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Abstract

The silicon photon technology platform is low transmission loss, small size, low cost of 
the process and easy integration with electronic components and other characteristics. 
It is designed to design high-density optical communication network system has a con-
siderable advantage. Such as high-density wavelength division multiplexing (DWDM) 
system, that is through the different wavelengths of signal processing. So that it can be 
used for optical connection switches, routing and other applications. It composed of a 
DWDM system, through the Mach-Zehnder interferometer, ring resonator (Add/Drop), 
array waveguide grating (AWG) and grating coupler and other structural components. 
It is designed by components to filter, switch, adjust and detect functions. The charac-
teristics of the ring resonator are for wavelength selection. It is suitable for the design of 
optical switches, signal switching and modulation applications. It is also the focus of this 
lab and this chapter to explore and study. The general edge coupling, between the optical 
fiber and the waveguide dimension is very different. As a result, larger insertion loss is 
caused. This study uses the vertical coupling method to investigate the characteristics of 
a ring resonator.

Keywords: ring waveguide, add/drop, grating couple

1. Introduction

Big data era is entering reality. However, due to the limitations of electronic physical charac-

teristics, the traditional electrical interconnect [1–12] are increasingly faced with the challenge 

of rapidly expanding data transmission due to their technical development. In terms of band-

width expansion, transmission delay, loss control, signal enhancement and other aspects of 

the urgent need for a fundamental breakthrough. This prompted researchers to start looking 
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for new solutions. Si-based photonic devices use optical transmission signals. Compared 

to electrons, photons travel much faster than the electron’s velocity, and the mechanism by 

which light transmits signals is the wave impedance transformation, which consumes very 

little energy. The signal is not prone to distortion during transmission. In large bandwidth 
conditions can be greater transmission capacity. And silicon-based photonic devices also have 

complementary metal oxide semiconductor (CMOS) process compatible, small size, commu-

nication band transparent, anti-radiation and so on. It is precisely because of large bandwidth, 

low latency, low power consumption, low crosstalk and other advantages [13–21]. Emerging 

information technologies such as optical communications, optical interconnects and optical 

sensing based on the integration of silicon photonics demonstrate the development trend of 

building new information hardware. It is becoming an important foundation for a new gen-

eration of information systems and networks. A key issue that cannot be ignored for Si-based 

photonic integrated chips is the input and output of optical signals. In particular, silicon is an 

indirect bandgap material. Luminous efficiency has not yet reached the practical requirements. 
The prior art approach required the introduction of a separate light source from outside the 
photonic chip or the use of an on-chip hybrid integrated light gain material. Therefore, the 

photonic integrated chip needs among high efficiency, large bandwidth and easy integration 
of the optical coupling structure both in and out of the chip. Commonly used two kinds of 

coupling methods generally use the end level coupling structure or on-chip vertical coupling 

structure. It is compared to other various opto-couplers. The grating coupler uses the vertical 

diffractive optical field of the on-chip optical waveguide to realize the optical signal input or 
output of the wafer. It has the advantages of easy online on-chip testing, no wafer or wafer pre-

treatment, and no strict space limitations. Become a hot spot in the field of silicon-based pho-

tonics integration. With the gradual improvement of CMOS process accuracy. Silicon-based 

waveguides at or near the nanometer level are gradually getting out of the process limitations 
[22–36]. Raster coupler also gradually shows its unique technical advantages. This research 
mainly expounds the development status and future trend of grating coupler in recent years.

2. Grating coupler and characteristics

Silicon-based grating coupled devices can be divided into one-dimensional structure and two-

dimensional structure. According to the grating cell cycle, duty cycle, etching depth, etching 

angle can be divided into uniform grating coupler, non-uniform grating coupler and blazed 

grating coupler. Gratings are coupling functional devices in silicon-based photonic integrated 

wafers. The main research contents of grating coupler include coupling efficiency, coupling 
angle, working wavelength bandwidth, polarization correlation and so on.

This uniform grating coupler refers to the unit period of each grating as shown in Figure 1, 

duty cycle, etching depth are constant. Its structure is that the slit is generally perpendicular 

to the interface. The diffraction mode field of a uniform periodic grating coupler decays expo-

nentially. The mode field of single mode fiber is Gaussian distribution. The overlap between 
the two η

3
 is limited. This is a classic model of a grating coupler. The coupling efficiency of 

the grating coupler is a coupling efficiency η
3
 determined by the diffraction intensity, the 
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directional efficiency and the overlapping integral of the coupling light field. Coupling effi-

ciency is greatly affected. It is difficult to achieve efficient coupling. There are many ways to 
enhance the coupling efficiency. For example, an increase of multilayer dielectric mirrors, 
metal mirrors, overlays, and large duty cycle grating structures utilizing the slot effect. These 
methods either reduce reflection or enhance directivity, or reduce the reflection loss between 
the grating coupler and the optical fiber. This attenuated diffraction mode field and the opti-
cal mode field overlap integral is small. Coupling efficiency is greatly limited. The advantage 
of a uniform grating coupler is CMOS-compatible. The process is relatively simple. Moreover, 

the study of uniform structure is more comprehensive. Its processing method is more mature.

Non-uniform grating coupler effectively solves this mode field mismatch problem. The 
so-called non-uniform grating coupler, refers to the cycle and duty cycle or etching depth 

changes with the direction of light a quasi-periodic structure. Due to the fact that this struc-

ture no longer maintains a strict periodicity, the diffraction factor changes correspondingly 
as the grating cell structure changes. Therefore, the diffraction mode field no longer exhib-

its exponential decay. It is theoretically possible to achieve a Gaussian distribution of the 

diffracted light field. A non-uniform grating coupler structure exhibiting a Gaussian type 
in the diffraction mode field can be formed by a set of narrow-width-expanded slits. Etch 
depth from shallow to deep. This waveguide-to-grating reduction of the structure reduces the 

reflection loss, which is very helpful in improving the coupling efficiency due to the process 
challenges. This grating coupler structure developed slowly from the theory. One commonly 

used method of controlling the depth of etching is to take advantage of the load (hysteresis) 

effect of plasma etching. Optimize the correspondence between etching depth and slit width.

This is with the improvement of craftsmanship. Fine structures below 50 nm are also pos-

sible. The minimum width of the non-uniform grating coupler made by our research group is 

about 40 nm. The experimentally measured single-ended coupling loss is only 0.85 dB. Solve 
the problem of non-uniform periodic grating coupler on the fine processing requirements. 

Figure 1. Silicon-based grating coupled.
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Researchers at OFC/NFOEC 2013 presented a method for double-depth etching, as shown in 
Figure 3(a) . This method uses several pairs of shallow etched raster to replace the front nar-

row groove grating pairs. This is due to the shallow depth of etching. It reaches the same cou-

pling strength as the deep etched grating. It is necessary to increase the width of the groove. 

Reduce the technical difficulty. The minimum groove width in this article is 135 nm. The 
coupling loss is about 1.5 dB in the vertical coupling structure.

All along, to enhance the technology is to reduce the second-order reflections. It is improv-

ing the coupling efficiency. The grating coupler diffraction angle is about 10° angle. But this 
kind of declination not only has the limitation to the practical application. It caused packag-

ing difficulties. Hinder the large-scale integration of the device. Vertical coupling becomes 
another problem to be solved that limits the practical application of the grating coupler after 

the coupling efficiency. For 0° declination, which is the need for vertical coupling is even more 
pressing. It is a uniform grating coupler or a non-uniform grating coupler. The problem of 

vertical coupling has not been well solved. There is second order reflection in resonance state. 
Second order reflection greatly reduces the coupling efficiency. In the detuning state, the sec-

ond order reflections disappear. Coupling efficiency increases, but vertical coupling cannot be 
achieved. It can be seen from the Prague relations that it is to achieve vertical coupling. It must 

eliminate or reduce the second order reflections. Known methods have been the addition of 
distributed Bragg reflector (DBR) mirrors. The reflected light of the DBR mirror is canceled by 
the interference of the second order reflected light.

In this study, vertical coupling of 40% coupling efficiency was achieved by adding DBR mir-

rors. Its efficiency is close to the coupling efficiency (44%) without a DBR mirror. It is only 
weakening second-order reflections by process deviation. It cannot be completely eliminated. 
Coupling efficiency curve will fluctuate. And DBR reflector parameters of the process control 
are difficult. Changing the distance between the coupler and the mirror by 100 nm cancels 
out the interference and constructs the interference phase. The efficient is coupling into a 
great loss. Therefore, it is necessary to further study and improves the DBR mirror grating 

structure is the best way to eliminate second-order reflection is blazed grating. The slits of 
the blazed grating are not perpendicular to the wafer surface. Instead, there is a blaze angle 

in the normal direction of the raster plane. The diffraction mode field is the superposition of 
the total diffraction mode field. Blazed grating processing requirements is incompatible with 
CMOS process. For the process of the problem, the research proposed a gradual change of the 
gradient grating coupler. Use the multi-step structure instead of the inclined surface of the 

blazed grating. Asymmetric sub-grating structures proposed by researchers can theoretically 

be vertically coupled. At the same time coupling efficiency is not much loss.

3. Two-dimensional grating coupler

Two-dimensional grating coupler can be roughly divided into two kinds. One is a grating 

coupler similar to a photonic crystal structure. The other is the curved grating coupler. The 

two-dimensional photonic crystal grating coupler is proposed to solve the polarization prob-

lem in the grating waveguide as shown in Figure 2. The large difference is in the transmission 
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characteristics of the two transmission modes (TE, TM mode) in the grating coupler. A typi-

cal grating coupler can only transmit one mode. Transmission loss to another mode is rela-

tively large. Waveguide birefringence is commonly used to describe polarization dependence. 

Defined as the difference between the effective refractive index or the group refractive index 
of the TE and TM modes, Δn = nTEeff -nTMeff. TEeff and TMeff are refractive index of the TE and 

TM modes. The ideal polarization correlation is zero. Zero birefringence is the inability to 

precisely control the waveguide size. Smaller size deviations result in changes in polarization 

dependence. In addition, the polarization dependence is also related to the heat outside the 

waveguide, pressure, etc., to achieve polarization insensitivity is very difficult.

A grating coupler for a two-dimensional photonic crystal is another solution. The light of 

different polarization state is separated in the grating coupler. In one path, the TM mode is 
changed into the TE mode, and the TE mode is transmitted in different waveguides. Finally, 
it received by another two-dimensional photonic crystal grating coupler. Compared with the 

former method, the process is relatively less difficult. This grating coupler requires exactly 
two waveguide devices. Otherwise there will be distortion in the synthesis. Arc grating cou-

pler can effectively increase the degree of integration. Grating couplers and transmission 
waveguides typically have a pitch of more than 100 μm. An arcuate grating coupler takes 
advantage of the optical focusing characteristics of a circular or oval structure. All the arcs 

have a common focus. The waveguide is placed at this focus. This greatly reduces the spacing 

between the grating region and the waveguide. Arc grating coupler and waveguide spacing is 

generally 20 μm or less. Arc grating coupler increases the integration density at the same time. 
The additional loss between the waveguide and the waveguide is also reduced. The reported 

coupling efficiency of the curved grating coupler is 1.25 dB.

Figure 2. Two-dimensional grating coupler.
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An infinitely long uniform grating with wavelength selectivity, in practical applications, the 
grating length is limited. This creates a spectral broadening. This broadening has a certain 

limit. Since the grating structure parameters of the non-uniform grating coupler are not fixed 
values. According to the Bragg formula, the diffracted waves no longer maintain a single 
wavelength. Chirp Structure in Non-uniform Grating Coupler. It is raised in order to improve 

the bandwidth. It compared to a uniform grating coupler. Chirped grating adds a concept of 

chirp. It is usually the grating cell cycle changes. The increase in bandwidth is mainly deter-

mined by the amount of chirp. The University of Hong Kong used a “fishbone” structure in 
the fabrication of sub-wavelength waveguide grating coupling devices. Compared to nor-

mal grating structures, this fishbone The 3 dB bandwidth of the structured grating coupler 
increases while reducing the back reflection, reaching 90 around 1530 nm, while the curved 
grating reduces the transmission loss with a theoretical result of 1.7 dB The grating coupling 

loss is 3.5 dB.

The chirped grating used in this study is a chirp structure with uniformly varying periods. 

The grating period changes linearly. Analogies show that the 3 dB bandwidth of a chirped 

grating increases to 140 nm at a grating average period of 700 nm, a chirp of 200 nm and a 
grating period of 20. The center wavelength is in the vicinity of 1550 nm. The experimentally 
measured 3 dB bandwidth is 120 nm, which is similar to the simulation results.

4. Ring waveguide add/drop

3D drawing of ring laterally coupled (left) and vertically coupled (right) to the straight 

waveguides.

The general application of this silicon-on-silicon micro-ring thermocouple switch is shown 

in Figure 3. The advantages of silicon nanocrystals are absorbing layers instead of polymer 

materials. It is compatible with standard micro-process technology. Silicone crystals have a 

wide absorption band which can extend close to the IR band. This system includes several fea-

tures, the temperature dependence of refractive index. Silicon materials usually have higher 

refractive index temperature dependence than glass materials. Silicon temperature coefficient 
of about −0.075/°C grade. It is suitable for thermo-optic switch, silicon material refractive 
index temperature dependence. Other inorganic material temperature difference is relatively 
large and unstable. Silicon materials have low voltage, low current drive characteristics. It is 

switching time up to a few msec. It is suitable for wavelength tunable filter. It is heated silicon 
material refractive index increases. The wavelength of the optical filter will move towards 
long wavelengths. When the pulse wave is added, the rise time is about 25 msec and the 
fall time is about 30 msec. Waveform is high on (Pump on) 150 msec. The resulting power 
is 3.4 μW, low off (Pump off) 150 msec. It corresponds to the thermal optical switch dis-

placement resonance wavelength of about 5 pm. Grating coupling effects via micro-cycle. 
This design structure is the most original resonant spectrum output to the optical detector. It 

observes resonance waves. It supplies a pulse of power to make the resonance wave read out 

by the optical detector displacement spectrum.
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The thermo-optic switch calculates the switching energy, H = hAδT, where h is the total switch-

ing energy of the resonant center wavelength to be shifted, which is calculated by dividing the 

energy of the silicon (~ 10−5/° C). The material heat transfer coefficient in the air, A is the sphere 
size. This circle diameter is 150 μm, Q = 3 × 10−5 its resonance wavelength at 1450 nm, so the 
wavelength shift is ~ 4.8 pm. = 4.8/10 = 0.48° C, h = 81 W/m2/° C for silicon rings. It calculate 
the required switching energy H = 2.9 μW.

The microsphere temperature reaches equilibrium after power is turned on and off. In other 
words, that in these microspheres must reach a certain temperature stable in the surrounding 

air. in order to make the desired resonant frequency shift very accurately fall in the desired 
band. The pulse signal has a very good control of the drive. This study based on micro-ring 

heat. The optical switch specially designs the precise power signal control circuit, which 

obtains better optical information processing efficiency for further breakthrough in the opti-
cal communication field.

5. Experiment and results

Edge coupler for wavelength selection platform is shown in Figure 4. The characteristics 

of a micro-switch ring wavelength selective switch are analyzed. The working states of the 

components and corresponding switching operations are analyzed. A new light intensity 

transfer function formula is used to numerically compare the spectral responses of differ-

ent operating states and the switching responses of different switching operations. The 
results show that the device can realize the signal wavelength of four ways of simultane-

ous access of three channels, simultaneous access of two channels, single-channel access 

and no-channel access Selective access, multi-channel access to the open-circuit crosstalk 

performance deterioration, off-state crosstalk performance is not affected. The realization 
of the device access conversion between the switching operation can be divided into three 

categories. It switches operation to achieve the best off. The change of the index of refrac-

tion of small micro-rings during state crosstalk is about 6.0 × 10−3. The value of the change 

refraction index is in small micro-rings. It fully switched is less than 8.0 × 10−4. It indicates 

that it is easy to realize by thermo-optic effect Switching operation, and temperature control 
of the larger tolerance, the loss of the device switching characteristics of the results show 

that the loss can be based on the actual value. The refractive index of the micro-ring value 

of the passage is closed.

Figure 3. 3D drawing of ring laterally coupled (left) and vertically coupled (right) to the straight waveguides.
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In photonic multiplexing signal processing circuit, it can change the frequency and output 
amplitude of the size of the functional circuitry. Multiprocessing signal function lies in the 

large optical switch array selection (Addressing). It can quickly indicate which one of the 
optical switches is going to act as a thermo-optic effect as shown in Figure 5. It is fed into 

the desired temperature relative to the waveform and amplitude selected. It causes the 

temperature to be generated to correspond to this wavelength (λ). This so-called exchange 
of light signals is controlled by the thin film heating elements distributed in the polymer 
stack. The current through the heater cause the metal film heat as shown in Figure 6. It 

changes the distribution of heat within the branching area of the waveguide, causing the 

refractive index of the waveguide below it to change. It can guide the optical coupling 

from the main waveguide to the target branch waveguide, and realize the light switching 

action as shown in Figure 7.

Figure 4. Edge coupler for wavelength selection platform.

Figure 5. The optical micro-ring switches.
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The system delivers laser light through a tunable laser (Yenista Tunicss-T100S) with a wave-

length range of 1490 to 1640 nm and a resolution of 1 pico-meter. The laser light is transmitted 
through the fiber to a 2 × 2 splitter The splitter transmits the laser light to one end of the Gas 
cell and one end of the polarization controller respectively. Gas cell can generate absolute 

position at a specific wavelength. It is able to generate wavelength calibration position axis for 
the measurement of components. Through the polarization controller is the component side. 

It is through the polarization controller to control the maximum intensity of light detector 

straight. Laser light is TE polarized incident. It propagates through the fiber and is coupled 
through two grating couplers. At the same time through both ends of the InGaAs photodetec-

tor with amplification function to receive the last as shown in Figure 8. The system converts 

the measured optical signal into an electrical signal. It is through the BNC cable to send data 

to the computer.

In Add/drop condition is shown in Figure 9, an incident light enters from the input port of the 

optical waveguide. Part of the energy continues to propagate forward through the coupling 

region during transmission. A portion of the energy is coupled to the ring resonator. The 

energy coupled to the ring resonator is after a half-turn. A portion of the energy is coupled 

to the drop port. After the remaining energy is further circulated for half a turn, a part of the 

energy will be coupled back to the optical waveguide. The remaining energy will continue 

to maintain the above mechanism for dissemination. It is until the energy depleted so far. It 

is selectivity to wavelengths through the ring resonator. It can effectively filter or capture the 
wavelength of the action. It can achieve the effect of controlling the wavelength.

Figure 6. Different ring resister with difference value of temperature.
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With a linear raster coupler, the input light is coupled to this raster coupler for propagation, 

which is a linear raster structure limitation. Light requires longer focal length when traveling. 
If the focal length is not enough, easily lead to the scattering of light lead to energy loss. It 
causes the grating coupler coupling efficiency to drop.

In this study, the curvature-type grating structure is used for the measurement as shown in 

Figure 10. It can reduce the focusing length a lot. It is not loss of coupling efficiency.

Under the same coupling gap, the energy coupling coefficient and energy loss are relatively 
larger and larger in radius. The main reason is the large radius of the micro-ring coupling 

longer. Its energy coupling distance is longer. Therefore, a larger energy coupling coefficient 

Figure 7. Wavelength shift of transmission spectrum in coupled-ring-resonator.

Figure 8. Optical micro-ring measurement platform.
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and coupling loss are generated. In addition, the total optical path of large radii in the ring 

resonator is larger than the small radius micro-rings. It produces extra spreading loss. Under 

the same coupling gap (200 μm) and radius 7.5 μm is shown in Figure 11(a). Under the same 

coupling gap (200 μm) and radius 2.5 μm is shown in Figure 11(b). Under the same coupling 

gap (200 μm) and radius 7.5 μm only drop is shown in Figure 11(c).

It takes a drop of R2.5 Gap 200 at an approximate wavelength of 1546 nm. The dip curve with 
drop (with drop) and the dip curve with no drop (without drop) are shown in Figure 12.

It takes a drop of R7.5 Gap 200 at a wavelength of approximately 1555 nm. The dip curve with 
drop (with drop) and the dip curve with no drop (without drop) are shown in Figure 13. It is 

Figure 9. In add/drop condition.

Figure 10. The vertical coupling system.
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Figure 11. (a) Under the same coupling gap (200 μm) and radius 7.5 μm. (b). Under the same coupling gap (200 μm) and 
radius 2.5 μm. and (c). Under the same coupling gap (200 μm) and radius 7.5 μm only drop.
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obviously very different. In the case of smaller micro-rings (R2.5 Gap 200), it presents a dif-
ferent drop wavelength. They differ by about 1 nm. In the case of large micro-rings (R7.5 Gap 
200), it shows the same drop wavelength.

It adopts CMOS processing compatible processing methods. It has prepared a variety of 

types of grating coupler. Among them, it is in improving the coupling efficiency. It based 
on optimizing uniform grating structure parameters. It is reduce the reflection loss by cover-

ing the multilayer dielectric film. Use slot effect to increase the specific diffraction intensity. 
The non-uniform periodic structure is designed to realize the Gaussian field of diffraction 
field. Coupling efficiency continues to increase. It is 44% from conventional uniform grating 
couplers. It is 65% of the multilayer dielectric film grating structure. The coupling efficiency 
measurement of the non-uniform grating structure has reached 81.8%. In the vertical cou-

pling by adding a DBR mirror. The second-order reflection at one end is canceled by the DBR 
reflected light interference. Vertical coupling was successfully achieved. In addition, the slope 
of the blazed grating is replaced by a step-change step structure. The analogy shows that the 

number of steps in a raster is 5. It could approximate the “shine” function.

The biggest advantage of a grating coupler lies in its testing and integration aspects. It com-

pared to the face coupler. Grating couplers do not need to be polished. No strict space restric-

tions. Alignment tolerance, processing requirements are relatively simple. It greatly increased 
the flexibility of system design. It is more suitable for large-scale integration. It is in the 

Figure 12. Take a drop of R2.5 gap 200 at an approximate wavelength of 1546 nm.
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reported hybrid optoelectronic integration studies. Grating coupler compared with other cou-

pling methods. Performance improvement is significant. The deepening of research work and 
the continuous development is preparation technology. The coupling efficiency of the grating 
coupler, working wavelength, polarization mode and other characteristics will continue to 

improve. It can be expected that grating couplers with high efficiency, large bandwidth and 
vertical coupling will rapidly develop and mature in the practical direction. A key element is 

in silicon-based photonics integration.
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