veloped by GSK and Medicines for Malaria Venture (MMV); the latter has been submitted 
to the United States Food and Drug Administration (FDA) seeking approval of single-
dose tafenoquine for the radical cure (prevention of relapse) of vivax malaria in patients 

16 years of age and older [159];

ii. More sensitive point-of-care diagnostics for detecting intrinsically lower parasitemia, in-

cluding sub-patent and asymptomatic infections;

iii. Validated strategies for relapse prevention in special population groups, i.e., pregnant 
women, young infants, G6PD deficient and G6PD unknowns in which 8-aminoquinoline 
is contraindicated;

iv. Clinical care algorithms acknowledging risk of severe and threatening syndromes de-

spite seemingly non-threatening levels of parasitemia; and

v. Interventions of proven efficacy to minimize human contact with often zoophilic, ex-

ophagic and exophilic Anopheles species of great diversity.

In conclusion, the malaria community needs to address these challenges and create a via-

ble strategy to achieve vivax elimination goals, providing novel solutions for overcom-

ing critical bottlenecks. This process needs to begin now to enhance treatment practice for 
8-aminoquinoline drugs based radical cure. Highlighting the benefits of radical cure for 
the patient and community will improve prescription practice and patient adherence [160]. 

Coupling this with improved access to adequate G6PD testing will pave the way for the intro-

duction of tafenoquine, with huge potential to accelerate the elimination of P. vivax.

8. Socio-ecological and adaptive management of malaria ecosystem 

in areas approaching malaria elimination

WHO has recently proposed sustainable prevention and control of diseases emerging 

within complex, dynamic, adaptive systems, such as malaria, based on interdisciplinary and 

approaches addressing environmental and social health determinants holistically [161]. More 
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insights into transmission dynamics and the possibility of intersectoral ecosystem management 

programs for malaria elimination and control are urgently needed. An ecosystem approach to 

successful reduction of vector-borne disease burden [162, 163] can lead to considerable health 

gains [Available at: http://www.maweb.org/documents/document.317.aspx.pdf].

Once local entomological inoculation rates (EIRs) have been reduced to a level of unstable trans-

mission the infectious reservoir can be eliminated via several approaches without a threat of 

malaria re-emergence from reintroduction of parasites. At this point, use of time-limited mass 

drug administrations (MDA) campaign at high coverage should be sufficient to effectively clear 
the majority of remaining P. falciparum cases, and may be considered for epidemic control as 

part of the initial response, along with the urgent introduction of other interventions [164]. This 

can be supplemented by screening and treatment programmes based on WHO Global Malaria 

Programme’s T3: Test, Treat, Track initiative supporting malaria-endemic countries in their 

efforts to achieve universal coverage with diagnostic testing and antimalarial treatment, as well 
as in strengthening their malaria surveillance system [WHO T3: Test, Treat, Track. Scaling up 

diagnostic testing, treatment and surveillance for malaria. World Health Organisation; 2012. 

http://www.who.int/malaria/publications/atoz/t3_brochure/en/]. Healthcare workers or locally 
trained and supervised community volunteer networks can apply this method to effectively 
limit reintroduction of parasites from other areas to a minimum, and apply additional active 

case management, e.g., the systematic detection and treatment of parasitemia using highly sen-

sitive RDTs can reduce the risk attributed to any unscreened or asymptomatic cases.

Depending on the local situations, supplementary measures, in addition to LLINs or IRS, 
such as repellents or treated clothing for high-risk individuals, offer special precautionary 
preventive protection [1, 110, 165, 166]. Passive case management should suffice for treat-
ing any symptomatic infections as they may occur. This, however, assumes at least a peri-

odic provision of health services at all locations, including remote ones. A transdisciplinary 

approach integrates different scientific perspectives [167, 168] and provides a formal platform 

for stakeholder participation in the research and development of new information, ideas and 

strategies, their testing and eventual application.

Participatory approaches that engage local communities in a complex social-ecological mapping 

process are a vital starting point for identifying community-applicable solutions and leveraging 

community capacity for local interventions [169, 170] and promoting integrative and equitable 

collaboration within partnership of researchers and communities [170, 171]. Ownership of con-

tinuous surveillance, monitoring, treatment and preventive efforts should be transferred to mem-

bers of local communities, assuming collective responsibility for their continuous well-being.

9. Conclusions

This review attempts to consolidate the challenges of operational research for innovations 
in designing interventions [172], according to the current situation and progress made, for 

achieving malaria elimination in Southeast Asia. As the entry of artemisinin resistant para-

sites to India could be the first step in their spread to Africa, the current priority must be to 
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address this problem in Southeast Asia before it can become a threat in Africa. Continuous 

monitoring of drug resistance in conjunction with analysis and proper interpretation is criti-

cal to guide the appropriate action for effective treatment. While P. falciparum elimination 

in the GMS is realistic, feasible and particularly urgent in the context of drug resistance, the 

main challenges are to ensure community participation and plan for the preservation of ACT 

potency so that the dosing regimens and surveillance for resistance are rigorously pursued to 

sustain their efficacy for as long as possible [172].

We support a priority focus on MMP and other high-risk groups to contain the spread of 

artemisinin resistance and new hot-spots, however, implementation challenges should be 

considered when planning future interventions. More efforts are needed in documenting the 
malaria risk among different types of MMPs, innovative tools and interventions, as well as 
designing implementation in a way that can be evaluated, lessons learned, and programmes 

adapted in an on-going process [172]. New ways of evaluating MMP interventions (including 

highly sensitive RDTs) are needed, as routine health information systems have limitations 
and might not allow capturing the information and data needed, and existing type of surveys 

might not be sufficient for monitoring interventions for MMP.

Malaria programmes need to heed the recent revised WHO recommendations for achieving 

universal coverage with LLINs or IRS for populations at risk [173]. The coverage of key inter-

ventions is critically low in some countries and sub-optimal in most others, threatening prog-

ress across the region as a whole [174]. Malaria programmes are encouraged to evaluate the 

magnitude (and drivers) of the residual transmission in their country, regarding both mosquito 

and human behavior. This information will provide a boost for industry and academic partners 

to develop new vector control methods and paradigms for outdoor and residual transmission.

The current precarious funding situation could undermine elimination efforts and result in a 
resurgence of disease. The threat posed to regional and global malaria control and elimination 

efforts by artemisinin resistant P. falciparum parasites is imminent and potentially severe. In many 

Asian countries, operational feasibility of P. vivax elimination is lower than that for P. falciparum 

[27]. Therefore, creating a viable strategy to achieve vivax elimination goals should include 

improvements in access to safe treatment to 8-aminoquinoline drugs based radical cure together 

with improved access to adequate G6PD testing in P. vivax endemic countries.

Whilst human P. knowlesi is still largely a zoonosis, all indications suggest that human-to 

human transmission can take place, and probably is taking place in some situations [175]. 

More research is required to substantiate the body of evidence for human-to-human transmis-

sion, laboratory diagnosis and clinical management, and mapping vectors of P. knowlesi and 

environmental risk factors.

The challenge for elimination programmes is dealing with dynamic, social-ecological systems 

for which an entirely different kind of thinking and scientific framework is required. The 
retooling for this next phase is more challenging this time since it requires malaria experts and 

managers to understand complex systems, thinking and practices. This thinking and actions 

are more or less contrary to conventional understandings of disease control, which tend to be 

top down and not guided by concepts like resilience and adaptive management developed as 

part of so-called ecosystem approach/management.
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