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Abstract

Plasmids are circular deoxyribonucleic acid (DNA) vectors that can be used as vac-
cines to prevent various types of diseases. These plasmids are DNA platforms that are 
usually composed of a viral promoter gene, a gene coding resistance to antibiotics, a 
bacterial origin of replication gene and a multiple cloning site (MCS) for a transgenic 
region, where one or several genes of antigenic interest can be inserted. Immunization 
with these recombinant vectors allows intracellular expression of the encoded antigens 
by molecular and cellular machinery of transfected cells, stimulating an antigen-specific 
immune response. This process provides an effective protection against diverse types of 
pathogens, tumor cells and even allergy and autoimmune diseases. Protective efficacy is 
achieved by the induction of a strong humoral and cellular immune response dependent 
on B and T cells. The immunity induced by these DNA vaccines, added to the ease of 
production, administration, genetic stability, and safety, has transformed plasmid-based 
immunization into a safe strategy in prevention of various diseases.

Keywords: antigen, recombinant plasmids, vaccines, infectious diseases, 
immunotherapy

1. Introduction

Vaccination practices have made an enormous contribution to human and animal well-being, 

becoming one of the greatest cost-benefit achievements in global health. Since its implemen-

tation, vaccines have managed to eradicate two important diseases in humans and animals: 

smallpox and rinderpest, and have successfully prevented a wide variety of infectious dis-

eases: polio, diphtheria, measles, and hepatitis, thus saving the lives of millions of people 

every year [1, 2].

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The vaccination process consists of administering an infectious agent modified to a point 
where it cannot cause damage or disease but allows the induction of a specific immune 
response and the development of an immune memory to provide protection against agent 

inoculated. The same effect may be attained inoculating a part of this agent. Contact between 
the immune system and the infectious agent’s antigens allows the stimulation of this sys-

tem, activating a specific protective immune response which leads to the prevention of the 
disease in the vaccinated host. Successful results have been obtained using vaccines based 

on live or dead attenuated microorganisms (such as smallpox or yellow fever vaccines, or 
bacterial bacillus Calmette-Guérin strains), or vaccines composed by parts of pathogenic 
agents: toxoids (such as vaccines against diphtheria or tetanus), protein subunits, or poly-

saccharide conjugates (such as vaccines against pneumococcus, Haemophilus influenzae type 

B or meningococcus) [1–3]. Recently, it has been possible to develop DNA vaccines, also 

called genetic vaccines, through advances in genetics and molecular biology. This method 

of vaccination is based on the immunization with naked recombinant plasmids, coding one 

or more antigens derived from infectious agents or tumor cells, which are administered 

directly into the tissues, generating an antigen-specific antibody response and cell-medi-
ated immunity, conferring protection against the antigens of interest. These recombinant 

plasmids can be intradermal or intramuscularly introduced or can be also nasally or orally 

administrated. In these tissues or anatomical regions, plasmids transfect resident cells and 

use the cellular machinery to express the encoded antigens, stimulating the host’s immune 

response [4].

DNA vaccination offers a series of advantages, including their ability to stimulate the 
innate and adaptive immune responses. Innate immunity can be activated by recognition 

of the double-stranded DNA (dsDNA) of the plasmid backbone, while adaptive responses 

involve antigen processing and presentation in class I or class II major histocompatibility 

complex molecules (MHC-I or MHC-II) to CD8+ and CD4+ T cells, respectively. Another 

advantage of DNA vaccines is their safety because the plasmid DNA is stable in biological 

systems and avoids using whole infectious organisms. Additionally, the ease of manu-

facturing these vaccines on a large scale makes them more attractive vaccine candidates. 
These advantages make DNA vaccination an attractive and novel strategy to apply in 
human and veterinary medicine, capable of providing effective protection against vari-
ous infectious agents of viral, bacterial, or parasitic origin. DNA immunization is also 

effective in eliminating tumor cells and protect against allergic and autoimmune diseases 
through immunotherapy [5, 6]. Furthermore, the optimization of their design, which 

increases immunogenicity and specificity of antigen delivery, has diversified its applica-

tions [7, 8]. Two DNA vaccines against viral diseases have been licensed for horses and 

fish, one against melanoma in dogs and one growth hormone releasing hormone (GHRH) 
product for swine [4]. Various clinical trials are being conducted for their application in 

humans. Promising results made DNA vaccines a biotechnological product that entered 

the veterinary market already, and it is hoped that soon there will be an effective and safe 
product for the prevention of human diseases.
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2. Plasmid-based DNA vaccine design and construction

DNA vaccines are designed using expression plasmids that are safe for both humans and 

animals. Expression plasmids are also easily produced on a commercial scale. These vectors 

are characterized by containing an expression/transcription unit which allows expression of 

a transgene and a production unit or backbone of the plasmid (Figure 1) [4, 9]. Expression 

units are constituted by promoter/enhancer sequences which are usually of viral origin (cyto-

megalovirus (CMV), Rous sarcoma virus (RSV) or simian virus (SV) 40 promoters). These 

sequences regulate antigen expression in various target tissues (high diversity of mammalian 

cells). This sequence is followed by a MCS or polylinker, corresponding to a short segment 

containing many restriction sites (sequences that can be cut by restriction enzymes), where 

the transgene is inserted. Transgenes are found in regions capable of encoding multiple pro-

teins in a single construct, an important advantage presented by DNA vaccines when com-

pared to other platforms. Recombinant plasmids can incorporate several antigens, including 

sequences with adjuvant activity that increase DNA vaccine efficiency and the amplitude of 
induced immune responses. Finally, there is the termination sequence called poly-adenyl-

ation (poly-A), which is essential for gene expression because it stabilizes the translation of 

mRNA (alternatively, many vectors contain a bovine growth hormone (BGH) poly-adenyl-
ation signal). On the other hand, the production unit or backbone of the plasmid is composed 

of all bacterial sequences necessary for plasmid amplification and selection. That is, they have 

Figure 1. Hypothetical structure of a plasmid-based DNA vaccine encoding of A-B fusion protein. Design of this plasmid 

is based on Kutzler & Weiner [4] and the commercial pVAX1 vector (Invitrogen, Thermo fisher scientific).
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a bacterial replication origin, which usually correspond to a replication origin of Escherichia 

coli, the main bacterial species used for plasmid amplification; antibiotic resistance genes (e.g., 
resistance to Kanamycin, KmR) used for the selection of bacteria transformed with recombi-

nant plasmids in culture media with antibiotic (Figure 1). In addition, recombinant plasmid 

replication may also have a replication origin of mammalian, which facilitates replication in 

animal cells, prolonging the antigen persistence and expression in host cells [9, 10]. Examples 

of available commercial plasmids approved for clinical use include pVAX1 and pcDNA3.1 

vectors (Invitrogen, Thermo Fisher Scientific).

Design of antigenic gene is fundamental to optimize the expression and induction of protec-

tive immune response. This design usually incorporates codon optimization to minimize the 

presence of rare codons and to reduce the formation of secondary structures in the mRNA 

sequences, preventing translation process inhibition of antigenic proteins. In addition, expres-

sion of antigens in transfected eukaryotic cells can be optimized by adding a Kozak consensus 

sequence responsible for mRNA recognition by eukaryotic ribosomes. Another fundamental 

variable for cloning antigenic sequences in the plasmid requires that the 5′ and 3′ ends of these 
sequences possess sites for restriction enzymes (Figures 1 and 2). DNA vaccines versatility 

allows the incorporation of sequences encoding one or several antigens, as well as immune-

dominant epitopes for MHC-I and MHC-II molecules, which enhances antigen recognition 

and adaptive immunity activation. The efficiency of DNA vaccines can also be improved if  

Figure 2. Gel electrophoresis of two DNA vaccines based on the pVAX1 commercial plasmid. These vaccines are 
digested with BamHI and XhoI restriction enzymes. Lane 1: Molecular weight marker (1 kb); lane 2: pVAX1 (3000 bp); 
lane 3: pVAX1 encoding of a gene (570 bp); lane 4: pVAX1 encoding of B gene (370 bp); lane 5: molecular weight marker 
(100 bp) [17].
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co-stimulatory molecules (cytokines, chemokines, or ligands for toll-like receptors (TLR), 

such as sequences rich in unmethylated cytosine-phosphate-guanine (CpG) [TLR9 ligand] or 
double-stranded RNA [TLR3 ligand]) are included in the vaccine plasmid [9–16].

After recombinant plasmids are designed and constructed, they are introduced into bacteria 

using electroporation (electric pulses) or chemical transformation (calcium chloride) methods. 

Transformed bacteria, usually E. coli, are cultured until reaching their logarithmic growth 

phase, allowing the production of multiple copies of the recombinant plasmid. Subsequently, 

the plasmids are extracted from these bacteria, avoiding contamination with lipopolysac-

charide (LPS), a component of the E. coli outer membrane, which is pro-inflammatory and 
whose administration can produce adverse reactions in individuals vaccinated with this DNA 

[18]. DNA concentrations obtained are adjusted in physiological saline or phosphate buffered 
saline (PBS) and stored. Because DNA is a stable molecule, it does not require the use of cold 

chains, facilitating easier storage and distribution. These are additional advantages of DNA 

vaccines, which are described in Table 1.

3. Cellular mechanisms induced by plasmid immunization

Cellular mechanisms which generate protective immunity against antigenic proteins through 

immunization with DNA vaccines are being elucidated. Following intradermal, subcutane-

ous, intravenous, oral, intranasal, or intramuscular plasmid administration, the plasmids 

transfect resident cells in these tissues or anatomical regions, which are mainly professional 

Qualities Description

Immunogenicity DNA vaccines have the ability to induce a specific humoral immune response associated 
to antibody production and a cellular immune response associated to CD4 and CD8 T cells 

against antigens encoded in the plasmids.

Administration Intramuscular, electroporation, gene gun, ultrasound, transcutaneous micro-needle, skin 

abrasion, tattoo perforating needle, jet-injector, or topical patch.

Safety DNA vaccines are safe since they can revert to virulent forms, due to the absence of 

pathogens. In addition, several early clinical trials have proved their safety, being well 

tolerated in humans. Adaptive immune responses against the plasmid do not occur.

Adjuvanticity Double-stranded DNA is recognized by intracellular sensors such as TLR9, AIM2, STING 
and TBK1, which activate signaling cascades required for the activation of innate and 

adaptive immunity.

Stability They are more resilient to temperature.

Economy Rapid production and formulation, being highly cost-effective.

Adaptability DNA vaccines can encode one or more antigens (fusion proteins) from one or more 

pathogens or tumor cells. In addition, they can code multi-epitopes.

Storage and mobility Neither requires cold chains, nor special transport conditions.

Table 1. Advantages of plasmid-based DNA vaccines.
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antigen presenting cells (APCs, which include dendritic cells, macrophages, and B cells) but 

also non-APCs. Antigens encoded in the recombinant plasmids are expressed by host cellular 

machinery, inducing an antigen-specific immune response. It has been demonstrated that 
plasmids administered orally are transfected by the intestinal epithelial cells (IECs), while in 

intradermal or subcutaneous administration, plasmids target are skin keratinocytes, fibro-

blasts and Langerhans cells. Langerhans cells are main APCs of skin, which participate in 

antigen internalization and migrate to lymph nodes, where they present the antigens to T and 

B cells. This dermal administration route usually produces a humoral immune response with 

the production of immunoglobulin A (IgA) and G1 (IgG1). On the other hand, in intramuscu-

lar administration, the main immunization routes with DNA are myocytes and APCs, which 

capture the recombinant plasmids. This route of administration usually induces a cellular 

response with the activation of cytotoxic CD8+ T and CD4+ T helper type 1 cells [19, 20].

Inside transfected cells, genes encoded in the plasmids are transcribed to mRNA and then 

translated into proteins. These proteins are processed as peptides by the ubiquitin/protea-

somes system and transported by TAP molecules to the endoplasmic reticulum (ER), where 

they are assembled into MHC class I molecules. MHC-I/peptides complexes are presented on 

cell surfaces of APCs or non-APCs for recognition by CD8+ T cells. In addition, many of these 

proteins can be released from transfected cells, being captured, endocytosed and presented 

by MHC class II molecules expressed by APCs to T CD4+ cells. In parallel, antigen-loaded 

APCs travel to the lymph nodes where they present MHC/peptides complexes to T naive 

cells. Soon thereafter, they activate, expand and differentiate CD4+ and CD8+ T cells to various 

effector phenotypes. In this microenvironment, T cell activation promotes cytokine secretion, 
along with the release of soluble antigens, activating and differentiating B cells toward plasma 
cells that produce antigen-specific antibodies. Furthermore, the expression of antigens bound 
to MHC-I by transfected myocytes activates the cytotoxic functions of CD8+ T cells, causing 

the release of more antigens [4, 7, 16].

Prior to the activation of the aforementioned adaptive immunity, immunizations with these 

recombinant plasmids induce the activation of innate immunity. This activation occurs 

because plasmids are elements of dsDNA of bacterial origin that acts as pathogen-associated 

molecular pattern molecules (PAMPs), which can be recognized by pattern recognition recep-

tors (PRRs) such as Toll-9 type receptors (TLR9). TLR9 is a receptor which is highly expressed 

in APCs endosomes. Recognition of plasmids by TLR9 triggers signaling by myeloid differ-

entiation factor 88 (MyD88). This factor, in turn, induces the activation of the interleukin-1 

receptor-associated kinase (IRAK) and the tumor necrosis factor receptor-associated factor 

(TRAF), which activate mitogen-activated protein kinases (MAPKs) and the nuclear factor 

(NF)-κB (NF-κB). The latter are the elements responsible for the transcription of IFN type I 
and various pro-inflammatory cytokines which promote cell recruitment, giving way to adap-

tive immunity activation (activation of T and B cells). In addition, other intracellular sensors 

for the dsDNA have been reported: stimulator of IFN genes (STING), TANK binding kinase 
1 (TBK1) and absent in melanoma 2 (AIM2) proteins. Signaling by STING/TBK1 directs the 
phosphorylation of interferon regulatory factors (IRF) 3 and 7, activating IFN type I produc-

tion, while AIM2 receptor activates the inflammasome and the release of biologically active 
interleukin-1β (IL-1β) [9, 11–13]. These receptors recognize the plasmid backbone, which has 
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an adjuvant effect that induces the production of IFN type I, which is critical for the induction 
of an innate and adaptive immune response.

Therefore, understanding the intracellular recognition of plasmid DNA and the identification 
of its receptors has allowed for improving the effectiveness of immune response induced by 
DNA vaccines. Furthermore, the flexibility of these vaccines allows them to be administered 
in conjunction with co-stimulatory molecules, cytokines, chemokines, or ligands for intracel-

lular receptors such as TLRs, for instance, the CpG (TLR9) and double-stranded RNA (TLR3) 
motifs, or the intracellular receptors AIM2, SINTG, or TBK1, whose signaling cascades pro-

mote the activation of innate immunity, giving way to adaptive immunity activation. This 

knowledge, together with the improvements in the targeting of the plasmids to the appropri-

ate APCs, the strategies of ‘Prime-Boost’ (immunization of DNA followed by protein antigen), 

and the methods of administration (Table 1), will allow to improve the immunogenicity of 

these vaccines, protecting the host against the challenges represented by diseases caused by 

pathogens and tumor cells.

4. DNA vaccines used to prevent infectious diseases

Vaccination has helped control the spread of many infectious diseases: polio, diphtheria, mea-

sles, hepatitis B, mumps, whooping cough, pneumonia, rotavirus diarrhea, rubella, and teta-

nus [21]. Protection conferred by vaccination has managed to prevent diseases, disabilities, 

and the death of millions of people each year. Although the implementation of immunization 

plans has been very successful in various regions of the world, there are still enormous chal-

lenges in the field of vaccinology. Because, in each phylogenetic group (virus, bacteria, or par-

asites), there are numerous pathogens capable of producing high mortality rates, for example, 

human immunodeficiency virus (HIV/causal agent of acquired immune deficiency syndrome 
[AIDS]), Mycobacterium tuberculosis (tuberculosis) and the protozoan Plasmodium (malaria), 

alone are capable of causing the death of approximately 4 million people each year in the 

world [22]. Currently, there are no effective vaccines against many pathogenic microorgan-

isms, and therefore, the diseases produced by them can be disseminated directly or indirectly 

from one individual to another, producing outbreaks and epidemics with high mortality rates 

in several regions in the world.

In the search for new strategies to prevent infectious diseases, immunization with plasmid-

based DNA vaccines was introduced in the clinical field at the beginning of the nineties. Several 
DNA vaccines have been developed to fight against viral, bacterial, and parasitic diseases. 
The DNA vaccination against viruses, obligate intracellular pathogens and highly specialized 

in sequestering molecular mechanisms of their host cells in order to replicate themselves, has 

been evaluated. These vaccines were shown to be able to induce an antibody response against 

several pathogens: herpes simplex, hepatitis B, HIV, and influenza [23–26]. However, to suc-

cessfully eliminate infection by many of these pathogens, coordination of multiple effector 
mechanisms of innate immunity and adaptive immunity is required. These defensive mecha-

nisms involve viral neutralization by antibodies produced by plasma cells but also involve 

the cytolytic activity (perforin/granzyme, Fas ligand, and tumor necrosis factor α [TNF-α]) of 
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CD8+ T cells for the elimination of infected cells and the production of IFN-γ to inhibit viral 
replication [27]. These DNA vaccines have also been tested as immune therapy for human 

papilloma virus, hepatitis C virus, Rabies virus, Filovirus, Flavivirus, and Bunyavirus [28–33]. 

These preclinical and clinical trials have shown the efficacy of DNA vaccines against various 
viral pathogens, being safe and well tolerated in humans. Success achieved through immu-

nization with DNA vaccines has allowed the licensing of two vaccines to prevent diseases 

caused by viruses. These vaccines correspond to West Nile Innovator products developed by 
the Center for Disease Control and Prevention and the Fort Dodge Laboratories (USA, 2005), 

to protect horses from the West Nile virus and the Apex-IHN vaccine produced by Novartis 
(Canada, 2005) to protect salmon from the infectious hematopoietic necrosis virus [4].

With regard to the prevention of bacterial diseases, only a limited number of vaccines are 
available against a small number of pathogens. In addition, most of these vaccines do not 

confer complete protection against these pathogens. Vaccine designs depend on the bacte-

rial pathogen lifestyle, which requires that immunization induce a specific type of immune 
response. Infections by intracellular bacteria are predominantly controlled by a cellular 

response dependent on macrophages, natural killer (NK) cells, Th1 type CD4+ T cells, and 

cytotoxic CD8+ T cells. Infection control of extracellular bacteria requires neutralization of 

these pathogens, activating a humoral response dependent on the complement system, B cells 

and plasma cells which produce antibodies [27]. Bacterial complexity requires the develop-

ment of specific humoral and cellular immune response against different structural proteins, 
toxins, or capsular sugars. The relevance of microbial antigenic epitopes to obtain an effective 
response is the key to progress in the development of DNA vaccines. Therefore, DNA vac-

cines are good candidates for the prophylaxis of intracellular and extracellular pathogens 

due to their ability to induce humoral and cellular immune responses. Their efficacy has been 
evaluated against intra- and extracellular bacteria such as Brucella abortus, Vibrio anguillarum, 

Edwardsiella tarda, Helicobacter pylori, or Mycobacterium tuberculosis [34–39].

The development of DNA vaccines to fight against parasitic diseases is an emerging field. 
Nevertheless, numerous challenges are involved including identification of suitable antigens 
due to the complexity of parasite life cycles and their antigenic variability. Some parasites such 

as Plasmodium and Giardia have the ability to vary their antigens during certain stages of devel-

opment, while others such as Plasmodium, Leishmania, or Toxoplasma have developed various 

mechanisms to escape surveillance of the host’s immune system [40]. Nevertheless, to prevent 

disease by these pathogens, DNA vaccines are a platform that allows integrating various anti-

gens present in different life-cycle stages, or antigens of different subspecies of the parasite, 
simultaneously. This property of DNA vaccines is essential for the design of effective vac-

cinations against diseases such as trypanosomiasis (variety of Trypanosoma cruzi subspecies), 

malaria (Plasmodium spp.), leishmaniasis (Leishmania), or schistosomiasis (Schistosoma), which 

present different life-cycle stages inside the host and kill millions of people every year [41–44].

5. DNA vaccines against tumor cells

Cancer is one of the leading causes of death in the world. Finding effective therapies to com-

bat cancer has been one of the main objectives, since standard treatments such as surgery, 
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radiation, and chemotherapy have had limited success. These therapies are usually effective 
in early stages but rarely effective in the late stages. Tumor cells may lose the capacity to stim-

ulate or be detected by immune system cells, since they acquire phenotypic modifications. 
These modifications include the loss of the expression of MHC class I and/or class II mol-
ecules, or their ability to process and present antigens due to modifications in the exogenous 
and endogenous pathways which activate CD4+ and CD8+ T cells, respectively [9]. In addi-

tion, tumor cells exhibit a great heterogeneity of mechanisms to evade immune responses, 

including the recruitment of regulatory cells (regulatory T cells, myeloid-derived suppres-

sion cells, and type 2 macrophages), production of suppressors [interleukin-10 (IL-10), and 

transforming growth factor-β (TGF-β)], and the expression of inhibitory molecules [cytotoxic 
T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene (LAG-3), and pro-

grammed cell death-1 (PD-1)], which leads to T cell suppression [45–50]. This immune toler-

ance induced by tumor cells successfully manages to evade host immune responses, which 

represents a challenge, but at the same time, their understanding is a path to the development 

of effective immunotherapy against cancer.

The ability of the immune system to distinguish between normal and malignant cells is essen-

tial for the development of effective immunotherapy. The main cells that play a key role in 
the elimination of tumor cells are innate immunity cells such as NK cells, natural killer T 

(NKT) cells, macrophages, dendritic cells, and adaptive immunity cells such as helper type 1 

CD4+ T cells and CD8+ T cells [27]. Tumor cells express a variety of antigens with potential to 

produce a tumor-specific immune response. Application of DNA vaccines as a new and novel 
therapeutic strategy to combat tumor cells has arisen from this property. These vaccines have 

been developed thanks to the identification of tumor-associated antigens (TAA). These TAAs 
are expressed in tumor tissues under the control of oncogenes or have been differentiated 
during cancer development. Many of these antigens are shared among tumors, while others 

are unique to each tumor [51]. Because some of the TAA are expressed in normal tissues, they 

hinder the direction of the immune response induced by vaccines, and can generate adverse 

side effects associated with autoimmune sequelae.

Since the effector responses of T cells against several of these TAAs can be diminished by 
central tolerance, which reduces the ability to kill tumor cells due to the preexisting tumor 

suppressor microenvironment, some of these DNA vaccines are designed to express tumor 

antigens which are fused to co-stimulator and/or cytokine [granulocyte macrophage colony 

stimulating factor (GM-CSF) or interleukin-2 (IL-2)] proteins, for the recruitment and activa-

tion of dendritic cells [14–16, 51]. Therefore, cancer DNA vaccines combine the best tumor 

antigens with the most effective immunotherapeutic agents. In addition, the antigen choice 
involves characteristics associated with therapeutic function, immunogenicity, antigen roles in 

tumors, specificity, expression level and percentage of antigen-positive cells, stem cell expres-

sion, number of patients with cancers with positive antigen, number of antigenic epitopes, 

and cellular localization of antigen expression [52]. These efforts have represented the logical 
steps for the development of DNA vaccines against cancer, and whose advances have allowed 

the development of numerous preclinical and clinical trials (phases I and II) against various 

types of cancer: lymphomas, melanomas, cervical, breast, kidney, and prostate [51, 52]. The 

success of these cancer DNA vaccines is reflected by the Canine Melanoma Vaccine, product 
developed by Merial, Memorial Sloan-Kettering Cancer Center and The New York Animal 
Medical Center (USA, 2007), a licensed DNA vaccine used to protect dogs from melanoma [4].
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6. Conclusions

Plasmid-based DNA vaccines are a novel, economic, and effective strategy which induces 
antigen-specific immunity capable of conferring effective protection against various infec-

tious diseases and tumor cells. Its applications are diverse because plasmids are versatile plat-

forms in which one or several antigens can be incorporated, that allow inducing an innate and 

adaptive humoral and cellular-type immune response. In addition, their handling, design, 

and construction are relatively easy to perform. The success of these vaccines has been dem-

onstrated by the number of clinical trials conducted in humans, and by DNA vaccines already 

licensed in the field of infectious diseases and cancer immunotherapy in the veterinary field. 
Although there are still many challenges in developing a vaccine for humans, the improve-

ments in design, methods of DNA administration and delivery, associated with new technol-

ogy, bring us closer to achieving this goal every day. Finally, although immunization with 

DNA is a successful strategy, its advantages must be evaluated case by case and its applicabil-

ity depends on the nature of the agent to be immunized, the nature of the antigen and the type 

of immune response required to achieve effective protection.
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