
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



11 

A Multi-Agent Approach to Bluffing 

Tshilidzi Marwala and Evan Hurwitz 
University of the Witwatersrand 

South Africa 

1. Introduction     

The act of bluffing confounds game designers to this day. The very nature of bluffing is even 
open for debate, adding further complication to the process of creating intelligent virtual 
players that can bluff, and hence play, realistically. Through the use of intelligent, learning 
agents, and carefully designed agent outlooks, an agent can in fact learn to predict its 
opponents’ reactions based not only on its own cards, but on the actions of those around it. 
With this wider scope of understanding, an agent can in fact learn to bluff its opponents, 
with the action representing not an “illogical” action, as bluffing is often viewed, but rather 
as an act of maximising returns through an effective statistical optimisation. By using a 
Temporal Difference-lamba (TD(λ) re-inforcement learning algorithm (Sutton, 1988; Sutton, 
1989) to continuously adapt neural network agent‘s intelligence ability, agents are shown, in 
this chapter, to be able to learn to bluff without outside prompting, and even to learn to call 
each other’s bluffs in a free competative play. 
While many card games involve an element of bluffing, simulating and fully understanding 
bluffing yet remains one of the most elusive tasks presented to the game design engineer 
(Hurwitz & Marwala, 2005, 2007a,b). The entire process of bluffing relies on performing a 
task that is unexpected, and is thus misinterpreted by one’s opponent. For this reason, static 
rules are doomed to failure since once they become predictable, they cannot be 
misinterpreted.  In order to create an artificially intelligent agent that can bluff, one must 
first create an agent that is capable of learning. There are many learning algorithms that 
have been developed and successfully implemented and these include neural networks 
(Mohamed et al, 2005), support vector machines (Msiza et al, 2007) and neuro-fuzzy systems 
(Tettey & Marwala, 2006). These learning algorithms have been applied to diverse areas 
such as civil engineering (Marwala, 2000), mechanical engineering (Marwala & Hunt, 1999), 
aerospace engineering (Marwala, 2001) and biomedical engineering (Leke et al, 2006). The 
agent must be able to learn not only about the inherent nature of the game it is playing, but 
also must be capable of learning trends emerging from its opponent’s behaviour, since bluffing 
is only plausible when one can anticipate the opponent’s reactions to one’s own actions. 
Firstly the game to be modelled will be detailed, with the rationale for its choice being 

explained. This chapter then details the system and agent architecture, which is of 

paramount importance since this not only ensures that the correct information is available to 

the agent, but also has a direct impact on the efficiency of the learning algorithms utilised. 

Once the system is fully illustrated, the actual learning of the agents is demonstrated, with 

the appropriate findings detailed. O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Multiagent Systems, Book edited by: Salman Ahmed and Mohd Noh Karsiti,  
 ISBN 978-3-902613-51-6, pp. 426, February 2009, I-Tech, Vienna, Austria

www.intechopen.com



 Multiagent Systems 

 

234 

2. Game of Lerpa 

While not a well-known game, Lerpa’s rules suit the purposes of this chapter exceptionally 
well, making it an ideal test-bed application for intelligent multi-agent modelling (MAM) 
(Mariano et al, 2001; Abramov et al, 2001; van Aardt & Marwala, 2005). The rules of the 
game first need to be elaborated upon, in order to grasp the implications of the results 
obtained. Thus, the rules for Lerpa now follow.  
MAM has been used successfully in many different areas and these include in modelling the 
stock market (Marwala et al, 2001), modelling HIV (Teweldemedhin et al, 2004), in 
modelling electrical systems (Vilakazi & Marwala, 2007) and in developing human capacity 
development infrastructure (Marivate et al, 2008). 
The game of Lerpa is played with a standard deck of cards, with the exception that all of the 
8s, 9s and 10s are removed from the deck. The cards are valued from greatest- to least-valued 
from ace down to 2, with the exception that the 7 is valued higher than a king, but lower than 
an ace, making it the second most valuable card in a suit. At the end of dealing the hand, the 
dealer has the choice of dealing himself/herself in – which entails flipping his/her last card 
over, unseen up until this point, which then declares which suit is the trump suit. Should the 
player elect not to do this, he/she then flips the next card in the deck to determine the trump 
suit. Regardless, once trumps are determined, the players then take it in turns, going clockwise 
from the dealer’s left, to elect whether or not to play the hand (to knock), or to drop out of the 
hand, referred to as folding (if the Dealer has dealt himself/herself in, as described above, the 
player is then automatically required to play the hand). 
Once all players have chosen whether to play or not, the players that have elected to play 
then play the hand, with the player to the dealer’s left playing the first card. Once this card 
has been played, players must then play in suit – in other words, if a heart is played, they 
must play a heart if they have one. If they have none of the required suit, they may play a 
trump, which will win the trick unless another player plays a higher trump. The highest 
card played will win the trick (with all trumps valued higher than any other card) and the 
winner of the trick will lead the first card in the next trick. At any point in a hand, if a player 
has the Ace of trumps and can legally play it, he/she is then required to do so. The true risk 
in the game comes from the betting, which occurs as follows: At the beginning of the round, 
the dealer pays the table, three of whatever the basic betting denomination is (referred to 
usually as ‘chips’). At the end of the hand, the chips are divided up proportionately between 
the winners, i.e. if you win two tricks, you will receive two thirds of whatever is in the pot. 
However, if you stayed in, but did not win any tricks, you are said to have been Lerpa’d, 
and are then required to match whatever was in the pot for the next hand, effectively costing 
you the pot. It is in the evaluation of this risk that most of the true skill in Lerpa lies. 

3. Multi-agent modelling of Lerpa 

As with any optimisation system (Marwala, 2005 & 2007), very careful consideration needs 

to be taken with regards to how the system is structured, since the implications of these 

decisions can often result in unintentional assumptions made by the system created. With 

this in mind, the Lerpa Multi-Agent System (MAS) has been designed to allow the 

maximum amount of freedom to the system, and the agents within, while also allowing for 

generalisation and swift convergence in order to allow the intelligent agents to interact 

unimpeded by human assumptions, intended or otherwise.  

www.intechopen.com



A Multi-Agent Approach to Bluffing 

 

235 

3.1 System overview 

The game is, for this model, going to be played by four players. Each of these players will 

interact with each other indirectly, by interacting directly with the table, which is their 

shared environment, as depicted in Figure 1. 

 

 

Fig. 1. System interactions 

Over the course of a single hand, an agent will be required to make three decisions, once at 
each interactive stage of the game. These three decision-making stages are: 
1. To play the hand, or drop (knock or fold) 
2. Which card to play first? 
3. Which card to play second? 
Since there is no decision to be made at the final card, the hand can be said to be effectively 

finished from the agent’s perspective after it has played its second card (or indeed after the 

first decision should the agent fold). Following on the TD(λ) algorithm, each agent will 

update its own neural network at each stage, using its own predictions as a reward function, 

only receiving a true reward after its final decision has been made. This decision making 

process is illustrated below, in Figure 2. 

There are two fundamental conceptual characteristics of TD(λ) and these are:  
1. There is a heuristic error signal described at each time step, which is based on the 

difference between two successive predictions, that ensures the learning, 
2. Granted that a prediction error has been perceived at a specific time step, an 

exponentially decaying feedback of the error in time exists such that the earlier 
estimates for preceding states are also corrected.  

This time scale of the exponential decay is directed by the lambda parameter. 
With each agent implemented as is described, the agents can now interact with each other 

through their shared environment, and will continuously learn upon each interaction and its 

consequent result. Each hand played will be viewed as an independent, stochastic event, 

and as such only information about the current hand will be available to the agent, who will 

have to draw on its own learned knowledge base to draw deductions not from previous 

hands. 

 
 

Table 

Player 1

Player 2 Player 4 

Player 3

www.intechopen.com



 Multiagent Systems 

 

236 

 

Fig. 2. Agent learning scheme 

3.2 Agent AI design 

A number of decisions need to be made in order to implement the agent’s artificial 
intelligence (AI) effectively and efficiently. The type of learning to be implemented needs to 
be chosen, as well as the neural network architecture. Special attention needs to be paid to 
the design of the inputs to the neural network, as these determine what the agent can ‘see’ at 
any given point. This will also determine what assumptions, if any, are implicitly made by 
the agent, and hence cannot be taken lightly. Lastly, this will determine the dimensionality 
of the network, which directly affects the learning rate of the network, and hence must 
obviously be minimised. 

3.2.1 Input parameter design 

In order to design the input stage of the agent’s neural network, one must first determine all 
that the network may need to know at any given decision-making stage. All inputs, in order 
to optimise stability, are structured as binary-encoded inputs. When making its first 
decision, the agent needs to know its own cards, which agents have stayed in or folded, and 
which agents are still to decide. It is necessary for the agent to be able to determine which 
specific agents have taken their specific actions, as this will allow for an agent to learn a 
particular opponent’s characteristics, something impossible to do if it can only see a number 
of players in or out. Similarly, the agent’s own cards must be specified fully, allowing the 
agent to draw its own conclusions about each card’s relative value. It is also necessary to tell 
the agent which suit has been designated the trumps suit, but a more elegant method has 
been found to handle that information, as will be seen shortly. Figure 3 illustrates the initial 
information required by the network. 
The agent’s hand needs to be explicitly described, and the obvious solution is to encode the 
cards exactly, i.e. four suits, and ten numbers in each suit, giving forty possibilities for each 
card. A quick glimpse at the number of options available shows that a raw encoding style 
provides a sizeable problem of dimensionality, since an encoded hand can be one of 403 
possible hands (in actuality, only 40P3 hands could be selected, since cards cannot be 
repeated, but the raw encoding scheme would in fact allow for repeated cards, and hence 
403 options would be available). 
The first issue to notice is that only a single deck of cards is being used, hence no card can 
ever be repeated in a hand. Acting on this principle, consistent ordering of the hand means 
that the base dimensionality of the hand is greatly reduced, since it is now a combination of 
cards that are represented, instead of permutations. The number of combinations now 
 

Player ? ? ? 

www.intechopen.com



A Multi-Agent Approach to Bluffing 

 

237 

 

Fig. 3. Basic input structure 

represented is 40C3. This seemingly small change from nPr to nCr reduces the dimensionality 
of the representation by a factor of r!, which in this case is a factor of 6. Furthermore, the 
representation of cards as belonging to discrete suits is not optimal either, since the game 
places no particular value on any suit by its own virtue, but rather by virtue of which suit is 
the trump suit. For this reason, an alternate encoding scheme has been determined, rating 
the ‘suits’ based upon the makeup of the agent’s hand, rather than four arbitrary suits. The 
suits are encoded as belonging to one of the following groups, or new “suits”: 

• Trump suit 

• Suit agent has multiple cards in (not trumps) 

• Suit in agent’s highest singleton 

• Suit in agent’s second-highest singleton 

• Suit in agent’s third-highest singleton 
This allows for a much more efficient description of the agent’s hand, greatly improving the 

dimensionality of the inputs, and hence the learning rate of the agents. These five options 

are encoded in a binary format, for stability purpose, and hence three binary inputs are 

required to represent the suits. To represent the card’s number, ten discrete values must be 

represented, hence requiring four binary inputs to represent the card’s value. Thus a card in 

an agent’s hand is represented by seven binary inputs, as depicted in Figure 4. 

Subsequently, the information required to make the second and third decisions must be 
considered. For both of these decisions, the cards that have already been played, if any,  are 
necessary to know in order to make an intelligent decision as to the correct next card to play. 
For the second decision, it is also plausible that knowledge of who has won a trick would be 
important. The most cards that can ever be played before a decision must be made is seven, 
and since the table after a card is played is used to evaluate and update the network, eight 
played cards are necessary to be represented. Once again, however, simply utilising the 
obvious encoding method is not necessarily the most efficient method. The actual values of 
the cards played are not necessarily important, only their values relative to the cards in the 
agent’s hand. As such, the values can be represented as one of the following, with respect to 
the cards in the same suit in the agent’s hand: 

• Higher than the card/cards in the agent’s hand 

• Higher than the agent’s second-highest card 

 Player Called

Player In/Folded

Hand

www.intechopen.com



 Multiagent Systems 

 

238 

• Higher than the agent’s third-highest card 

• Lower than any of the agent’s cards 

• Member of a void suit (number is immaterial) 
 

 

Fig. 4. Agent card input structure 

Also, another suit is now relevant for representation of the played cards, namely a void suit 
– a suit in which the agent has no cards. Lastly, a number is necessary to handle the special 
case of the Ace of trumps, since its unique rules mean that strategies are possible to develop 
based on whether it has or has not been played. The now six suits available still only require 
three binary inputs to represent, and the six number groupings now reduce the value 
representations from four binary inputs to three binary inputs, once again reducing the 
dimensionality of the input system.  With all of these inputs specified, the agent now has 
available all of the information required to draw its own conclusions and create its own 
strategies, without human-imposed assumptions affecting its “thought” patterns 

3.2.2 Network architecture design 
With the inputs now specified, the hidden and output layers need to be designed. For the 
output neurons, these need to represent the prediction P that the network is making. A 
single hand has one of five possible outcomes, all of which need to be catered for. These 
possible outcomes are: 

• The agent wins all three tricks, winning 3 chips. 

• The agent wins two tricks, winning 2 chips. 

• The agent wins one trick, winning 1 chip. 

• The agent wins zero tricks, losing 3 chips. 

• The agent elects to fold, winning no tricks, but losing no chips. 
This can be seen as a set of options, namely [-3 0 1 2 3]. While it may seem tempting to 
output this as one continuous output, there are two compelling reasons for breaking these 
up into binary outputs. The first of these is in order to optimise stability, as elaborated upon 
in Section 5. The second reason is that these are discrete events, and a continuous 
representation would cover the range of [-3 0], which does not in fact exist. The binary 
inputs then specified are: P(O = 3); P(O = 2); P(O = 1) and P(O = -3), with a low probability 
of all four catering to folding, winning and losing no chips. Consequently, the agent’s 
predicted return is: 

  
Suit 

Number

www.intechopen.com



A Multi-Agent Approach to Bluffing 

 

239 

 P=3A+2B+C-3D (1) 

where 

 )3=(= OPA   (2) 

 )2=(= OPB   (3) 

 )1=(= OPC   (4) 

 )3=(= OPD   (5) 

The internal structure of the neural network uses a standard sigmoidal activation function, 
which is suitable for stability issues and still allows for the freedom expected from a neural 
network. The sigmoidal activation function varies between zero and one, rather than the 
often-used one and minus one, in order to optimise for stability. Since a high degree of 
freedom is required, a high number, of hidden neurons is required, and thus fifty have been 
used. This number is iteratively achieved, trading off training speed versus performance. 
The output neurons are linear functions, since they represent not binary effects, but rather a 
continuous probability of particular binary outcomes.  

3.2.3 Agent decision making 

With its own predictor specified, the agent is now equipped to make decisions when playing. 
These decisions are made by predicting the return of the resultant situation arising from each 
legal choice it can make. An ε-greedy policy is then used to determine whether the agent will 
choose the most promising option, or whether it will explore the result of the less appealing 
result. In this way, the agent will be able to trade off exploration versus exploitation. 

4. The intelligent model 

With each agent implemented as described above, and interacting with each other as 
specified in Section 3, we can now perform the desired task, namely that of utilising a multi-
agent model to analyse the given game, and develop strategies that may “solve” the game 
given differing circumstances. Only once agents know how to play a certain hand can they 
then begin to outplay, and potentially bluff each other. 

4.1 Agent learning verification 

In order for the model to have any validity, one must establish that the agents do indeed 
learn as they were designed to do. In order to verify the learning of the agents, a single 
intelligent agent was created, and placed at a table with three ‘stupid’ agents. These ‘stupid’ 
agents always stay in the game, and choose a random choice whenever called upon to make 
a decision. The results show quite conclusively that the intelligent agent soon learns to 
consistently outperform its opponents, as shown in Figure 5. 
The agents named Randy, Roderick and Ronald use random decision-making, while AIden 
has the TD(λ) AI system implemented. The results have been averaged over 40 hands, in 
order to be more viewable, and to also allow for the random nature of cards being dealt. As 
can be seen, AIden is consistently performing better than its counterparts, and continues to 
learn the game as it plays. 

www.intechopen.com



 Multiagent Systems 

 

240 

 

Fig. 5. Agent performance, averaged over 40 hands 

4.1.2 Cowardice 

In the learning phase of the abovementioned intelligent agent, an interesting and somewhat 

enlightening problem arises. When initially learning, the agent does not in fact continue to 

learn. Instead, the agent quickly determines that it is losing chips, and decides that it is 

better off not playing, and thereby keeping its chips! This is illustrated in Figure 6. 

 

 

Fig. 6. Agent cowardice. Averaged over 5 hands 

www.intechopen.com



A Multi-Agent Approach to Bluffing 

 

241 

As can be seen, AIden quickly decides that the risks are too great, and does not play in any 
hands initially. After forty hands, AIden decides to play a few hands, and when they go 
badly, gets scared off for good. This is a consequent of the penalising nature of the game, 
since bad play can easily mean one loses a full three chips, and since the surplus of lost chips 
is nor carried over in this simulation, a bad player loses chips regularly. While insightful, a 
cowardly agent is not of any particular use, and hence the agent must be given enough 
‘courage’ to play, and hence learn the game. In order to do this, one option is to increase the 
value of ε for the ε-greedy policy, but this makes the agent far too much like a random 
player without any intelligence. A more successful, and sensible solution is to force the 
agent to play when it knows nothing, until such a stage as it seems prepared to play. This 
was done by forcing AIden to play the first 200 hands it had ever seen, and thereafter leave 
AIden to his own devices, the result of which has been shown already in Figure 5. 

4.2 Parameter optimisation 

A number of parameters need to be optimised, in order to optimise the learning of the 
agents. These parameters are the learning-rate α, the memory parameter λ and the 
exploration parameter ε. The multi-agent system provides a perfect environment for this 
testing, since four different parameter combinations can be tested competitively. By setting 
different agents to different combinations, and allowing them to play against each other for 
an extended period of time (number of hands), one can iteratively find the parameter 
combinations that achieve the best results, and are hence the optimum learning parameters. 
Figure 7 shows the results of one such test, illustrating a definite ‘winner’, whose parameters 
 

 

Fig. 7. Competitive agent parameter optimisation. Averaged over 30 hands 

www.intechopen.com



 Multiagent Systems 

 

242 

were then used for the rest of the multi-agent modelling. It is also worth noting that as soon 
as the dominant agent begins to lose, it adapts its play to remain competitive with its less 
effective opponents. This is evidenced at points 10 and 30 on the graph (games number 300 
and 900, since the graph is averaged over 30 hands) where one can see the dominant agent 
begin to lose, and then begins to perform well once again. 
Surprisingly enough, the parameters that yielded the most competitive results were α = 0.1; 
λ = 0.1 and ε = 0.01. while the ε value is not particularly surprising, the relatively low α and 
λ values are not exactly intuitive. What they amount to is a degree of temperance, since a 
higher value would mean learning a large amount from any given hand, effectively over-
reacting when they may have played well, and simply have fallen afoul of bad luck 

4.3 MAS learning patterns 

With all of the agents learning in the same manner, it is noteworthy that the overall rewards 
they obtain are far better than those obtained by the random agents, and even by the 
intelligent agent that was playing against the random agents. A sample of these results is 
depicted in Figure 8. 
 

 

Fig. 8. Competitive agent parameter optimisation. Averaged over 30 hands 

R1 to R3 are the Random agents, while AI1 is the intelligent agent playing against the 
random agents. AI2 to AI 5 depict intelligent agents playing against each other. As can be 
seen, the agents learn far better when playing against intelligent opponents, an attribute that 
is in fact mirrored in human competitive learning. The agents with better experience tend to 
fold bad hands, and hence lose far fewer chips than the intelligent agent playing against 
unpredictable opponents. 

www.intechopen.com



A Multi-Agent Approach to Bluffing 

 

243 

4.4 Agent adaptation 

In order to ascertain whether the agents in fact adapt to each other or not, the agents were 
given pre-dealt hands, and required to play them against each other repeatedly. The results 
one such experiment, illustrated in Figure 9, shows how an agent learns from its own 
mistake, and once certain of it changes its play, adapting to better gain a better return from 
the hand. The mistakes it sees are its low returns, returns of -3 to be precise. At one point, 
the winning player obviously decides to explore, giving some false hope to the losing agent, 
but then quickly continues to exploit his advantage. Eventually, at game #25, the losing 
agent gives up, adapting his play to suit the losing situation in which he finds himself. 
Figure 10 illustrates the progression of the agents and the adaptation described. 
 

 

Fig. 9. Adaptive agent behaviour 

4.5 Strategy analysis 

The agents have been shown to successfully learn to play the game, and to adapt to each 
other’s play in order to maximise their own rewards. These agents form the pillars of the 
multi-agent model, which can now be used to analyse, and attempt to ‘solve’ the game. 
Since the game has a non-trivial degree of complexity, situations within the game are to be 
solved, considering each situation a sub-game of the overall game. The first and most obvious 
type of analysis is a static analysis, in which all of the hands are pre-dealt. This system can be 
said to have stabilised when the results and the play-out become constant, with all agents 
content to play the hand out in the same manner, each deciding nothing better can be 
achieved. This is akin to Game Theory’s “static equilibrium”, as is evidenced in Figure 10. 

4.6 Bluffing 

A bluff is an action, usually in the context of a card game that misrepresents one’s cards 
with the intent of causing one’s opponents to drop theirs. There are two opposing schools of 

www.intechopen.com



 Multiagent Systems 

 

244 

thought regarding bluffing.  One school claims that bluffing is purely psychological, while 
the other maintains that a bluff is a purely statistical act, and therefore no less sensible than 
any other strategy. Astoundingly enough, the intelligent agents do in fact learn to bluff! A 
classic example is illustrated in Figure 11, which depicts a hand in which bluffing was 
evidenced. 
 

 

Fig. 10. Stable, solved hand. 

 

Fig. 11. Agent bluffing 

In the above hand, Randy is the first caller, and diamonds have been declared trumps. 
Randy’s hand is not particularly impressive, having only one low trump, and two low 
supporting cards. Still, he has the lead, and a trump could become a trick, although his risks 
are high for minimal reward. Nonetheless, Randy chooses to play this hand. Ronald, having 
nothing to speak of, unsurprisingly folds. Roderick, on the other hand, has a very good 
hand. One high trump, and an outside ace. However, with one still to call, and Randy 
already representing a strong hand by playing, Roderick chooses to fold. AIden, whose 

www.intechopen.com



A Multi-Agent Approach to Bluffing 

 

245 

hand is very strong with two high trumps and an outside jack, plays the hand. When the 
hand is played repeatedly, Randy eventually chooses not to play, since he loses all three to 
AIden. Instantly, Roderick chooses to play the hand, indicating that the bluff was successful, 
that it chased a player out of the hand! Depending on which of the schools of thought 
regarding bluffing one follows this astonishing result leads us to one of two possible 
conclusions. If, like the authors, one holds that bluffing is simply playing the odds, making 
the odds for one’s opponent unfavourable by representing a strong hand, then this result 
shows that the agents learn each other’s patterns well enough to factor their opponent’s 
strategies into the game evaluation, something game theory does a very poor job of. Should 
one follow the theory that bluffing is purely psychological, then the only conclusion that can 
be reached from this result is that the agents have in fact developed their own ‘psyches’, 
their own personalities which can then be exploited. Regardless of which option the reader 
holds to, the fact remains that agents have been shown to learn, on their own and without 
external prompting, to bluff! 

5. Conclusions 

While the exact nature of bluffing is still unknown, it has been shown that a system 
involving agents capable of learning adaptively not only from the game being played, but 
also from their opponents, is in fact able to learn to predict its opponent’s reactions. This 
knowledge in turn changes the statistical nature of a game being played, allowing agents to 
learn to bluff, based purely on rational reasoning, lending strong support to the theory that 
bluffing is simply playing the odds, and not an illogical, psychologically based action. The 
use of the Re-enforcement learning paradigm (Sutton & Barto, 1998), along with the TD(λ) 
algorithm for adaptively training neural networks, has been shown to meet all of the 
requirements to produce such agents. Lastly, the design of the agent “view”, has been seen 
to be the most important facet of creating bluffing agents, since their view of the game as 
inclusive of the other players allows for the incorporation of those players into its estimation 
of the game’s outcome. With all of these steps adhered to, artificially intelligent agents can 
learn to bluff! 

6. References 

Abramov, V.A., Szirbik, N.B, Goossenaerts, J.B.M., Marwala, T., de Wilde, P., Correia, L., 
Mariano, P. & Ribeiro, R. (2001). Ontological basis for open distributed multi-agent 
system, Proceedings of the Symposium on Adaptive Agents and Multi-Agent Systems, 
York, U.K., pp. 33-43. 

Hurwitz, E. & Marwala, T. (2005) Optimising reinforcement learning for neural networks. 
Proceedings of the 6th Annual European on Intelligent Games and Simulation, Leicester, 
UK, 2005, pp. 13-18.  

Hurwitz, E. & Marwala, T. (2007a). Multi-agent modeling of interaction-based card games, 
Proceedings of the 3rd International North American Conference on Intelligent Games and 
Simulation, University of Florida, USA, pp. 23-28. 

Hurwitz, E. & Marwala, T. (2007b). Learning to bluff: A multi-agent approach, Proceedings of 
the IEEE International Conference on Systems, Man and Cybernetics, 2007, Montreal, 
Canada, pp. 1188-1193. 

Leke, B.B., Marwala, T., & Tettey, T. (2006). Autoencoder networks for HIV classification. 
Current Science, Vol. 91, No. 11, pp. 1467-1473. 

www.intechopen.com



 Multiagent Systems 

 

246 

Mariano, P., Correia, L., Ribeiro, R., Abramov, V., Szirbik, N., Goossenaerts, J., Marwala, T., 
de Wilde, P. (2001). Simulation of a trading multi-agent system, Proceedings of the 
IEEE International Conference on Systems, Man, and Cybernetics, Tucson, Arizona, 
USA,  pp. 3378-3384. 

Marivate, V., Ssali, G. & Marwala, T. (2008). An intelligent multi-agent recommender system 
for human capacity building, Proceedings of the 14th IEEE Mediterranean 
Electrotechnical Conference, pp. 909 – 915. 

Marwala, T. (2000). On damage identification using a committee of neural networks. 
American Society of Civil Engineers, Journal of Engineering Mechanics, Vol. 126, pp. 43-
50. 

Marwala, T. (2001). Probabilistic fault identification using a committee of neural networks 
and vibration data. American Institute of Aeronautics and Astronautics, Journal of 
Aircraft, Vol. 38, pp. 138-146. 

Marwala, T. (2005). Finite element model updating using particle swarm optimization. 
International Journal of Engineering Simulation, Vol. 6, No. 2, pp. 25-30. 

Marwala, T. (2007). Computational Intelligence for Modelling Complex Systems, Research India 
Publications, ISBN: 978-81-904362-1-2, New Delhi. 

Marwala, T., de Wilde, P., Correia, L., Mariano, P., Ribeiro, R., Abramov, V., Szirbik, N., 
Goossenaerts, J. (2001). Scalability and optimisation of a committee of agents using 
genetic algorithm, Proceedings of the International Symposia on Soft Computing and 
Intelligent Systems for Industry, Scotland. 

Marwala, T. & Hunt, H.E.M. (1999). Fault identification using finite element models and 
neural networks. Mechanical Systems and Signal Processing, Vol. 13, pp. 475-490. 

Mohamed, N., Rubin, D.M. & Marwala, T. (2005). Detection of epileptiform activity in 
human EEG signals using Bayesian neural networks, Proceedings of the IEEE 3rd 
International Conference on Computational Cybernetics, Mauritius, pp. 231-237.  

Msiza, I.S., Nelwamondo, F.V., & Marwala, T. (2007). Artificial neural networks and support 
vector machines for water demand time series forecasting, Proceedings of the IEEE 
International Conference on Systems, Man and Cybernetics, Montreal, Canada, pp. 638-
643. 

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine 
Learning, Vol. 3, pp. 9-44. 

Sutton, R. S. (1989). Implementation details of the TD(λ) procedure for the case of vector predictions 
and Backpropogation. GTE Laboratories Technical Note: TN87-509.1. 

Sutton, R. S. & Barto, A. G. (2004). Reinforcement Learning: An Introduction, MIT Press,  ISBN, 
Cambridge, MA. 

Tettey, T. & Marwala, T. (2006). Neuro-fuzzy modeling and fuzzy rule extraction applied to 
conflict management, Lecture Notes in Computer Science, Volume 4234, pp. 1087-
1094. 

Teweldemedhin, E., Marwala, T. & Mueller, C. (2004). Agent-based modelling: A case study 
in HIV epidemic, Proceedings of the IEEE 4th International Conference in Hybrid 
Intelligent Systems, Japan, pp. 154-159. 

van Aardt, B. & Marwala, T. (2005). A study in a hybrid centralised-swarm agent 
community, Proceedings of the IEEE 3rd International Conference on Computational 
Cybernetics, Mauritius, pp. 169-174.  

Vilakazi, B. & Marwala, T. (2007). Agent and multi-agent system and its application to 
condition monitoring, Proceedings of the IEEE International Conference on Systems, 
Man and Cybernetics, Montreal, Canada, pp. 644-649. 

www.intechopen.com



Multiagent Systems

Edited by Salman Ahmed and Mohd Noh Karsiti

ISBN 978-3-902613-51-6

Hard cover, 426 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents an overview of some of the research issues in the

field of multi agents. It is a presentation of a combination of different research issues which are pursued by

researchers in the domain of multi agent systems as they are one of the best ways to understand and model

human societies and behaviours. In fact, such systems are the systems of the future.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tshilidzi Marwala and Evan Hurwitz (2009). A Multi-Agent Approach to Bluffing, Multiagent Systems, Salman

Ahmed and Mohd Noh Karsiti (Ed.), ISBN: 978-3-902613-51-6, InTech, Available from:

http://www.intechopen.com/books/multiagent_systems/a_multi-agent_approach_to_bluffing



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


