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Abstract

The excessive proliferation and metastasis of tumor cells are due to frequent genetic alter-
ations and subsequent stimulation of abnormal signal transduction pathways. Inventing 
and improving novel therapeutic strategies are critically needed. However, it remains 
unknown which of these pathways is essential to tumor initiation and progression. A 
weightless environment on Earth is a rare phenomenon, achieved using various simu-
lations, but brings about changes of internal cellular structure and interactions among 
cells not normally seen under normal terrestrial gravitational conditions. For this reason, 
spaceflight experiments are of great value for cell biology research in general and for can-
cer research in particular. Many experiments indicate that microgravity, more so actual 
spaceflight as opposed to simulations, induces changes in the expression and secretion 
of genes as well as proteins involved in cancer cell proliferation, metastasis, and survival, 
shifting the cells toward a less aggressive phenotype. Therefore, studies on the biological 
features and gene expression of tumors cells under microgravity conditions may under-
line new clues to the tumor initiation, process, diagnosis, and therapy.
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1. Introduction

In the past 40 years, the development of the space industry has made people aware of the 

effects of microgravity on biological life, including cerebrospinal fluid flow change, body 
fluid electrolyte loss, muscle atrophy, bone demineralization, and immune system function 
decline [1]. Similarly, microgravity has been shown to alter some properties of cells, including 

cell morphology, function, and the cellular response to the environment. Observations from 

cells in the space environment provide inspiration for our research, in particular, the use of 

microgravity simulation studies for growth of cancer cells.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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The interest in cellular response to microgravity started early in the 1970s, aboard the US 

Skylab. Research on Skylab included studying the response of humans as well as their cells 

to microgravity exposure. Similar research continued on future missions and space stations. 

However, like all astronaut, biological and physiological system research in space, including 

studying cells and their growth in space, requires precious resources and astronauts’ time, 

which are scarce and in short supply. As a result, ground analogs were developed to test dif-

ferent physiological systems in simulated microgravity, so space agencies developed ways to 

replicate the microgravity environment in order to culture cells on Earth.

In 1995, Dr. Jessup supplied and successfully cultured cancer cells aboard STS-70 and a few 

years later aboard STS-80 using the bioreactor to confirm his results. Jessup and his group 
showed that their flown samples of colon carcinoma cells grew bigger and aggregated better 
than ground controls, 30 times the volume of the ground controls, and were more representa-

tive of cancer seen when growing in the body. These initial studies showed that microgravity 

was an environment that is favorable to cell growth and differentiation in addition to being 
more representative of in vivo growth [2].

Earth-based research groups have used the rotating wall vessel (RWV) bioreactor to support 

the development of several models of cancer cell lines. These include models of breast cancer, 

cervical cancer, colon cancer, hepatocellular carcinoma, neuroblastoma, melanoma, ovarian 

cancer, and prostate cancer. The bioreactor was not only a technological innovation, but was 

also a unique system benefiting biomedical research by allowing cells to be cultured in a 
3-D environment on Earth [3]. Other systems have been developed in an attempt to simulate 
microgravity, such as the random positioning machine (RPM) and magnetic levitation.

Through ground-based simulations and spaceflight research, we know that simulated micro-

gravity has been emerging as a new tool to develop potential therapy for tumor treatment [4]. 

With the developments from this research, more interest is being paid to the effects of micro-

gravity on tumor cells. Increasing number of investigations has indicated that micrograv-

ity has evident effects on the morphology, proliferation, apoptosis, invasion, and migration, 
along with inhibiting cancerous cell growth and invasion. However, the details of the exact 

mechanism still elude us and are still being studied.

2. Changes of morphology

It has been found that after microgravity intervention, mesenchymal stem cell morphology 

changed significantly from spindle to round. “Spirit composing body,” shape change will inev-

itably lead to changes in their function. Under the guidance of the traditional Chinese medicine 

“Circumference philosophical,” the cells with round change are primitive state. The round 
bone marrow mesenchymal stem cells have greater differentiation potential in microgravity 
[5] (Figure 1). This study uses ground rotary cultivating device (2-D-clinostat) simulation of 

cells in space (Figure 2), using 1G gravity (normal gravity, NG) as a control with simulated 

microgravity (SMG) intervention of bone marrow mesenchymal stem cells to observe the dif-

ferentiation into neural cells and endothelial cells. At the same time, cytoskeleton as well as 
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the key molecule of RhoA activity is observed, thereby directing the possible differentiation 
mechanism of stem cells.

Other than stem cells, real and simulated microgravity induces early alterations of the cyto-

skeleton in different kinds of human cells, such as thyroid cancer cells [6, 7], endothelial cells 

[8], and glial cells [9].

Our previous works have concluded that modeled microgravity causes changes in the cyto-

skeleton and focal adhesions in malignant human MCF-7 cells [10].

Figure 1. Phase-contrast microscopic analysis of the effect of SMG (b) on the morphology of BMSCs compared to NG (a). 
(c) The changes of the ratio of the width/length of BMSCs in the different groups. * denotes P < 0.05, versus the NG group.

Figure 2. A clinostat or rotating vessel was used to form the weightless environment to prevent the cell from feeling 

gravity; the machines are based on the theory that sensing no gravity would have similar effects as being microgravity. 
The clinostat model system (clinorotation) used in this study tends to provide an average of zero vector in the apparent 
gravity on the cell culture.
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Microtubules, which are components of the cytoskeleton that are involved in maintaining 

the structure of the cell, were disrupted in MCF-7 cells within 4 h of SMG. Instead of long, 

strongly labeled microtubules in NG groups, only a few fibers could be distinguished against 
the strong background (Figure 3). Self-organization of microtubules into stationary macro-

scopic patterns is gravity-dependent, and the patterns correspond to different microtubule 
orientations [11]. Also, the formation of radial microtubule arrays depends mostly on the 

activity of centrosome. Lewis et al. reported that microtubule organizing centers (MTOCs) 
were poorly defined in SMG [12]. It is obvious that the anchoring between microtubule and 

the centrosome is very complicated; so, many studies targeted the function of cytoplasmic 

dynein and its cofactor dynactin. Dynein transfers some centrosomal proteins to the centro-

some and reorganizes radial microtubule arrays for cell division. Thus, we hypothesize that 
the disorganization of microtubule fibers and their reestablishment might be associated with 
MTOCs modification.

The cytoskeleton is made up of actin microfilaments, tubulin microtubules, and vimentin inter-

mediate filaments [13]. The F-actin cytoskeleton has been involved in changes in cell morphosis 

and function as well as signaling path under weightless conditions. It was revealed that the 

amount of F-actin in A431 epidermoid carcinoma cells increased under real microgravity for 

Figure 3. Microtubules formation of MCF-7 cells is changed in MMG. Scale bar is 10 μm. Visualization of β-tubulin 
(TRITC; red) and nuclear chromatin (Hochest; blue). It is shown that microtubules keep radiation from the perinuclear 

area toward the cell periphery in control cells as time varying. (a–c) (4 h, 48 h, and 7 days, respectively). While in 

the MMG groups, altered fibers and short microtubules filaments could be observed. (a′–c′) (4 h, 48 h, and 7 days, 
respectively).
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7 min [14]. This leads us to conclude that the actin microfilament structure is sensitive to grav-

ity and that rebuilding of cytoskeleton may affect signal transduction [14]. Thyroid cancer cells 

were flown in a parabolic flight mission and they detected early alterations in the actin micro-

filaments. After 22-s microgravity stimulation, F-actin changed significantly, and the human 
beta actin (ACTB) expression was strikingly upregulated after the 1st and 31st parabolas [15].

Actin monomers polymerize only onto the existing barbed ends of the actin array, so that 
the actin filaments can be elongated to the cell periphery. In contrast to NG samples, micro-

filaments did not form preferential orientation with less labeled lamellipodia. Cell microfila-

ment bundles are assembled primarily by bundling of preexisting actin filaments [16]. It has 

been reported that tension development in the preexisting actin cytoskeleton is critical for 

the formation of stress fibers [17]. Tension would act on mechanical connections of the actin 

filaments to reorganize a kind of meshwork. However, spaceflight or stimulated weightless-

ness would destroy the intracellular prestress and tension balance, and eventually cells show 

irregular formation of cytoskeletal actin filaments [18].

3. Changes of cell growth, cycle, and apoptosis

Glioma is the most common and aggressive form of cancer of the central nervous system with 

a median survival time of 15 months and a 5-year survival about 5% after initial diagnosis 

[19]. Despite the standard of therapy available, including maximal safe surgical resection, 

radiotherapy, and temozolomide (a form of chemotherapy) [20], nearly all patients relapse. 

The excessive proliferation and metastasis of glioma is due to frequent genetic alterations 

and subsequent stimulation of abnormal signal transduction pathways [21, 22]. Inventing and 

improving novel therapeutic strategies are critically needed. However, it remains unknown 

which of these pathways is essential to glioma initiation and progression.

To assess the effect of SMG on glioma growth, U251 cells were cultured under either ground 
condition or SMG (SM-31 random locator applied) for different time periods (0, 12, 16, 20, 24, 
36, 48, 72, and 96 h). CCK8 measurements, a chemical kit employed to measure cell prolifera-

tion, showed that SMG inhibited U251 cells activity in a time-dependent manner. The more 

time handled, the less activity the U251 cells had. For 48~96 h, SMG markedly induced cell 

death of U251, cell activity decreased maximum about 45%. Therefore, we chose 72-h time-

point to use in the following experiments. This was further confirmed by our data derived from 
fluorescence-activated cell sorter (FACS) analysis via annexin V-FITC and PI double staining 
to investigate apoptosis of U251 cells exposed to SMG for 72 h, which showed 2.4% of control 

cells stained positive for both annexin V and PI, representing a minor subpopulation undergo-

ing a spontaneous apoptosis. After being cultured in SMG for 72 h, apoptotic subpopulation 

increased to 29.3%, indicating that SMG promoted cell death via apoptosis. Western blot (WB) 
test confirmed that apoptotic promoting proteins cleaved-caspase 3 and cleaved-caspase 9 were 
markedly upregulated at 48 h by SMG compared with NG condition. Meanwhile, U251 cells’ 

metabolic activity was detected by β-Gal Staining Set, blue-stained cells significantly increased 
by SMG, about 30% increase compared with NG condition. FACS analysis further demon-

strated that SMG treatment led to 14.11 ± 1.73% of U251 cells arrested at G2/M phase (Figure 4).
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Caspases are a family of cysteine proteases. Most caspases play a central role in activating cell 

apoptosis by cleaving selected target substrates in a cysteine-dependent aspartate-directed 

manner. To further dissect molecular mechanisms of SMG-induced glioma apoptosis, WB 
analysis was performed to confirm the level of apoptotic protein, Bcl2, Bnip3, pro-caspase 3, 
cleaved-caspase 3, pro-caspase 9, and cleaved-caspase 9. Zhao et al. found that SMG promotes 

BL6-10 melanoma cell apoptosis through downregulating Bcl2 and Bnip3 and upregulating 
caspases 3/7/8 [23]. We showed that two antiapoptotic proteins Bcl2 and Bnip3 were down-

regulated, while cleaved-caspase 3 and cleaved-caspase 9 were upregulated in cells under 

microgravity conditions, respectively, leading to enhance glioma cell death.

Never in mitosis gene A (NIMA)-related kinase 2 (Nek2) is one of multiple cell cycle-reg-

ulated protein kinases that localizes to the centrosome and is required for mitotic progres-

sion and correct bipolar spindle formation [24]. Upregulated Nek2, which is confirmed in a 
number of neoplastic diseases, including prostate cancer, lung cancers, colorectal cancer [25], 

and myeloma, also exhibits adverse correlation with overall survival of multiple malignan-

cies [26]. All of this suggests that Nek2 may regulate the metastasis of glioma, although few 

reports have shown this. In our unpublished study, Nek2 may play a crucial function in SMG-

treated U251cells, which arrested at the mitotic phase (chromosome separation).

Nek2 is implicated in centrosome separation and is reported to displace linker proteins from 

centrosomes through phosphorylation at the beginning of mitosis, and Nek2 phosphorylates 

the centrosomal linker proteins C-Nap1 and rootletin resulting in linker dissociation. hSav1-

Mst2-Nek2 centrosome disjunction pathway becomes essential for bipolar spindle formation, 

Nek2 kinase to regulate centrosome disjunction. We found SMG suppressed expression of 

Nek2 and distances between two centrioles by γ-tubulin staining. The experimental results 
were consistent as Di Agostino et al. [27].

4. Changes of migration

The formation of a protrusion initiates the cell migration cycle process, but the protrusions 

need to be stabilized to the substratum so as to move forward. The process of continuous 

Figure 4. Cell cycle was analyzed by flow cytometry after PI staining. The bar graph represents the number of the cells 
in different phases.
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coordinated formation and disassembly of adhesions is crucial for migration. These adhe-

sion sites, named as FAs, serve as traction points to propel the cell forward. Therefore, the 

important mechanism for creating cell movement includes the maturation of FAs. FAs become 

mature during the binding and clustering of integrins and function physically as a link of 

the cytoskeleton to the extracellular matrix (ECM) [28]. This correlation between cytoskeleton 

and FAs in structure underlines the possibility that FAs formation might be changed during 

microgravity. In order to explore the possible mechanism, we examined FAs formation by 

vinculin immunofluorescence. Vinculin is one of the most prevalent elements in FAs. It seems 
that vinculin facilitates the assembly of FAs by interacting and recruiting its various partners 

[29]. We demonstrated that microgravity disorganized FAs of MCF-7 cells via quantifying FAs 
parameters. After 7 days stimulation of SMG, the amount of FAs was still low by detecting 

topographical adhesion parameters and showed no change as time varied. We therefore could 

conclude that FAs created in microgravity were less mature than those established in normal 

gravity. Fewer and smaller FAs can lead to the weaker cell spreading and migrating. Thus, 

we speculated that abnormal FAs structure in MCF-7 cells under SMG may contribute to the 

change of cell migration [10].

Since FAs also contain a lot of growth factor receptors, kinases, and signaling proteins, FAs 

have been referred as localized sites converging growth factor and adhesion signaling. The 
integrin family is the major transmembrane ECM receptors in these sites. FAK, PYK2, and ILK 

are well known as the key effectors in FAs signaling and a potential integrator of inhibition of 
MCF-7 cell migration by modeled microgravity. Because the changes of morphological and 
topographical cytoskeletal structures of FAs were observed in MCF-7 cells, we speculated that 

activities of the kinases would be altered under clinorotation conditions. Here, our hypothesis 

was confirmed by observing a decrease in FAs kinases phosphorylation level (FAK, PYK2, 
and ILK) in contrast to NG controls, while there was no significant change in total FAK, ILK, 
and PYK2 protein expression in both the NG controls and SMG groups. The effects of micro-

gravity on the suppression of FAs kinases activity in our experiments were in accordance with 

other reports, though they were observed in different cells by different devices, which could 
suggest that SMG might suppress the FAs kinases activity in various kinds of cells [30].

As we know, integrins play a critical role in cell adhesion and migration. We explored that 

SMG could decrease the expression of integrins, a downregulation of integrins (integrinβ1 
and integrinβ4) at both protein and mRNA levels after SMG compared to controls. 
Downregulated integrins in SMG are not a new finding, and it has been reported that SMG 
suppressed integrins (αv, α5,β1) expression in MG-63 cell. Via binding to the ECM, phos-

phorylation of signaling proteins at FAs was triggered, such as FAK, ILK, and PYK, whereby 

protein kinase C (PKC) and GTPases pathways were activated. The small G proteins, Rho 

family regulate the rebuilding of actin fibers and FAs formation, by which determines cell 
movement. In fact, the previous studies have reported that rho activation in the endothelial 

cells and MSCs could be affected by simulated microgravity. Also, it has been found repeat-
edly that microgravity modulates PKC signaling in neurons. Activation of PKC could directly 

induce cells’ motility and migration. Furthermore, it is generally accepted that the releasing 

from the RhoGDI-1 molecule is required for activation of RhoGTPases. PKCα is confirmed to 
phosphorylate RhoGDI-1 and then catalyze the release of bound GTPases [31]. No doubt, the 
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pathways regulating cell migration are very complicated and seem to vary in different cells 
and different species. In general, it seems that decreased integrin expression and downregu-

lated FAs kinase activity are an essential step in suppression of cell migration by SMG.

5. Changes of genes

To investigate the involved mechanisms in more detail, gene level researches are expected 

to yield novel targets for cancer therapy, which may then be exploited in the form of new 

chemotherapeutics.

Dr. Xiao Ma cultured thyroid cancer cells in space (Shenzhou 8 space mission) on a random 
positioning machine (RPM) for 10 days to evaluate differences between real and SMG. About 
2881 genes were regulated during 10 days of cell exposure to microgravity [32]. These genes 

were subdivided into different clusters (Figure 5) that allowed us to distinguish the differ-

ence between SMG (RPM) and spaceflight effects. However, two clusters of genes expressed 
similarly under either real or SMG. This research demonstrated that the effects of RPM and 
spaceflight both exert 3-D growth, but may not change gene expression in the same direction.

For the sake of the very limited amount of cells returned from space, the combination of gene 

expression and secretion analysis was detected on the cytokine, protease, and kinases fac-

tors that may play a pivotal role in the development of metastases. The list was made up of 

IL6, IL8, IL15 (interleukin family), OPN (osteopontin), VEGFA, VEGFD (vascular endothelial 

growth factor), and FGF17 (fibroblast growth factor).

Figure 5. (A) Gene array analyses on FTC-133 cells cultured for 10 days under both conditions. ANOVA resulted in 

2881 twofold-regulated probes. The Davies-Bouldin cluster estimation resulted in a local minimum of seven clusters. 
(B) RPM-specific effects (clusters 5 and 7), spaceflight-specific AD cell and MCS effects (clusters 1, 2, and 4), and general 
gravity effects (clusters 3 and 6) were shown in gene map. An outstanding expression level of spaceflight samples was 
found in contrast to the moderate levels in RPM samples and controls.
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In this research, VEGFA and VEGFD, which are members of the vascular endothelial growth 

factor (VEGF) family, were also observed. It is well known that VEGFA is the most important 

growth factor driving angiogenesis and is also implicated in many processes like tumor vas-

cularization, wound healing, and burn injury. VEGFA expression has been found to increase 
in papillary thyroid carcinoma in contrast to that in healthy patients [33]. While on the other 

hand, VEGFD serum levels were found to decrease in patients with thyroid cancer [34]. In this 

study, an obvious decrease in expression of VEGFA was confirmed in the RPM as well as the 
spaceflight samples, while no difference was observed between adherent (AD) cells or multi-
cellular spheroids (MCSs). Similarly, VEGFA secretion was also reduced on the RPM, but no 

influence in real microgravity. Furthermore, VEGFD gene expression upregulated in cells cul-
tivated on the RPM as well as in space. All these results seem to get a conclusion that micro-

gravity exerts a shift of the thyroid tumor cells to a more benign, less metastatic phenotype.

Interestingly, the similar tendency was observed with the interleukins in microgravity. IL6 

and IL8, encoded by the IL6 and IL8 genes, are involved in tumor cell growth, metastasis, and 

angiogenesis. IL15, on the contrary, is able to activate several antitumor mechanisms, such as 

activating CD8 T cells to kill tumor cells [35]. Furthermore, it has been found that IL15 was 

effective in several tumor therapy experiments [36]. Their results explored a significant down-

regulation of IL8 gene expression in both simulated and real microgravity cells, which is also 

in accordance with the IL8 secretion pattern. The weightless effect of reducing IL6 gene expres-

sion was only observed in adherent cells, the same to that described for endothelial cells [37].

Of note, both IL6 and IL8 gene expression were strikingly upregulated during a parabolic 

flight. The study also showed earlier that IL6 and IL8 were most possibly implicated in the 
gravity-sensitive signaling required for spheroid formation. It seems that this signal path-

way is attenuated after exposure to microgravity and that the tumor cells are shifted toward 
a less aggressive biological behavior. This hypothesis was also confirmed by the observa-

tions for IL15. IL15 gene expression increased only slightly on the RPM and during parabolic 

flight, but they explored a strong increase in the MCSs during spaceflight. Thus, we speculate 
that microgravity triggers some antitumor pathways involving IL15 and, as MCSs resemble 

tumors in their 3-D structure, the cell-cell interactions should be affected.

6. Conclusion

Taken together, it is no doubt that spaceflight experiments are of great value for cell biology 
research, especially for cancer research. The previous studies indicate that microgravity, both 

actual and simulated microgravity, induces changes in cancer cell proliferation, metastasis, 

and survival, bringing the cells toward a less aggressive phenotype. This effect is greater in 
actual spaceflight; however, ground-based simulation has been shown to be an essential tool 
in our understanding of gravity and it effects on a cellular level in cancer cells. The above 
body shows that not only does the architecture of tumor cells change in microgravity, but 

the cell function and gene expression also are different. The changes of some gene expres-

sion reorganize the cytoskeleton which influences the cell growth, migration, and apoptosis. 
And some other genes impress tumor cell by regulating the immune antitumor pathway. 
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However, most of the studies are in vitro, and the evidence from human or animals is much 

rare. Is the microgravity strategy safe for human? How to create microgravity environment 

in body? Those are the thorny tissue for clinical translation. With the recent discoveries of 

nanomagnetic fluids, it suggests an innovative method of treating tumors using magnetic 
fluid-modeled microgravity. Magnetic fluids are delivered by outside magnetic field to tumor 
tissue either intravenously or through direct injection, and this is followed by application of a 

uniform external magnetic field that causes microgravity. The concept of magnetic fluid-mod-

eled microgravity to treat tumor is novel, and the technology involved is simple, economical, 

and might be suitable for clinical applications in future.

All in all, as new information about the biology of cancer emerges, treatments will be devel-

oped and modified to increase effectiveness, precision, survivability, and quality of life. It is 
still a long shot to take advantage of microgravity as a suitable way to treat tumor.
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