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Abstract

To interpret and explain the mechanism of an engineering problem, the redundant
observations are carried out by scientists and engineers. The functional relationships
between the observations and parameters defining the model are generally nonlinear.
Those relationships are constituted by a nonlinear equation system. The equations of the
system are not solved without using linearization of them on the computer. If the
linearized equations are consistent, the solution of the system is ensured for a probably
global minimum quickly by any approximated values of the parameters in the least
squares (LS). Otherwise, namely an inconsistent case, the convergence of the solution
needs to be well-determined approximate values for the global minimum solution even
if in LS. A numerical example for 3D space fixes coordinates of an artificial global
navigation satellite system (GNSS) satellite modeled by a simple combination of first-
degree polynomial and first-order trigonometric functions will be given. It will be
shown by the real example that the convergence of the solution depends on the approx-
imated values of the model parameters.

Keywords: nonlinear equation system, objective function, least squares, convergence,
consistency

1. Introduction

There are two main computing classes, these are hard and soft computing. Scientists and

engineers generally prefer the first-class computing because they can easily establish an explicit

mathematical relationship between the model parameters and their data (observations), not in

the second class. The relationships between the parameters and data can be linear or nonlinear.
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If the relations are nonlinear, they should be linearized via Taylor expansion [1–7]. Therefore, the

linear models can be solved by linear algebra [8–15].

To overcome complicated real-life problems whose mathematical models are not known, the

soft computing techniques have been developed in the last decades. We can count well-known

techniques, some as artificial neural network (ANN), artificial intelligence (AI), machine learn-

ing (ML), deep learning (DP), fuzzy logic (FL) and genetic algorithms (GA) [16–18]. The

techniques inspired by the human intelligence and learning processes can be very time-

consuming according to the data given in run due to their processing based on the trial-and-

error method. If these techniques are roughly defined, data (experimental outcomes and

observations) are separated into two parts in them, learning (or training) data and test data.

Mathematical (functional and/or stochastic) relations between data and model parameters are

learned from the learning data. The handled model is tested by means of the test data. After

that, the trained and developed model, if meets expectations, is used to estimate for producing

unobserved data for the scientific (or engineering) problems [16–18].

In the soft computing techniques, the linear algebra is also a very effective tool to solve the

problem as in the hard computing ones. For this reason, we should take a short overview on

linear algebra used in science and engineering [16–18].

2. Linear algebra and objective functions

Linear algebra has two basic problems. A solution of linear equations system is one of them;

the other is the eigendecomposition. In this chapter, we will use both of them upon a linear

equation system as a combined form (Eqs. (8)–(11)) in which we will solve the linear equations

system by means of the singular value decomposition related with the eigendecomposition (or

the matrix diagonalization) [8, 9, 13, 14].

Suppose an estimated unknown vector bxu ¼ xþ bδ (in interested model) and an experimental

data (or observations which are stochastic variables) vector y
n
¼ by � bε [in which an estimated

data and error (residual) vectors are in order of by and bε] by an objective function and their

covariance matrices Σx̂ ¼ Σx ¼ bσ2
0 Qx (for the unknowns) and Σy ¼ σ

2
0 P�1 (for the data),

respectively, with a priori variance σ
2
0 and a posteriori variance bσ2

0. Note that bx is a non-

stochastic vector before estimation, where an approximated values vector is x for bx (hat-sign

“^” shows an estimated value for interested parameter according to an objective function). In

addition, n, m and u are the observation number, the equation number and the unknown

number, respectively.

Start with a linear or nonlinear functions vector fm by;bxð Þ ¼ 0, we can have a linear mathemat-

ical model with a weight matrix (P ¼ σ
2
0 Σy

�1) of the observations for m ¼ n:

εn ¼ An,u δu � ln, Pn,n, (1)

An,u ¼
∂ f by;bxð Þ

∂bx

����
ŷ , x̂¼y,x

and ln ¼ f y; xð Þ:
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Mathematical model between data and unknowns can be established by Taylor expansion for

any model. However, if m pieces function vector fm by;bxð Þ ¼ 0 is not transformed into

byn � fn bxð Þ ¼ 0 (for m ¼ n), the error in variable solution as in total least squares (TLS) method

can be preferred. Therefore, fm by;bxð Þ ¼ 0 (for m 6¼ n) should be differenced as following:

Bm,n εn �Am,u δu þ lm ¼ 0 Pn,n (2)

where

Bm,n ¼
∂ f by;bxð Þ

∂by

����
ŷ, x̂¼y,x0

:

Most of science and engineering problems can be modeled as by � f bxð Þ ¼ 0 (m ¼ n). Therefore,

the functional model named as indirect adjustment method in the adjustment literature [3–7] in

geomatics engineering has been preferred in the chapter. The weight matrix (Pn,n) of observa-

tions (stochastic variables) would be accepted as a unit matrix Pn,n ¼ In,n in here for simplicity.

2.1. Objective functions

A generalization for objective functions is Lp �Norm (p ¼ 1, 2, 3, 4…,∞) [9, 10]. The first-degree

objective function is L1-norm estimation which is accepted as a robust estimation method in just

linear models [9–11].

iT εj j↦min L1 � norm estimation Least absolute residualsð Þ, (3)

ε
T
ε↦min L2 � norm estimation Least squaresð Þ, (4)

εj jmax ↦min L
∞
� norm estimation Minmax absolute residualsð Þ, (5)

i ¼ 1 1 … 1½ �T :

The second-degree objective function is L2-norm estimationwhich is known as least squares (LS)

method and widely used in hard and soft computations.

The last-degree objective function is L
∞
-norm estimation which is known as minmax method. In

fact, the soft computing techniques use this objective while it applies the trial-and-error

method in their learning stages. Eq. (1) under L1-norm and L
∞
-norm is also solved by means of

linear programming methods, for this reason; the methods may give several solutions (as

being in trial-and-error method) to any interested problem [10, 11].

2.2. Rank deficiencies in linear models

While a rank is a number that indicates a linear independent column, the number of the

coefficient matrix of unknowns in a linear equation system, a rank deficiency represents a linear

dependent column number (if it is smaller than the row number) of the coefficient matrix.

Inconsistency in the solution stage of a linear equation system results from the (rank) deficiencies.
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Defining the rank of An,u by rank Að Þ ¼ r, a condition r ≤u ≤min m; nð Þ is always satisfied. In

general, n ¼ m in well-known (or the indirect) LS used in many scientific problems.

Denoting the rank defect d letter, we can define two type defects [12].

ds ¼ n� r, Surjectivity “onto” mapping
� �

(6a)

di ¼ u� r: Injectivity “one� to� one” mapping
� �

(6b)

Objective functions are used to remove the surjectivity defect ds occurred by the redundant

observations. The injectivity defect di can consist of three reasons in the estimation problem [12].

Datum defects (d-defects) are closely related to the origin of the spatial system. The defect arises if

the data do not carry any information to cover the absolute spatial position of the problem given.

Configuration (Design) defects (c-defects) occur from weak geometric relation among data and

unknowns. To avoid the defect, we can be careful and planned when picking data (whose

interval or/and place) and choosing the consistent mathematical model (can use auxiliary

variables instead of original ones).

Ill-conditioning defects (i-defects) arise from the large intervals among the elements of the coeffi-

cient matrix of unknowns. Norming the matrix can reduce ill-conditioning defects but cannot

remove it fully. I-defects and c-defects cannot be separated from each other easily [12].

The defects lead to the failure of any given problem to be solved properly. Since the unknown

coefficient matrix cannot be inverted by regular (ordinary) inversemethods, we should use pseudo

inverse to overcome the effects of the defects [8, 9, 13–15]. Eigenvalue and singular value decom-

positions can be used effectively for the pseudoinverse. Denoting a positive definite symmetric

matrix N (that is always satisfied forN ¼ ATA orN ¼ A AT), its pseudoinverse is:

Qu,u ¼ Nþ ¼ S Λ
þ ST ¼ V Σ

þUT , Pseudoinverse of N (7a)

Nu,u ¼ S Λ ST ¼ U Σ VT , For a positive definite symmetric matrix (7b)

Λ
þ ¼ Σ

þ ¼
Λ

�1
r 0r,d

0r,d 0d,d

" #

:

Since Nu,u is a positive definite symmetric matrix in the LS, S ¼ U ¼ V. If there is no defect in a

matrixN,N�1 ¼ Nþ. Therefore,we canusepseudoinverse safely in anygivenproblem [8, 9, 13–15].

2.3. Hard computing

Linearizing from nonlinear functions to their linear form by means of Taylor expansion, a

linear equation system is to be handled as Eq. (1). To avoid complicated proofs in the solution

of an equation system, the simplified mathematical model can be written in the following

(statically rotation invariant [1]) numerical computation form.
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An,u δu ¼ ln, P ¼ I: (8)

Meet two states to solve Eq. (8), n ≤u and n > u. The solution for the former state n ≤u is

achieved by means of auxiliary variables vector λn which can be defined as δu ¼ AT
u,n λn. In

fact, the auxiliary vector λn is named as a Lagrange multipliers vector or an eigenvalues vector

in a homogenous equations system in which l ¼ 0 for Eq. (8) [9]. Putting back δ ¼ AT
λ into

Eq. (8), we compute λ first:

bλn ¼ Qn,n ln, Qn,n ¼ A AT
� �þ

: (9)

And then δ and its variance–covariance matrix if we know the statistical uncertainty of

observations (Σl ¼ ΣyÞ are calculated by Eq. (10) and the low error propagation, respectively.

We can only calculate the variance–covariance matrix of estimations as in Eq. (10) due to

bσ2
0 ¼ 0 and taking Σy ¼ I in the chapter.

bδ ¼ AT bλ ¼ ATQ l, Σ
δ̂
¼ σ

2
0 ATQQ A, (10a)

bx ¼ xþ bδ, Σx̂ ¼ Σ
δ̂
, (10b)

bxTbx ↦ min: (10c)

In the state (n ≤u), A bδ � l ¼ bε ¼ 0 should be provided. If not, continue solution until

max jbδj
� �

<¼ thres ¼ 5e� 12 (or max jbεjð Þ <¼ thres ¼ 5e� 12) by taking x ¼ bx in every itera-

tion step. bxTbx will be the smallest at end of the solution.

Solution to the second state n > u is a situation encountered in many scientific and engineering

problems. Multiplying both sides of Eq. (8) by AT
u,n the normal equation system is established

and solved with Eq. (11):

bδu ¼ Q ATl, Qu,u ¼ ATA
� �þ

, (11a)

bx ¼ xþ bδ, Σx̂ ¼ bσ2
0Q, (11b)

bσ2
0 ¼

bεTbε
n� r

, A posteriori variance r ¼ rank Að Þð Þ (11c)

bε ¼ A bδ � l, (11d)

bεTbε ↦ min: L2 � norm estimation Least Squareð Þ (11e)

End the solution if the condition ensured is max jbδj
� �

<¼ thres ¼ 5e� 12; otherwise, continue

the iteration with x ¼ bx.
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Relationships between nonlinearity and LS in a multidimensional surface have been shown by

Teunissen et al. [1, 2]. The authors argued the relation on some simple examples and gave

some analytical solutions for them. But, they highlighted that those types of analytical solu-

tions have not been given for every problem and emphasized that suitable Taylor expansions

have been useful to the solution not being transformed into the analytical ones.

3. Geometry of a combination of polynomial and trigonometric functions

These type functions can be used in defining the orbits of artificial satellites (and celestial

bodies). Also, the numerical example part of this chapter, to estimate those type functions, will

be inspected and applied on a real example. To foresee a model for any problem we should

interpret the model parameter and comprehend the geometry of the model (Figure 1).

With respect to independent variable time t, a combination function of p ¼ 1 degree polyno-

mial and order q ¼ 1 trigonometric function(s) [a combination of polynomial degree and

trigonometric order (CPT)] to be estimated in the chapter is:

ϕj ¼ aϕ þ bϕ tj þ cϕ sin dϕ þ eϕ tj
� �

, (12)

ϕj ∈ Xj;Yj;Zj; Sj
� �

, j∈ 1; 2;…; nf g:

where tj;ϕj

� �

are data given. In Eq. (12), translation aϕ and slope bϕ are elements of a line

equation which is a first-order polynomial of CPT function. The other model parameters in the

trigonometric part of Eq. (12) are defined as an amplitude cϕ, and an initial phase dϕ and a

frequency (or angular velocity) eϕ ¼ 2π=Tϕ (a period Tϕ) of a wave (Figure 1).

Figure 1. The geometry of a first-degree and first-order combination of polynomial and trigonometric (CPT) function.
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In this chapter, the functions ϕj are the coordinate components Xj;Yj;Zj

� �

incoming from a

precise orbit file and the geometric distances Sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
j þ Z2

j þ Z2
j

q

as a function of the compo-

nents. However, nonperiodic earth-fixed coordinates (GR) in the SP3 file should be

transformed to the periodic space-fixed coordinates (Υ); why is Eq. (12) is suitable for the

space-fixed coordinates, not earth-fixed ones (as seen from Figure 3 in the numerical example

part) (Figure 2)?

For this propose, an easy transformation into any epoch (e.g., it can be taken as the first epoch

t0 of the data) is carried out by:

Xγ, j ¼ R3 θj

� �

xGR, j, θj ¼ �wE tj, (13a)

xGR, j ¼ R3 �θj

� �

Xγ, j, R3 �θj

� �

¼ RT
3 θj

� �

¼ R�1
3 θj

� �

, (13b)

R3 θj

� �

¼

cosθj sinθj 0

� sinθj cosθj 0

0 0 1

2

6

4

3

7

5
,Xγ, j ¼

Xj

Yj

Zj

2

6

4

3

7

5

γ

, xGR, j ¼

xj

yj
zj

2

6

4

3

7

5

GR

:

where wE and R3 are in order of the angular velocity of earth and well-known orthogonal

rotation matrix around the third axis (Figure 2).

A solution of nonlinear Eq. (12) is realized in the following order. Linearizing Eq. (12) by Taylor

expansion and omitting the terms greater than or equal to quadratic ones, the linear equation

system as given by Eq. (8) is obtained. The explicit form of the Eq. (8) with respect to the

approximate values of unknowns for a CPT is:

Figure 2. Earth (GR) and space-fixed (Υ) coordinates for an artificial satellite.
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Aj ¼ 1 tj sin d0 þ f 0 tj
� �

c0 cos d0 þ e0 tj
� �

tj c0 cos d0 þ e0 tj
� �
 �

, (14a)

lj ¼ ϕj � a0 þ b0 tj þ c0 sin d0 þ e0 tj
� �� �h i

, j∈ 1; 2;…; nf g: (14b)

We can use a recursive solution for Eq. (14) instead of the batch solution as Eq. (11) because of

its solution velocity.

bδ ¼ Q
Xn

j¼1

AT
j lj

0

@

1

A, Q ¼
Xn

j¼1

AT
j Aj

0

@

1

A
�1

¼
Xn

j¼1

AT
j Aj

0

@

1

A
þ

: (15)

Continuation of the solution of Eq. (15) can be performed according to Eq. (11). The model

given by Eq. (12) is a simple model to determine the satellite orbit motions. For more compli-

cated models, the readers can utilize [19–25] resources.

4. Numerical example

For a nonlinear estimation of CPT functions, some numerical examples are chosen from GNSS

{Global navigation satellite systems = GPS (USA) + GLONASS (RU), GALILEO (EU), COM-

PASS (CHN)} artificial satellite orbits whose coordinates are downloaded from the internet

address ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/17091/final/Sta19426.sp3 [26].

For this purpose, two estimation software have been developed in 64Bit Python (in accordance

with the 2.7 and 3.6 version) and 32Bit C++ (Code::Blocks) environments to see the conver-

gence rate of the mathematical model given in Eq. (12) [27, 28]. The computed elements of CPT

functions for the selected four satellites R01 (GLONASS), G03 (GPS), E01 (GALILEO) and C06

(COMPASS) are summarized in Table 1 in which they are ordered from the nearest satellite to

the farthest one.

The motions of the CPT functions estimated satellites (in Table 1) with respect to earth- (left

column of Figure 3) and space-fixed (right column of Figure 3) coordinate systems are demon-

strated in Figure 3. Moreover, coherence between the estimated CPT function (black solid line) of

the C06 satellite and its data points given (colorful circles) is represented in detail in Figure 4.

We know that accuracy of precise SP3 file coordinates is about σ0 ¼ �5cm. If we compare the

value with its estimations given in Table 1, we can say that our predicted model is not meet

our demands. We should expand the model by raising the degree of polynomial part or/and

order of trigonometric part of CPT functions. In fact, we can readily see that the projected

model with Eq. (12) will never cover the data. The model is only chosen for this chapter. The

more suitable model established on Keplerian orbital elements can be found in the orbit

determination literature and in [18–20].

Comparing the solution velocities (from the iteration numbers with respect to 5e� 12 thresh-

old in Table 1) in different platforms, we can say that the solution velocities in 64Bit Python are

generally better then 32Bit ones.
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If we chose the threshold as 51e-13, we can see the distinctions of solution convergences

between 64Bit and 32Bit running on the estimations of C06 satellite from 1000 (X), 8 (Y), 7 (Z),

1000 (S) in 32Bit C++ and 10 (X), 8 (Y), 6 (Z), 28 (S) in 64Bit Python in Windows. In here, 1000 is

the maximum iteration number. If the mathematical model would be more complicated and its

data number would be bigger than the number used in the example part, we would see the

state more prominently.

Sat. φ X Y Z Unit S

iter

iter++

5

5

4

4

4

5

—

—

10

9

R01

(RU)

aφ

bφ

cφ

dφ

eφ

Tφ

�11.860

0.028

25,474.503

�60�54004.3700

31�57053.9200

11h05’44.37”

2.420

0.003

11,178.453

�23�03056.9300

�31�57044.9200

11h15’47.54”

2.771

0.052

22,965.361

�30�31000.3200

�31�57056.3100

11h15’43.53”

km

km/h

km

deg

deg/h

h

25,508.091

0.001

8.127

42�41035.8700

�31�58013.5500

11h15’37.46”

� bσ0 2.902 1.266 2.653 km 0.211

iter

iter++

6

6

4

4

4

4

—

—

30

34

G03

(USA)

aφ

bφ

cφ

dφ

eφ

Tφ

�17.545

�0.132

24,800.602

66�34039.73”

30�04056.03”

11h58’01.91”

7.332

�0.045

17,959.166

�48�06043.68”

30�04052.50”

11h58’3.31”

�1.824

�0.085

21,757.547

�7�51047.16”

30�05000.02”

11h58’00.32”

km

km/h

km

deg.

deg./h

h

26,561.324

�0.003

14.211

�72�24019.52”

�30�08011.17”

11h56’44.42”

� bσ0 4.898 3.648 3.961 km 0.183

iter

iter++

4

5

5

5

4

4

—

—

32

93

E01

(EU)

aφ

bφ

cφ

dφ

eφ

Tφ

1.866

0.052

21,349.011

�35�22015.4600

�25�34013.06”

14h04’43.81”

1.358

�0.048

26,031.918

85�57022.67”

�25�34014.87”

14h04’42.81”

�4.673

0.004

24,878.432

�16�23029.47”

25�34018.57”

14h04’40.78”

km

km/h

km

deg.

deg./h

h

29,600.332

�0.000

3.720

8�29058.23”

�25�42010.68”

14h00’22.19”

� bσ0 1.796 1.428 1.058 km 0.236

iter

iter++

7

10

6

7

6

7

—

—

28

29

C06

(CHN)

aφ

bφ

cφ

dφ

eφ

Tφ

�407.495

61.945

41,716.806

�24�21036.29”

�15�07002.75”

23h48’48.86”

228.037

�6.376

24,832.649

59�24050.7300

�15�02016.41”

23h56’22.30”

266.178

�7.892

34,235.695

67�3609.4200

�15�02036.74”

23h55’49.94”

km

km/h

km

deg.

deg./h

h

42,175.353

�0.358

227.599

18�32027.85”

�14�57017.11”

24h04’21.41”

� bσ0 56.552 38.018 51.901 km 0.491

Table 1. Computed elements of the CPT functions for G03, R01, E01, C06 satellites by IterMAX = 1000 and thres = 5e-12 in

loops {iteration numbers of 64Bit Python and 32Bit C++ software in windows are denoted as iter and as iter++ respectively}.
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Figure 3. Earth (left) and space (right) fixed orbital traces (see the appendix) with time tags of R01, G03, E02, C06 satellites

and the motion of X-coordinate axis shown as GR (XGR(t0) position on the intersection Greenwich meridian and equator)

symbol at t0 (=2017 April 01 00:00:00).
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Approximated values and the loop element for the unknowns are computed following the

order in all solutions of the satellites when running in 32Bit C++ and 64Bit Python platforms for

the estimations in Table 1.

a0 ¼ 0:0, b0 ¼ 0:0, c0 ¼ max ϕj

n o

, j∈ 1; 2;…; n ¼ 96f g

d0 ¼ arcsin ϕ1=c0
� �

, e0 ¼ arcsin ϕ2=c0
� �

� arcsin ϕ1=c0
� �� �

= t2 � t1f g

x ¼ a0 b0 c0 d0 e0½ �T

Maximum iteration number and threshold loop elements are iterMAX ¼ 1000 and thres ¼ 5e� 12

to break the iteration loop.

Figure 4. Temporal changing of space fixed coordinates of C06. The circles and solid lines represent the data points and

estimated functions under LS respectively for X (red), Y (green), Z (blue), S (cyan).
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Taking the approximated values as x ¼ 0 0 thres 0 0½ �T ≈ 0T and the same loop elements

given above, the iteration numbers are handled as 138 (X), 178 (Y), 78 (Z), 16 (S) in 64Bit Python.

For x ¼ 0 0 c0 0 0½ �T they are 33 (X), 235 (Y), 96 (Z), 11 (S) in 64Bit Python. Different

approximated value selections cause different iteration numbers (namely convergence rate).

4.1. An expanded model example by an auxiliary cosine wave

Since the estimated standard deviations bσ0 = {�56.552, �38.018, �51.901,�0.491} (for X, Y, Z, S

in Table 1) of the CPT functions for the coordinates of the C06 satellite are not statically equal

to their expected values (σ0 ¼ �5cm), the CPT model should be expanded. As an example,

three more unknowns are added to the model given in Eq. (12)

ϕj ¼ aϕ þ bϕ tj þ cϕ sin dϕ þ eϕ tj
� �

þ f ϕ cos gϕ þ hϕ tj

� �

The added terms represent an amplitude f ϕ, an initial phase gϕ and a frequency hϕ of a new

wave carried by first (sine) wave. After the first estimation with respect to Eq. (12),

we can choose the approximate values of the new parameters as

f 0 ¼ max abs bεð Þð Þ

g0 ¼ arcsin bε1=f 0
� �

h0 ¼ arcsin bε2=f 0
� �

� arcsin bε1=f 0
� �� �

= t2 � t1f g

from bε j ¼ ϕj � ba þ bb tj þbc sin bd þbe tj

� �n oh i
, j∈ 1; 2;…; n ¼ 96f g. The approximate value

vector of the expanded model by a new wave is:

x ¼ a0 b0 c0 d0 e0 f 0 g0 h0

 �T

¼ ba bb bc bd be f 0 g0 h0

h iT

The approximate values are substituted in the following linearized model as initial values for

the loop in LS estimation.

lj ¼ ϕj � a0 þ b0 tj þ c0 sin d0 þ f 0 tj
� �

þ e0 cos h0 þ g0 tj
� �� �h i

AT
j ¼

1

tj

sin d0 þ e0 tj
� �

c0 cos d0 þ e0 tj
� �

tj c0 cos d0 þ e0 tj
� �

cos g0 þ h0 tj
� �

�f 0 sin g0 þ h0 tj
� �

�tj f 0 sin g0 þ h0 tj
� �

2

66666666666664

3

77777777777775

After the evaluation, the improved solution for the C06 satellite is represented in Table 2. We

can readily see the improvements upon the downs of the standard deviations from bσ0 =

{�56.552, �38.018, �51.901, �0.491} (Table 1) into bσ0 = {�0.178, �0.137, �0.191, �0.003}
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(Table 2) in kilometers for the C06 satellite. We can develop the last model more by means of

the same manner if we want.

As another example, the expanded model has been trained on the coordinate components of

R01 GLONASS satellite by means of Python 3.6 software on Windows. We can also see the

improvements upon the downs of the standard deviations (its iteration numbers) from bσ0 =

{�2.902 (5), �1.266 (4), �2.653 (4), �0.211 (10)} (Table 1) to bσ0 = {�0.226 (76), �0.448 (32),

�0.201 (43), �0.037 (57)} in kilometers for the R01 satellite.

Condition numbers computed from a rate of maximum and minimum eigenvalues or a rate of

singular values under LS are very effective tools for determining the consistency as well.

Therefore, a larger condition number can cause larger iteration number (related to convergence

rate), We can see those states from the CPT estimations of the C06 satellite with the iteration

(iter) and condition numbers (cond). These are given for X, Y, Z, S as iter = {7, 6, 6, 28} and cond =

{3.4e + 13, 2.0e + 12, 2.8e + 12, 1.3e + 09} (Table 1), and as iter = {27, 158, 53, 19} and cond = {9.5e +

14, 2.3e + 13, 3.0e + 13, 2.6e + 10} (Table 2).

5. Conclusions

In this chapter, the least squares (LS) estimations of the artificial satellite orbital movements by

a combination of polynomial and trigonometric (CPT) functions have been given after a

general overview has been made on the hard and soft computations. In practice, the orbital

motions are modeled on Keplerian orbital elements. In contrary to this, the coordinate compo-

nents have been selected for this chapter due to the nonlinear relations of the components and

the unknowns which are the elements of CPT functions. The relations cause inconsistencies

in the LS solutions. The inconsistencies result from the two injectivity defects, c-defects and

i-defects. We can readily see the defects from the differences of the convergence rates (in other

words the iteration numbers) in different computer platforms and architectures as shown in

the chapter. The defects are not fully removed as long as not change the mathematic models.

However, we can surpass the effects of those defects in part by means of the pseudoinverse

based on the eigendecomposition or the singular value decomposition (SVD) as in here. The

Sat. φ X Y Z Unit S

iter 27 158 53 — 19

C06

(CHN)

aφ
bφ
cφ
dφ
eφ
fφ
gφ
hφ

223.514

1.515

42,064.675

�25�07054.7800

�15�02024.75”

110.710

5�08057.82”

30�10058.43”

149.296

0.224

66.183

11�15024.2300

30�04030.4400

24,808.034

30�28055.6100

15�02017.24”

182.012

0.060

91.527

3�15058.7600

30�04002.0900

34,217.994

�22�21014.6000

�15�02019.27”

km

km/h

km

deg

deg/h

km

deg.

deg./h

42,169.956

0.055

225.161

19�47037.5400

�15�02043.2600

0.838

8�56045.5000

�29�40058.52”

� bσ0 0.178 0.137 0.191 km 0.003

Table 2. The results by the expanded model for the C06 satellite in Python 3.6 in windows.

On Non-Linearity and Convergence in Non-Linear Least Squares
http://dx.doi.org/10.5772/intechopen.76313

69



surjectivity defect (ds) of the CPT functions not including the datum defects (d-defects) was

eliminated by the LS objective function.

For the sake of simplicity for readers, a simple CPT function has been chosen at first. After the

initial estimation of the function, the estimated errors vector has been found. We have seen that

the errors have had a periodic characteristic in time. So, a new wave defining the error charac-

teristic and been able to carry by the first wave has been planned for expanding the CPTs. It is

shown that we can expand a CPT function until ensuring statically equivalency between a priory

and a posteriori variances. For instance, one may secure the equivalency of the variances if one

would expand more by a new wave in the last estimated model in the same manner.

The convergence rates (upon the iteration numbers) of the LS estimation have been inspected

according to the threshold (thres = 5e-12) which is a good value for the estimation of the nonlinear

CPT function. An algorithm compiled by different compilers and run in different architectures

(with 32 Bit or 64 Bit) changes the convergence rate of the estimations in such as the inconsistent

scientific problems. It is also observed that the iteration numbers change when the 64-bit Python

software is run on Linux platform which has a different framework than Windows. But, the

numbers have not been given in the example part of the chapter. Contrary to inconsistencymodel,

namely in a consistent one, the iteration numbers can take equivalence values in all circumstances.

Another way to determine the inconsistency of a model is to obtain its condition number which is

computed from a rate of maximum and minimum eigenvalues or of singular values under LS. If

the condition number is close to one, the projected model is accepted as a consistent model.

We can use the Soft Computing Methods (SCM) if not an exact mathematical relationship

between the data and unknowns. The mathematical model is established by the trial-and-error

method in training part of SCM by means of arbitrary weights and activation functions

depending on SCM expert forecasts. For the solution of the SCM model during the training,

we can use least absolute residuals (LAR) and minmax absolute residuals (MAR) objective

functions by the linear programming or the LS estimation as in hard computing method

(HCM). In the state, the inconsistency problem can erase whatever the solution method (LAR,

MAR or LS) is. The inconstancy can be removed by means of experiences gained from HCMs.

Prior information is very important to select a suitable mathematical model for a scientific

problem. For example, comparing a priori variance with a posteriori variance at the end of the

estimation is a useful warning to the user to determine the correct mathematical model as seen

from the expanded model in the example section of the chapter.

In numerical computation, there are two main phenomena which are the mathematical model

(as a combination of functional and stochastic models) and objective function. The solution

strategy is of no importance if the same mathematical model and objective function are

preferred in the same problem of hard computing. All solution strategies always give same

results, only their solution time spans can be distinct from each other (Table 3).
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Appendix

Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]

0 0.00 �17531.307506 21541.792054 31834.209680 691.175390

1 0.25 �19992.147900 20678.913485 30924.464057 691.487182

2 0.50 �22367.333395 19727.437365 29882.214843 691.798804

3 0.75 �24646.589754 18691.353300 28711.797065 692.110527

4 1.00 �26820.032098 17575.021170 27418.102912 692.422088

5 1.25 �28878.208475 16383.154007 26006.563346 692.733923

6 1.50 �30812.142166 15120.799311 24483.127129 693.045689

7 1.75 �32613.372313 13793.318783 22854.237453 693.357416

8 2.00 �34273.992670 12406.366506 21126.806228 693.668853

9 2.25 �35786.688260 10965.865676 19308.186097 693.980453

10 2.50 �37144.769753 9477.983947 17406.140275 694.291853

11 2.75 �38342.205344 7949.107471 15428.810302 694.603337

12 3.00 �39373.649964 6385.813755 13384.681845 694.914789

13 3.25 �40234.471624 4794.843425 11282.548651 695.226157

14 3.50 �40920.774721 3183.071022 9131.474825 695.537828

15 3.75 �41429.420160 1557.474971 6940.755568 695.849062

16 4.00 �41758.042128 �74.893170 4719.876568 696.160359

17 4.25 �41905.061383 �1706.940006 2478.472204 696.471627

18 4.50 �41869.694990 �3331.562017 226.282782 696.782836

19 4.75 �41651.962330 �4941.677516 �2026.889008 697.094239

20 5.00 �41252.687387 �6530.258698 �4271.222183 697.405373

21 5.25 �40673.497209 �8090.363611 �6496.921900 697.716659

22 5.50 �39916.816531 �9615.167884 �8694.263981 698.028206

23 5.75 �38985.858544 �11097.996030 �10853.639319 698.339619

24 6.00 �37884.611845 �12532.352178 �12965.597898 698.651055

25 6.25 �36617.823589 �13911.950035 �15020.892223 698.962566

26 6.50 �35190.978917 �15230.741942 �17010.519896 699.273893

27 6.75 �33610.276761 �16482.946839 �18925.765115 699.585363

28 7.00 �31882.602129 �17663.077000 �20758.238873 699.896674

29 7.25 �30015.495009 �18765.963379 �22499.917620 700.208082

30 7.50 �28017.116067 �19786.779434 �24143.180195 700.519378

31 7.75 �25896.209299 �20721.063292 �25680.842806 700.830889

32 8.00 �23662.061860 �21564.738140 �27106.191889 701.142117

33 8.25 �21324.461276 �22314.130731 �28413.014646 701.453707
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Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]

34 8.50 �18893.650283 �22965.987908 �29595.627135 701.764972

35 8.75 �16380.279535 �23517.491071 �30648.899728 702.076478

36 9.00 �13795.358449 �23966.268499 �31568.279851 702.387737

37 9.25 �11150.204459 �24310.405495 �32349.811865 702.699185

38 9.50 �8456.390949 �24548.452300 �32990.154024 703.010540

39 9.75 �5725.694161 �24679.429736 �33486.592421 703.321863

40 10.00 �2970.039352 �24702.832610 �33837.051887 703.633117

41 10.25 �201.446497 �24618.630817 �34040.103800 703.944417

42 10.50 2568.024186 �24427.268222 �34094.970801 704.255873

43 10.75 5326.326597 �24129.659289 �34001.528424 704.567076

44 11.00 8061.482740 �23727.183555 �33760.303648 704.878433

45 11.25 10761.636054 �23221.677952 �33372.470443 705.189684

46 11.50 13415.103835 �22615.427078 �32839.842340 705.501070

47 11.75 16010.428511 �21911.151470 �32164.862120 705.812547

48 12.00 18536.427516 �21111.993965 �31350.588697 706.124190

49 12.25 20982.241560 �20221.504257 �30400.681303 706.435990

50 12.50 23337.381077 �19243.621724 �29319.381091 706.747258

51 12.75 25591.770667 �18182.656653 �28111.490271 707.058650

52 13.00 27735.791345 �17043.269964 �26782.348927 707.370038

53 13.25 29760.320445 �15830.451549 �25337.809640 707.681516

54 13.50 31656.769034 �14549.497344 �23784.210083 707.992915

55 13.75 33417.116707 �13205.985271 �22128.343727 708.304435

56 14.00 35033.943650 �11805.750146 �20377.428827 708.615955

57 14.25 36500.459878 �10354.857705 �18539.075847 708.927258

58 14.50 37810.531573 �8859.577863 �16621.253481 709.238773

59 14.75 38958.704447 �7326.357314 �14632.253449 709.549980

60 15.00 39940.224086 �5761.791632 �12580.654219 709.861492

61 15.25 40751.053248 �4172.596961 �10475.283826 710.172943

62 15.50 41387.886081 �2565.581420 �8325.181952 710.484439

63 15.75 41848.159196 �947.616367 �6139.561422 710.796071

64 16.00 42130.059795 674.392412 �3927.769279 711.107495

65 16.25 42232.530676 2293.533436 �1699.247596 711.419275

66 16.50 42155.272132 3902.918094 536.505839 711.730566

67 16.75 41898.740894 5495.708947 2769.976807 712.042086

68 17.00 41464.146141 7065.147654 4991.673762 712.353663

69 17.25 40853.442432 8604.582424 7192.166646 712.665021
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Epoch(j) tj�t0 [h] Xj [km] Yj [km] Zj [km] tj [μsec]

70 17.50 40069.319938 10107.494927 9362.125250 712.976412

71 17.75 39115.191840 11567.526548 11492.356997 713.287987

72 18.00 37995.179006 12978.503915 13573.844046 713.599417

73 18.25 36714.092016 14334.463621 15597.779572 713.910828

74 18.50 35277.410608 15629.676058 17555.603122 714.221952

75 18.75 33691.260665 16858.668299 19439.034930 714.533584

76 19.00 31962.388796 18016.245942 21240.109087 714.845281

77 19.25 30098.134631 19097.513875 22951.205467 715.156764

78 19.50 28106.400907 20097.895874 24565.080300 715.468390

79 19.75 25995.621474 21013.152993 26074.895308 715.779824

80 20.00 23774.727299 21839.400671 27474.245306 716.091334

81 20.25 21453.110591 22573.124521 28757.184187 716.402951

82 20.50 19040.587166 23211.194732 29918.249189 716.714457

83 20.75 16547.357150 23750.879046 30952.483389 717.026029

84 21.00 13983.964160 24189.854253 31855.456321 717.337474

85 21.25 11361.253075 24526.216175 32623.282652 717.649172

86 21.50 8690.326544 24758.488074 33252.638847 717.960633

87 21.75 5982.500334 24885.627475 33740.777748 718.272113

88 22.00 3249.257698 24907.031342 34085.541002 718.583548

89 22.25 502.202871 24822.539587 34285.369282 718.895203

90 22.50 �2246.986126 24632.436884 34339.310236 719.206528

91 22.75 �4986.605239 24337.452758 34247.024111 719.518326

92 23.00 �7704.972522 23938.759921 34008.787012 719.830016

93 23.25 �10390.476491 23437.970866 33625.491749 720.141620

94 23.50 �13031.624539 22837.132665 33098.646226 720.452998

95 23.75 �15617.091194 22138.719998 32430.369356 720.764247

Table 3. Space Fixed Coordinates of C06 inclined geostationary earth orbit in COMPASS (which is Chinese Global

Positioning Satellite System) are transformed with respect to t0 from earth fixed coordinates downloaded from ftp://

ftp.glonass-iac.ru/MCC/PRODUCTS/17091/final/Sta19426.sp3 [26] {t0 = 2017.04.01–00:00:00 (Civil Calendar) = 1942–

518,400 (GPS week—week seconds)}.
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