
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 4

Grinding Force of Cylindrical and Creep-Feed Grinding
Modeling

Pavel Kovač and Marin Gostimirović

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76968

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Pavel Kovač and Marin Gostimirović

Additional information is available at the end of the chapter

Abstract

This chapter presents an experimental study of grinding forces as relationship of work-
piece speed v, feed rate s

a
 and depth of cut a. For the modeling of cylindrical grinding used 

was response surface methodology and genetic algorithms. Modeled was the tangential 
force F

t
 and the normal force F

n
 in cylindrical grinding. The process included measure-

ment of cutting forces during cylindrical grinding and later calculating their values using 
abovementioned techniques and determined adequate models. This chapter also exam-
ines the value and character of cutting forces in the creep-feed grinding. In order to identify  
the impact of cutting forces on the state of the process of creep-feed grinding, according 
to the elements of the machining experimental tests, relationship of the tangential and 
normal components of the grinding force and ratio of grinding force were determined. 
In comparison with the traditional multi-pass grinding results, the occurrence of higher 
cutting forces in creep-feed grinding, especially normal components, is shown.

Keywords: cutting force, cylindrical grinding, modeling, genetic algorithms, creep-feed 
grinding

1. Introduction

Knowledge about machinability of materials parameters, tool wear, quality of machined 

surface, cutting temperature, cutting forces, and so on, is beneficial not only for cutting pro-

cess but also for designing the machine tools, fixtures, tools and process management. This 
was the goal of many researches especially in cutting, but there are only few data regarding 
grinding [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Research in grinding is performed with the purpose to define machining parameters, rough-

ness of machined surface, grinding forces and grinding temperatures [2, 3]. Forces in surface 

grinding are measured with dynamometer Kistler, and they are increasing with increase of 

the material removal rate. Cutting forces measurements, during cylindrical grinding, are real-
ized with dynamometer Kistler and are shown in [4].

Mathematical models of grinding force and grinding temperature for three wheels were 

established in [3]. Then, the role of chip formation force and friction force in grinding was 

investigated, and the thermal distribution in contact zone between workpiece and wheel was 

analyzed based on the mathematical model.

Grinding process is generally used to improve the tolerance integrity and surface integrity 

of a workpiece. It is crucial to know process forces since they are necessary to identify the 
conditions for surface burn. In [5], a new semi-analytical force model for grinding process 

was developed by modeling abrasive grits and their interaction with the workpiece mate-

rial. Semi-analytical equations for normal and tangential force components as well as average 

force per grit are established by using the micro milling analogy. The model can then be used 

in prediction of the forces for different cases involving the same material and the abrasive 
grain however with different conditions.

In [6], a new grinding force model was developed by incorporating the effects of variable 
coefficient of friction and ploughing force. This is based on the fact that chip formation during 
grinding consists of three stages: ploughing, cutting and rubbing. Equations for the total nor-

mal and tangential force components per unit width of the grinding during these three stages 

were established. These components were expressed in terms of the experimental coefficients 
and process parameters like wheel speed, table feed and depth of cut. All the coefficients were 
determined experimentally by performing grinding tests at specified conditions according to 
the experimental trifactorial central composition plan.

Investigation of grinding force and grinding temperature of ultra-high-strength steel Aermet 
100 in conventional surface grinding using a single alumina wheel, a white alumina wheel 

and a cubic boron nitride wheel was done in [7]. First, mathematical models of grinding force 

and grinding temperature for three wheels were determined. Then, the role of chip forma-

tion force and friction force in grinding force was investigated and thermal distribution in 

contact zone between workpiece and grinding wheel was analyzed based on the mathemati-

cal model. The experimental result indicated that the ratio of minimum grinding force to the 

maximum grinding force under the same grinding parameters can be achieved when using a 

CBN wheel and a single alumina wheel, respectively.

Proper understanding of the grinding forces can be useful in designing grinding machine 

tools and fixtures. Additionally, information on specific energy helps in selecting process 
parameters for achieving optimum output [8]. In this chapter, analysis of the effects of process 
parameters, tribology, work material and auxiliary equipment on grinding forces and specific 
energy, has been carried out. Existing models have been critically analyzed, and Werner’s 
specific force model was found to be quite promising for advanced grinding processes. It was 
found that under specific boundary conditions and environment similar to advanced grind-

ing processes, this model estimates grinding forces with acceptable accuracy [9].
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Optimal control of workpiece thermal state in creep-feed grinding using inverse heat con-

duction analysis was done in [10] and surface layer properties of the workpiece material in 

high-performance grinding were analyzed in [11]. An inverse heat transfer problem for opti-

mization of the thermal process in machining was done in [12].

For determination of dependence between cutting forces and machining parameters, firstly 
the full factorial experiment second-order design is used by [13]. With this approach, it is 
possible to determine the dependence of machining parameters and the results with minimal 

number of experiments.

This chapter analyzes the cutting forces in the creep-feed grinding and experimentally deter-

mined mean values of cutting force of abrasive grains that are currently in the grip with the 
workpiece as well. Cutting forces are determined depending on the treatment regime for two 
types of corresponding wheels.

As a second option for modeling, the dependence functions are genetic algorithms. They are 

extensively described in [14], and the same principle is implemented in this chapter.

1.1. Genetic algorithms

Genetic algorithms (GA) mimic the process of natural evolution by incorporating the “sur-

vival of the fittest” philosophy. In GA, a point in search space (binary or decimal numbers) is 
known as chromosome. A set of chromosomes is called population. A population is operated 

by three fundamental operations as follows:

1. reproduction (to replace the population with large number of good strings having high-

fitness values)

2. crossover (for producing new chromosomes by combining the various pairs of chromo-

somes in the population).

3. mutation (for slight random modification of chromosomes).

At the very beginning, an initial population of 50 individuals is created. They are randomly 

generated from interval 0–1 using uniform distribution for creation of population. This indi-

cates that real number coding was used. As a fitness scaling function, rank method was used. 
Most fit individual with the best raw score is assigned as first on the scaling list. Next to fittest 
is ranked number 2 and so on. This method is ranking every individual in generation as com-

pared to the best individual in that same generation, no matter how good or bad fitness value 
is. And It was selected because it allowed the fastest convergence toward the best solution.

Selection of individuals for presence in mating pool was executed by roulette wheel method. 
Size of area on wheel occupied by a single individual is defined by rank score—the better 
the score, the bigger the area. Wheel is then spun and individual with the largest area has 
the most chances to be assigned a slot in mating pool. This action is repeated until all slots in 

mating pool are assigned. In each generation, two of the best individuals are automatically 
transferred to next generation. This act is called elitism and it guarantees that best genetic 

material is passed onto next generation. By setting this parameter high, the genetic diversity 
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is quickly reduced which leads to prolonged convergence time. On the other hand, setting 
it low, elite genetic material of every generation may be lost and algorithm stuck in local 

minimum. Number of individuals created by heuristic crossover is, in this case, 43. Heuristic 

crossover is carried out by creating children that randomly lie on the line containing the two 

parents, a small distance away from the parent with the better fitness value and in the direc-

tion away from the parent with the worse fitness value. After transferring two elite individu-

als from previous generation and creating 43 by crossover to complete a full population with 

50 members last 5 individuals are created by mutating 5 of their predecessors.

With the process of mutation, a completely new genetic material is introduced into the popu-

lation which helps in expanding genetic diversity and search space. It also prevents jamming 
an algorithm in a local minimum of the function. Uniform mutation is selected with the rate 

of 0.2. This type of mutation is basically a two-step process. In the first step, the algorithm 
selects a gene of an individual for mutation where each gene has the same probability as the 

mutation rate of being mutated. In the second step, the algorithm replaces each selected entry 
by a random number selected uniformly from the range for that entry. This whole process of 

selection, recombination and mutation lasted 500 generations.

2. Experimental investigation

2.1. Mathematical model

The abovementioned methodology of trifactorial central composition plan design was used 

during investigation in cylindrical grinding. Input parameters during modeling were machin-

ing parameters:

• Workpiece speed v (m/min)

• Feed rate s
a
 (mm/rev)

• Depth of cut a (mm)

Output parameters were:

• Tangential force F
t
 (N)

• Normal force F
n
 (N)

Other parameters were kept constant: tool geometry, tool wear, cooling and lubricating fluid, 
dynamical system machine-tool-workpiece.

Chosen mathematical model for grinding forces has the form:

   F  
i
   = C .   v  

r
     x  .   s  

a
     y  .  a   z .  (1)
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2.1.1. Creep-feed grinding

In the case of surface grinding, where there is no lateral movement of the table, usually result-
ing force has been divided into tangential (extensive) component F

t
 and normal (radial) com-

ponent F
n
 [6, 15].

Tangential component acts in the direction of the tangent to the surface of the grinding wheel 

and workpiece contact, that is, in the direction of cutting speeds. The normal component 
acts normally to the surface of the wheels and workpiece. As the diameter of the wheel is far 

greater than the depth of cut, it can be assumed that the tangential and normal component 

supine in a horizontal or vertical plane, Figure 1.

The relationship of normal and tangential components of the grinding forces is defined as the 
grinding force ratio:

  λ =   
 F  

n
  
 __ 

 F  
t
  
   =   

 F  
n
  ′  
 __ 

 F  
t
  ′ 
    (2)

In the previous equation, the components of the grinding forces are reduced per unit width of 
grinding b, referred to as the specific grinding force:

   
 F  

t
  ′  =   

 F  
t
  
 __ 

b
  
  

 F  
n
  ′   =   

 F  
n
  
 __ 

b
  

   (3)

Grinding force can be expressed by specific grinding energy, which shows how much energy 
is consumed per unit volume of material removed:

  u =    P   ′  __ 
 Q   ′ 

   =   
 F  

t
  ′  ⋅  v  

s
  
 _____ a ⋅  v  

w
     =   

 F  
t
  ′ 
 ___ 

 h  
m
  
    (4)

Figure 1. Components of the cutting force during creep-feed grinding.
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2.2. Conditions during the experiment

2.2.1. Cylindrical grinding

Workpieces were cylindrical shaped Ø 60 × 150 mm and were made from two types of steel:

• Steel EN 34Cr4. with mechanical properties R
p02

 = 460 MPa; R
m

 = (690–840) MPa

• Steel EN 18CrNi8. with mechanical properties R
p0.2

 = 485 MPa; R
m

 = (1080–1330) MPa

Tool was cylindrical grinding wheel Ø 350 × 40 × 127 mm, type B60L6V. Machining was per-

formed on cylindrical grinder by manufacturer LŽTK Kikinda type UB, with dimensions of 
the workplace 1000 × 400 mm and power was rated 4 kW. Cutting speed was kept constant 
at v

s
 = 3.65 m/s. Varied machining regime parameter values: work speed v

r
, feed rate s

a
 and 

depth of cut a are shown in Table 1.

2.2.2. Creep-feed grinding

Workpiece material used in the experimental setup was the molybdenum high-speed steel 
(HSS), which is widely used in the industry of cutting tools. Designation of the selected speed 
steel is DIN S 2-10-1-8. This steel belongs to a group of ledeburite steel with a microstructure 
consisting of martensite and fine mixtures of primary and secondary ledeburite cementite. 
The chemical composition of the test material was: 1.08% C; 0.22% Si; 0.23% Mn; 0.014% P; 

0.019% S; 4.1% Cr; 1.5% W; 9% Mo; 1.1% V and 8% Co. Measured hardness on all samples 
ranged 66 ± 1 HRC. Experimental samples consisted of tiles measuring 40 × 20 × 16 mm.

Based on the recommendations, the chosen material of the workpiece and set the conditions 

of processing were selected two wheels similar characteristics: wheels “Norton” type 32A54 
FV BEP and size 400 × 80 × 127 mm, respectively “Winterthur” type 53A80 F15 V PMF and size 
400 × 50 × 127 mm. The wheels are with high-quality abrasive grain, medium grain size, hard-

ness soft, open structure with ceramic binder. All experiments were conducted with sharp 

wheels, and sharpening is done with a diamond planer alignment with a depth of 0.01 mm/
speed and displacement of 0.1 mm/rev.

The machining conditions included variable depths of cut and workpiece speed. The depth of 

cut was a = 0.05; 0.1; 0.25; 0.5; 1 mm and the workpiece speed was v
w
 = 2.5; 5; 10; 25; 50 mm/s. 

The adopted mean value of specific material removal rate is Q’ = 2.5 mm3/mm⋅s. The grinding 

wheel speed was constant v
s
 = 30 m/s.

2.3. Measurement of grinding force components

2.3.1. Cylindrical grinding

Resulting grinding force can be divided into three components (Figure 2):

• Tangential component F
t
 (acts in vertical direction)

• Normal component F
n
 (acts horizontally)

• Axial force F
a
 (acts in the direction of workpiece axis-feed)
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During cylindrical grinding, axial force component F
a
 can be neglected because it is minor in 

comparison with F
t
, which allows a much simpler dynamometer design.

Until now, two-component dynamometer with strain gauges was used for cylindrical grind-

ing force monitoring. The same will be used in this experiment. Strain gauges were placed on 

both centers which enable reliable and accurate measurement of both components of cutting 
force on whole length of the workpiece.

No. Machining factor Experimentally measured 

values

Calculated values by response surface 

methodology

EN 18CrNi8 EN 34Cr4 EN 18CrNi8 EN 34Cr4

v
r
 [m/

min]

s
a
 [mm/

rev]

a [mm] F
t
 [N] F

n
 [N] F

t
 [N] F

n
 [N] F

t
 [N] F

n
 [N] F

t
 [N] F

n
 [N]

1 18.4 20 0.01 11.8 17 10.9 17.8 12.31 20.36 11.87 20.48

2 36.8 20 0.01 12.4 17.8 11.8 19.8 12.67 21.43 12.39 21.71

3 18.4 30 0.01 12.3 18.4 13 18.9 12.56 21.40 12.42 20.97

4 36.8 30 0.01 12.9 19.8 13.2 21.1 12.92 22.53 12.97 22.23

5 18.4 20 0.02 16.1 29 17.4 29 15.37 28.23 15.64 27.51

6 36.8 20 0.02 16.6 31.5 17.9 31.2 15.81 29.71 16.33 29.16

7 18.4 30 0.02 17.2 31.2 18.8 33.1 15.68 29.66 16.36 28.16

8 36.8 30 0.02 17.5 33.3 20 33.6 16.13 31.22 17.09 29.86

9 26 25 0.014 12.1 25.4 12.3 24.8 14.06 25.16 14.22 24.65

10 26 25 0.014 12 25.3 13.5 24.7 14.06 25.16 14.22 24.65

11 26 25 0.014 12.6 24.5 12.2 24 14.06 25.16 14.22 24.65

12 26 25 0.014 12.8 24.3 14 24.1 14.06 25.16 14.22 24.65

13 16 25 0.014 13.6 23.1 12.6 22.8 13.79 24.27 13.79 23.66

14 42.4 25 0.014 14.2 25.6 13.6 25.6 14.35 26.08 14.66 25.69

15 26 18.4 0.014 14.4 22.1 12.4 23.1 13.85 24.23 13.74 24.21

16 26 32.6 0.014 15.5 28.2 14.1 24.3 14.25 25.99 14.64 25.03

17 26 25 0.0086 11 19.2 10.8 19 12.03 20.00 11.71 20.03

18 26 25 0.023 17.1 33.2 18.1 31.1 16.48 31.78 17.32 30.45

19 16 25 0.014 13.4 23 12.1 22.5 13.79 24.27 13.79 23.66

20 42.4 25 0.014 14.5 25.8 13.9 25.7 14.35 26.08 14.66 25.69

21 26 18.4 0.014 14.2 22.9 12.6 23.3 13.85 24.23 13.74 24.21

22 26 32.6 0.014 15 28.1 14.6 24.1 14.25 25.99 14.64 25.03

23 26 25 0.0086 11.1 19.2 11 19.6 12.03 20.00 11.71 20.03

24 26 25 0.023 17.6 33.3 18.5 31.8 16.48 31.78 17.32 30.45

Table 1. Measured and calculated values of cutting forces.

Grinding Force of Cylindrical and Creep-Feed Grinding Modeling
http://dx.doi.org/10.5772/intechopen.76968

71



Dynamometers were constructed in the manner that four strain gauges were taped onto cylin-

drical part of the center. In this way, two of the strain gauges are in the horizontal direction 
and two are in the vertical direction. All strain gauges are connected to bridge, so every com-

ponent can be measured independently.

During grinding, under the influence of cutting forces, centers are deformed in the vertical 
and horizontal planes which are measured by strain gauges. Deformation of the strain gauge 

is proportional to load and signals coming from them have to be amplified and registered. 
To determine the cutting resistance values, dependence between measured signal (voltage on 
bridge) and load, F

i
 = f(U), is determined with the use of lever and weight.

Mentioned measurement technique is accurate enough, but some things have to be considered:

• Quality of the glue used to stick strain gauges onto revolving centers

• Possible differences between electrical properties of strain gauges

• Accuracy of strain gauges positioning into vertical and horizontal planes

• Protecting the strain gauges from environmental influence

• Quality of the acquisition system

• Length of the cables to transfer measured signal

During the experiment, standard cemented carbide revolving centers are used.

Figure 2. Information system for monitoring and processing cutting forces during cylindrical grinding.
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Signals from dynamometers on centers were amplified with Kistler CA 5001 amplifier. 
Afterward, those signals were transformed by A/D converter to PC computer for further pro-

cessing and analysis of measured data, Figure 2.

2.3.2. Creep-feed grinding

Measuring the forces that occur during creep-feed grinding was done using three-component 

dynamometers “Kistler Instrument AG,” type 9257. The used dynamometer works on the 
piezoelectric principle, which is reflected in the emergence of electricity on the surface of the 
crystal plate embedded in the dynamometer when the same force exerted pressure. Electricity 
is amplified by means of amplifiers capacitive “Kistler,” type CA 5001 and then is converted 
into DC voltage in the range from 0 to 10 V.

Measurement, analysis and control of the grinding force were performed using the information 

of the measuring system [10], where data acquisition is implemented by AD cards and cash inte-

grated software package, Figure 3. The set information measurement data acquisition system 

is characterized by a high degree of accuracy, reliability, speed of response and the ability to 

reproduce measurement results. It allows real-time measurements, timely intervention if they 
appear illogical results, as well as comprehensive and rapid processing and analysis of results.

Figure 3. Information system for measuring and processing cutting forces during creep-feed grinding.
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3. Analysis of experimental data

3.1. Cylindrical grinding

Based on the experimental plan and with the use of experimental devices, grinding forces 

values F
t
 and F

n
 are measured and recorded. Measured and calculated values for different 

machining parameters are shown in Table 1. On each sample of the material used for machin-

ing, for every experimental point, three repetitions were done, and the mean value of the 

repetitions was used in calculation of models.

Processing of the experimental data is performed with full factorial second-order design [9]. 

Side by side comparison of modeling with the genetic algorithms that were used to generate 

four coefficients from Eq. (1) while keeping the overall average error minimal is performed.

Table 2 contains values of regression coefficients [Eq. (1)]. It also shows the results and grades 
from model adequacy F

a
 and significance of mathematical model coefficients. Values of the 

coefficients which can be neglected with probability of α = 0.05 are marked with *.

In Table 3, are results of modeled cutting forces with genetic algorithms are shown. Table 4  

contains exponents which are generated by genetic algorithms according the Eq. (1). Process 
of generating the coefficients was carried out during 5000 generations with 50 individuals. 
From which 5 were elite individuals and rest were created by 0.6 crossover fractions and the 

rest of the generation was created by mutation.

Table 5 features the comparison of success rate of these two methods of coefficients determi-
nation. Average errors in deviation of calculated resp. modeled values from experimentally 

obtained values are shown. It can be seen that genetic algorithms generated more suitable 
coefficients and thus produced smaller error for most of the forces and materials except for 
tangential force F

r
 and for steel EN 34Cr4.

From Table 5, it can be concluded that both techniques can be used for cutting forces model-
ing but genetic algorithms having a slight advantage.

Influence of cutting conditions on grinding forces F
t,
 and F

n,
 for both workpiece material (EN 

18CrNi8 and EN 34Cr4) is shown in Figure 4 for workpiece speed, in Figure 5 for the feed rate 

and for the depth of cut in Figure 6.

EN 18CrNi8 EN 34Cr4

F
t

F
n

F
t

F
n

C 125.3 229.8 52.03 296.1

x 0.016* 0.232 0.104 0.270

y 0.073* 0.236 0.038* 0.273

z 0.590 0.850 0.654 0.945

F
a

3.069 0.740 1.775 5.389

Table 2. Coefficients in Eq. (1), calculated by response surface methodology.
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No. Machining factor Experimentally measured 

values

Modeled values by genetic algorithms

EN 18CrNi8 EN 34Cr4 EN 18CrNi8 EN 34Cr4

v
r
 [m/

min]

s
a
 [mm/

rev]

a [mm] F
t
 [N] F

n
 [N] F

t
 [N] F

n
 [N] F

t
 [N] F

n
 [N] F

t
 [N] F

n
 [N]

1 18.4 20 0.01 11.8 17 10.9 17.8 10.64 17.35 10.19 17.60

2 36.8 20 0.01 12.4 17.8 11.8 19.8 11.28 18.81 11.65 19.79

3 18.4 30 0.01 12.3 18.4 13 18.9 12.31 22.08 11.54 21.37

4 36.8 30 0.01 12.9 19.8 13.2 21.1 13.06 23.94 13.19 24.03

5 18.4 20 0.02 16.1 29 17.4 29 14.41 24.51 14.49 24.60

6 36.8 20 0.02 16.6 31.5 17.9 31.2 15.28 26.57 16.57 27.67

7 18.4 30 0.02 17.2 31.2 18.8 33.1 16.68 31.20 16.40 29.87

8 36.8 30 0.02 17.5 33.3 20 33.6 17.69 33.82 18.75 33.60

9 26 25 0.014 12.1 25.4 12.3 24.8 13.76 24.39 13.84 24.43

10 26 25 0.014 12 25.3 13.5 24.7 13.76 24.39 13.84 24.43

11 26 25 0.014 12.6 24.5 12.2 24 13.76 24.39 13.84 24.43

12 26 25 0.014 12.8 24.3 14 24.1 13.76 24.39 13.84 24.43

13 16 25 0.014 13.6 23.1 12.6 22.8 13.2 23.05 12.60 22.50

14 42.4 25 0.014 14.2 25.6 13.6 25.6 14.34 25.82 15.21 26.54

15 26 18.4 0.014 14.4 22.1 12.4 23.1 12.31 20.32 12.60 21.09

16 26 32.6 0.014 15.5 28.2 14.1 24.3 15.14 28.57 15.01 27.74

17 26 25 0.0086 11 19.2 10.8 19 11.11 19.13 10.80 19.31

18 26 25 0.023 17.1 33.2 18.1 31.1 17.1 31.24 17.81 31.06

19 16 25 0.014 13.4 23 12.1 22.5 13.2 23.05 12.60 22.50

20 42.4 25 0.014 14.5 25.8 13.9 25.7 14.34 25.82 15.21 26.54

21 26 18.4 0.014 14.2 22.9 12.6 23.3 12.31 20.32 12.60 21.09

22 26 32.6 0.014 15 28.1 14.6 24.1 15.14 28.57 15.01 27.74

23 26 25 0.0086 11.1 19.2 11 19.6 11.11 19.13 10.80 19.31

24 26 25 0.023 17.6 33.3 18.5 31.8 17.1 31.24 17.81 31.06

Table 3. Measured and modeled values of cutting forces.

EN 18CrNi8 EN 34Cr4

F
t

F
n

F
t

F
n

C 21.165 20.637 24.130 23.674

x 0.085 0.116 0.193 0.169

y 0.361 0.595 0.306 0.479

z 0.438 0.498 0.508 0.483

Table 4. Coefficients in Eq. (1), generated with genetic algorithms.
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Response surface methodology Genetic algorithms

EN 18CrNi8 EN 34Cr4 EN 18CrNi8 EN 34Cr4

F
t

F
r

F
t

F
r

F
t

F
r

F
t

F
r

Average error % 5.96 6.63 7.98 5.14 5.39 5.25 5.63 5.48

Table 5. Comparison of the average errors made by response surface methodology and genetic algorithms.

Figure 4. Influence of the workpiece speed on grinding forces.

Figure 5. Influence of the feed rate on grinding forces.
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From Figures 4–6, it can be noticed that all input parameters, significantly influence increas-

ing of cutting forces during cylindrical grinding process. Depth of cut has the highest influ-

ence on grinding forces followed by workpiece speed and then feed rate. This conclusion is 

valid for both study materials in study.

3.2. Creep-feed grinding

An example of measurement results of the cutting force during creep-feed grinding, two 

wheels with similar characteristics but different manufacturers, is shown in Figure 7. It can be 
concluded that for the same processing conditions obtained different values of force compo-

nents sanding, or about the same dynamic character.

Figures 8 and 9 are given depending on the specific components of cutting forces, as well as 
their relationship F′

n
/F′

t
, depending on the cutting depth and the workpiece speed for both 

selected wheels. With diagrams shown it can be concluded that with increased cutting depth 
grinding forces are increasing and decrease with increasing the workpiece speed, because of 

cutting depth is decreasing.

Relationship of cutting force in grinding depends on the elements of the cutting regime, and 
a constant specific productivity of grinding, is shown in Figure 10. The diagram shows that 

compared to conventional grinding, in creep-feed grinding cutting forces appear higher for 
both grinding wheels.

The ratio of normal and tangential grinding forces moved to within 2–4, except that higher 

values related to creep-feed grinding for both grinding wheels versus the workpiece speed.

Input parameters significantly influence increase in specific cutting forces during creep-feed 
grinding process. Depth of cut has the highest influence on grinding forces have depth of cut, 

Figure 6. Influence of the depth of cut on grinding forces.
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Figure 8. The grinding forces versus the depth of cut.

Figure 7. Value and character of the measured tangential grinding force components.
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Figure 9. The grinding forces versus the workpiece speed.

Figure 10. Specific grinding force versus the cutting regime for creep-feed grinding.
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while workpiece speed has low influence on grinding forces. Increasing workpiece speed 
decreases specific grinding forces for both used grinding wheels.

4. Conclusions

Based on stated earlier, following can be concluded:

• Presented dynamometers can be successfully used for measurement of cutting forces dur-

ing cylindrical grinding.

• Defined mathematical model of cutting forces F
t
 and F

r
 are adequate

• Influential elements of machining parameters on cutting forces are determined.

• Genetic algorithms are suitable for generating the coefficients for cutting force modeling.

• Creep-feed grinding reduces processing time, but also increases the cutting force

• Cutting forces primarily depend on the type of workpiece material and elements of its 
process

• Cutting forces during creep-feed grinding, due to a greater number of active abrasive 
grains into engagement with the workpiece material, are significantly higher compared to 
conventional grinding

• The grinding forces, the increasing length of contact of the grinding wheel and workpiece 

material, with increasing depth of cut;

• Increase the speed of the workpiece grinding forces decrease because it reduces the cross-
section of the affected layers of material by grinding grain;

• Greater grinding force ratio can be observed in creep-feed;

• Cutting forces during creep-feed grinding allow identification of the energy balance of ma-

chine tools and estimation of the level of accuracy for different machining conditions
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Nomenclature

v
r
 (m/min) workpiece speed

s
a
 (mm/rev) feed rate
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a (mm) depth of cut a (mm)

v
w
 (m/min) workpiece speed creep-feed grinding

v
s
 (m/s) grinding wheel speed

F
t
 (N) tangential force

F
n
 (N) normal force

F
a
 (N) axial force

λ grinding ratio

b (mm) width of grinding

F
t
ˈ, F

n
ˈ (N/mm) specific grinding force:

u (n/mm2) specific grinding energy

h
m

 (mm) grinding depth

Q’ (mm3/mm⋅s) specific material removal rate is

Pˈ (W/mm) specific grinding power
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