
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

Scalable Coordination Mechanism to Maintain
Throughput of Dynamic Multiagent Networks

Rajesh Gautam1 and Kazuo Miyashita2

1DInSys Technologies,
2AIST,
1India,
2Japan

1. Introduction

Many real-world systems are a manifestation of queuing networks. The queueing theory

(Allen 1990) has addressed analysis and control of such networks in a steady state.

Nevertheless, to understand and control their dynamic behavior in unstable situations is

considered critically important for realizing smooth operations of today’s complicated

network systems. Transportation, communication and manufacturing are typical examples

of such large networks, for which uninterrupted and stable operations are highly required.

Influences of failures propagate unexpectedly in a complex network system. Network

systems have multiple resources (i.e. nodes) that collectively perform tasks that are not

atomic but rather comprise a set of steps to be accomplished in a specific sequence by

different resources. As each resource of network is involved in intricate interactions with

other resources, even a small failure at a single resource can make ripple effects and damage

operations of the entire network. Heavy traffic jams in a transportation network and large-

scale blackouts in a power-transmission network are typical outcomes of such cascading

phenomena. Therefore, a robust method for controlling behaviors of the network to avert

catastrophe caused by failures and maintain smooth operations is of keen interest among

many researchers (Barabási 2002).

Manufacturing processes are examples of such networks which have become increasingly
complex over time. Due to globalization of economy, manufacturing industry has also
become very competitive and has to face new challenges. In addition to the persistent
challenge of reducing manufacturing costs, same manufacturing infrastructure is utilized to
simultaneously produce numerous customized products which have aggressive time to
market and short life cycles. Simultaneously, in order to avoid technological obsolescence
and remain competitive, parts of manufacturing infrastructure constantly get modified
which adds to the volatility of manufacturing process. In such large, complex and dynamic
systems, unexpected failures can have unanticipated effect throughout the system. Because
of the size and complexity of problem, analysis and provisioning of preventive measures for
the huge number of possible conditions is not possible during the planning phase. To
maintain desired performance of such time-critical systems in the face of unexpected
failures, developing robust control mechanisms is an active area of research. As a O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Multiagent Systems, Book edited by: Salman Ahmed and Mohd Noh Karsiti,
 ISBN 978-3-902613-51-6, pp. 426, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Multiagent Systems

130

benchmark for controlling large-scale network systems, we have used the semiconductor
manufacturing process which is among the most complicated and capital-intensive
manufacturing processes in the world.
Semiconductor fabrication processes (fabs) consist of complex sequence of process steps,
with the number of operations typically in hundreds and lead times extending over a couple
of months (Pfund et al., 2006). The various steps of sequence are to be processed at different
workstations in a given order. The process routes contain numerous cycles and fab produces
a diversity of products (having different process routes) simultaneously which result in
complex flow of jobs through the system. The capital cost to build and equip a
semiconductor fabrication facility runs into billions of (US) dollars1. This requires the
manufacturer to utilize every opportunity to increase the utilization and throughput of fab in
order to maximize the return on investment (RoI). Besides increasing the throughput of
manufacturing system, another objective of manufacturers is to simultaneously minimize
the leadtime of jobs. With shorter leadtimes, a manufacturer can meet the dynamic customer
orders more quickly and be more responsive to the market by reducing the time to market
for new products. Furthermore, the fierce competition in the global market place and short
technology life cycles require manufactures in the semiconductor industry to always deploy
state-of-the-art manufacturing technologies. It causes their manufacturing processes to be
unstable and unpredictable because they most of the time operate in the early part of the
experience curves of manufacturing.
In queueing theory, Little’s Law (Little 1961) states that the expected inventory of work in
process (WIP) equals the average lead time multiplied by the average throughput.
Therefore, with a fixed throughput, reducing the lead time requires WIP to be reduced.
However, with a variable and unpredictable manufacturing environment, it is difficult to
achieve the desired performance. The network systems usually have multiple and
overlapping flows of tasks. When a failure occurs at a resource in the system, the flows
using that resource are blocked in the middle and their tasks are delayed. As a result,
workloads from the failed resource and downstream resources of its tasks are reduced
during the failure and throughput of the affected tasks decreases. After recovery of the
failure, for restoring throughput of the affected tasks, downstream resources of the failed
resource must process excess flows of these tasks. If those resources should also process
other tasks that are not affected by the failure as usual, the resources get congested and
deteriorate throughput of those tasks as well. Besides degrading the throughput, the failure
causes the lots to be held up for longer duration in the queues which adds up to their
leadtimes of completed lots.

1.1 Conventional control approaches
In a manufacturing system, because of connectivity of the steps to be processed, even if a
system might have many overcapacity resources, final throughput of system is limited by
the resource that has the smallest capacity (called a bottleneck). Maximizing throughput of
system therefore means keeping maximum utilization of the bottleneck resource. High
utilization of the bottleneck resource is ensured by maintaining a sufficient amount of jobs
before it as a safety buffer against random events that might cause its starvation. Hence, to
improve the tradeoff between leadtime and throughput of a manufacturing system, several

1 http://www.icknowledge.com/economics/fab costs.html

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

131

methods have been developed to regulate WIP at the lowest safe level that prevents
starvation of bottleneck machines (Fowleret al., 2002). However, those methods subsume
that the bottleneck machines in system are identifiable by preliminary static analyses of
problem and do not evolve over time. However, in the course of manufacturing, bottleneck
machines might shift temporarily because of unexpected random events such as machine
failures that disturb the smooth flow of jobs. This phenomenon is called wandering
bottlenecks. Most existing solutions to the problem are rather philosophical and managerial
(such as Kaizen (Imai 1997) and Theory of Constraint (TOC) (Goldratt & Cox 1992) with a
few exceptions of identifying wandering bottlenecks (Roser et al., 2002).
To prevent starvation of bottleneck machines, lot release control to regulate workload in front
of bottleneck machines by controlling the entry of jobs in system (Glassey & Resende 1988)
has been widely used in practice. Nevertheless, it has achieved limited success because its
centralized decision-making mechanism at the job entry point cannot respond to the
dynamics of manufacturing systems (such as wandering bottlenecks). Rather than
controlling the job entry, it is desired that jobs are processed and requested dynamically by
every machine in system as to maintain a steady flow of jobs leading to the bottleneck
machines. The desired control (lot flow control) is possible only through coordinated
operations of machines. Centralized control of all machines shares the same weak point with
the lot release control (Miyashita et al., 2004). A decentralized coordination method is
required so that every machine decides its job request and job processing in harmony with
other machines as an intelligent agent.

1.2 Multiagent based coordination approaches
In a time-critical manufacturing environment, no machine (i.e., agent) can afford to search and
gather all necessary information of other machines for deciding its actions. Consequently,
many coordination techniques proposed in multiagent systems (Jennings et al., 2001,
Sandholm 1999, Faltings & Nguyen 2005, Durfee 1996) are inappropriate for our purpose. In a
stable and leveled manufacturing system, a pull control method (Liberopoulos & Dallery 2000),
in which an upstream machine starts processing a new task only when it receives a request
from its downstream machine, has been investigated and shown to be efficient. Just-In-Time
(JIT) (Ohno 1988) and CONWIP (Hopp & Spearman 2000) are the best-known examples of
such pull control methods. In JIT, a machine exchanges tokens (Kanban cards) between its
adjacent machines to control flows and amounts of WIP in the system. In fact, JIT and its
extensions such as CONWIP are instances of token-based coordination (Wagner et al., 2003, Xu
et al., 2005, Moyaux et al., 2003) and widely used in manufacturing and other related fields.
However, because of their simplicity, they cannot correspond smoothly to changes of the
environment such as demand fluctuations and machine failures. Hence, as a key of their
successful application, emphasis was put on eliminating such deviations, which are inherent
and inevitable in the semiconductor manufacturing process.
Although multiagent technology is an active area of research, its success in large
complicated systems such as semiconductor fabrication has been limited. Coordination
among agents is the cornerstone of distributed multiagent systems and new coordination
algorithms are constantly being developed. The sophisticated coordination algorithms that
require extensive interaction among large number of agents for making globally optimal
decisions cannot work for large complex networks due to high messaging and computations
requirements. On the other hand, the coordination algorithms which use simple interactions
between small number of agents are although scalable, their efficiency is poor and the

www.intechopen.com

 Multiagent Systems

132

resulting emergent system behavior can deviate greatly from desired behavior. Although
multiagent framework suits well to the distributed nature of manufacturing systems, it is
still a challenge to develop autonomous and distributed manufacturing control which is
robust against unpredictable failures and achieves desired global optimization from today’s
dynamic manufacturing systems.
We view a manufacturing system as a network of agents that are in charge of processing
specific steps of products. Thus each agent represents a machine and its buffers in the
manufacturing system. In the manufacturing system, routing of tasks is partially fixed at a
product design phase, but dispatching of tasks can be fully and dynamically controlled
during manufacturing process. We have proposed an extension of the token-
basedcoordination method: Coordination for Avoiding Bottleneck Starvation (CABS) for
improving a tradeoff between leadtime and throughput in a large-scale and uncertain
network system (Gautam & Miyashita 2007a, Gautam & Miyashita 2007b). In CABS, agents
coordinate with other agents to maintain the adequate flow of jobs to satisfy the various
demands by preventing starvation of bottleneck agents. That coordination is achieved by
efficient passing of messages in the system. The message includes information that enables
agents to identify the bottleneck agents and hence coordinate with other agents to maintain
desired flow of jobs to the bottleneck agents.
In this paper, we show that CABS can be effectively applied to the production control of the
semiconductor fabrication process. In Section 2, we explain a generic manufacturing
problem and the details of coordination algorithms in CABS. Section 3 illustrates how CABS
compensates for production loss caused by machine failures using a simulation result of a
single failure scenario. Section 4 explains the distributed deadlock avoidance mechanism of
CABS. Section 5 empirically validates that CABS succeeds to achieve desired throughput
with shorter leadtime than a wellknown conventional manufacturing control method,
CONWIP. Finally, Section 6 concludes the paper.

2. Coordination mechanisms in CABS

Fig. 1. Agent interactions in CABS

In this section, we first describe a general model of manufacturing problem and then
introduce the coordination method developed for mitigating the affect of failures and
maintaining throughput of network. In CABS actions of agents are coordinated using the
messages transmitted among agents. As shown in Figure 1, an agent uses requirement
information in the incoming messages from succeeding agents for making task processing
decisions and for generating messages to send to its preceding agents.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

133

2.1 Problem definition
The manufacturing problem requires processing a set of jobs J = {J1, ..., Jn} by a set of
workstations, which are modeled as agents A = {A1, ...,Am} in this paper.
Each job Jl consists of a set of steps to be processed according to its process

routing that specifies precedence constraints among these steps. Lots of a job flow through
agents according to the job’s process route. Each agent Aj has identical pj machines to process

its tj tasks . Each job Jl has a demand rate drl, which is the number of lots of

Jl to be completed in one hour. Furthermore, when an agent Aj processes its task , it takes

a process time .

A task of the agent corresponds to a step in the jobs. Hence, precedence constraints among
steps in jobs create a complicated directional network of agents. Presume an agent Aj ’s task

 is a step . A preceding agent of the agent Aj in terms of the task , Apre(j,q), is in charge

of a step −1 and a succeeding agent of Aj , Asuc(j,q), processes a step +1.

In addition to the agents that model the workstations, two types of synthetic agents exist.
One is a sink-agent for each kind of job, which receives the completed lots from the last agent
of the job’s process route. Another synthetic agent, a source-agent, releases every job in the
system by transferring it to the agent processing the first step of the job.

2.2 Action selection

www.intechopen.com

 Multiagent Systems

134

CABS utilizes token-based coordination so that an agent selects its lot-processing actions
based on requirements from its succeeding agents in the process flow. Thus, CABS realizes a
pull mechanism like a JIT system that does not process jobs until they are “pulled” by
downstream agents.

Each agent Aj periodically receives a requirement for processing a task from a

corresponding succeeding agent Asuc(j,q). The requirement consists of the following three
types of information (detailed definitions will be given later in Section 2.3):
1. time limit: time by which agent Asuc(j,q) needs another lot for the next step of the task

.

2. request rate: rate at which agent Asuc(j,q) needs the lots for the next step of the task

, starting at time limit.

3. criticality: criticality of the agent Asuc(j,q).

In addition to the requirement information from succeeding agents, for each task ∈ T j,

an agent Aj is assumed to have local information such as the demand rate, its current WIP
and the total number of lots it has already produced.
Agent Aj uses the requirement information from its succeeding agents for choosing the next
lot to process (i.e. dispatching) when any machine of the agent Aj becomes free. Algorithm 1
describes the dispatching algorithm for the agent Aj . It returns a task with the earliest time
limit whose dispatching will not delay any other task with higher criticality
beyond its time limit. In algorithms of the paper, im[].tl, im[].rr and im[].cr respectively
denote requirement information of time limit, request rate and criticality for
the corresponding tasks in the incoming messages of the agent. In addition, a task t1 delays

task t2 if processing t1 before t2 at current time (tcurr) delays the completion of t2 beyond its
time limit, im[t2].tl.

2.3 Message passing
Dispatching of agents in CABS is decided solely on requirements from succeeding agents.
Hence, information in the requirement is a key to coordination among agents.
An agent tries to meet the requirements of succeeding agents for all of its tasks. Aside from

meeting those requirements, the critical agents must also minimize their workload deficit at all

times for satisfying the demand rates of jobs. For example, Aj ’s workload of a single lot of

task is the time required to process it (i.e.,). Each agent has aggregated workloads of

all of its tasks based on the demand rates of jobs (i.e., drl). The difference between the

workloads and total processing time of tasks that have already been processed is the current

workload deficit of an agent.

An agent can recover its workload deficit by processing more lots of any task than the

corresponding demand rate. The time needed to recover the deficit depends on the amount

of deficit and surplus capacity available to agent. Algorithm 2 calculates an agent’s criticality

as a ratio of its workload deficit and available surplus capacity. In CABS, an agent with a

large criticality is considered a bottleneck agent. Dynamic change of an agent’s criticality

represents wandering of bottlenecks.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

135

To maintain a continuous lot flow of task to Asuc(j,i) at the requested rate im[i].rr, the agent

requires an incoming lot flow at same rate from the corresponding preceding agent Apre(j,i).
However, the agent itself might be critical and need the jobs earlier and at a higher rate in
order to recover its workload deficit. The agent requires jobs immediately and at the
maximum rate at which it can process to recover the deficit rapidly. Based on the
requirement from succeeding agent and its current workload deficit, the agent generates a

www.intechopen.com

 Multiagent Systems

136

consolidated outgoing requirement for its preceding agent. Algorithm 3 describes the

calculation of outgoing requirement messages by agent Aj . For each ∈ T j, a requirement

tuple (om[i].tl, om[i].rr, om[i].cr) is generated and sent to the preceding agent Apre(j,i).
The agents use criticality of incoming requirements to identify the location of current
bottlenecks in the system. If criticality of Asuc(j,i) is higher than that of Aj , it means that
Asuc(j,i) is more likely to be a bottleneck in the system. In such a case, Aj acts to recover the
deficit of Asuc(j,i) and generates the outgoing requirements based on the incoming
requirements from Asuc(j,i). The agent postpones time limit in the outgoing requirements
to the time when the current WIP is emptied (i.e., ST in Algorithm 3). This realizes lean
manufacturing, which is intended to reduce the amount of WIP and shorten leadtime.
Request rate is truncated only when the requested value is greater than the maximum
capacity of agent Aj.
The agent prioritizes recovering its workload deficit over satisfying the succeeding agent’s
requirement when agent Aj is more critical than Asuc(j,i). In order to recover its own deficit at
the earliest, Aj sends the time when its own WIP is used up as time limit and its
maximum production rate as request rate in requirements to its preceding agent. By
sending high request rate and short time limit to all the preceding agents, the
agent tries to expedite the production of all the available jobs for recovering the workload
deficit caused by delayed jobs.
As for criticality, agent Aj intends to pass the highest criticality along the process
route by choosing a higher value of itself and its succeeding agent. This enables the
preceding agents to identify a location of a current bottleneck in the system along the
process routes.
When an agent is in failure, it cannot process any job. Therefore, the agent during the failure
period stops requesting jobs to its preceding agents by sending the requirements
accordingly (i.e., setting time limit as ∞ and request rate as zero). Criticality
of the failed agent is set to zero so that preceding agents can avoid responding to the
requests from the failed agent.

3. Covering capacity loss caused by machine failures

In this section, we explain how CABS can cover the capacity loss of failed agents using a
simplified scenario of a single failure. A simulation system is developed to model a
manufacturing process with agents to test the proposed algorithms in CABS. The system is
built using SPADES (Riley & Riley 2003) middleware2, which is an agent-based discrete
event simulation environment. It provides libraries and APIs to build agents that interact
with the world by sending and receiving time-based events.

3.1 Test problem
For empirical validation, we used the Measurement and Improvement of Manufacturing
Capacity (MIMAC) testbed datasets of the wafer fabrication processes (Fowler & Robinson
1995) from Arizona State university33. The dataset specifies the production steps of
semiconductor manufacturing.

2 Available online at: http://spades-sim.sourceforge.net.
3 Available online at: http://www.was.asu.edu/˜masmlab/home.htm.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

137

Fig. 2. Process flows of test problem; 83 agents represent workstations and process 455 steps
of two types of products.

Table 1 shows the properties of the test problem we chose from the MIMAC datasets. It has
basic characteristics of a semiconductor manufacturing process such as lengthy process flow
with many repetitive reentrant loops and a couple of bottleneck workstations.

Table 1. Specification of test problem

In the experiments, we made the following assumptions to focus our investigative attentions
to the basic properties of CABS: (1) there is no variabilities in processing times of operations,

www.intechopen.com

 Multiagent Systems

138

(2) no setup time is considered, (3) operators are not considered in the model, (4) there is
neither product rework nor scrap, (5) stochastic machine failure is modeled using
exponential distribution, and (6) the demand rates are tuned to realize 87% resource
utilization for the most heavily loaded workstation in the steady state.
Figure 2, which depicts the process flows of products through the workstations in the test
problem, can be viewed as a “complex network” (Barab´asi 2002). Each node in the network
represents a workstation group, which may consist of multiple workstations. Three
workstation groups (i.e, No.67, 76 and 78) have average utilization which is higher than 80%
and can easily become bottlenecks when unexpected events occur in the manufacturing
process. It is noteworthy that, although the number of nodes in the network is moderate
(less than one hundred nodes), because they are connected with directional, weighed and
multiple links, analysis of the network’s behavior is far more intractable than that of
networks, which is a current research subject in the area of complex networks.

3.2 Single failure scenario
In this simplified scenario, a single failure occurs at time 50,000 and recovers at time 90,000
on an agent (Workstation group No.19 in Figure 2) that is processing only the 105th step of
Product2. To emphasize characteristic behaviors of CABS, we compared the results of CABS
with those of a benchmark system using a constant releasing rule and an EDD (i.e., the
earliest due date first) dispatching rule. The behaviors of CABS and the benchmark system
are shown in Figures 3 - 5 and Figures 6 - 8 in terms of finished product inventory,
production rate and WIP levels respectively. The failure duration is shown by the shaded
zone in the graphs.
We first explain the behavior of CABS in detail. During the failure, the flow of Product2 is
stopped after the failed agent and its production starts to drop (shown as concave lines of

Product2 in Figure 3 and Figure 4). Due to unavailability of Product2, the succeeding agents to

the failed agent begin to starve, and their workload deficit increases. Consequently, as
explained in Algorithm 2, criticality of those agents increases during the failure.
Among the succeeding agents, some agents are processing both Product1 and Product2. In
order to compensate for the shortage of Product2, these agents start to request Product1 early
at their maximum rate (see Algorithm 3: lines 10 - 11). This behavior of agents increases the
production rate and finished inventory of Product1 during the failure (see rising Product1

lines in Figure 3 and Figure 4).

Fig. 3. CABS: Finished Product Inventory

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

139

Fig. 4. CABS: Production Rate

In order to recover workload deficits, the agents pull both Product1 and Product2 at high rates

during the failure. But due to the failure, Product2 cannot be processed and its WIP is

accumulated as shown in Figure 5. When the failure is recovered, the agents increase

production rate of Product2 by utilizing the extraWIP accumulated during the failure (see

rising of Product2 lines after the failure recovery in Figure 4 and Figure 3). The production

rate of Product1 is reduced after the recovery to bring the finished inventory of both the

products to the desired demand level by time 130,000 (see Figure 4 and Figure 3). This is

achieved by the dispatching rule shown in Algorithm 1, which exploits time limit

information of different kinds of tasks to pick the next task for processing. Since Product1 is

produced in excess during the failure, time limit in the requirement from sink-agent of

Product1 rises during the failure. Time limit of Product2 remains low because of its deficit

from the demanded production.

Thus, by using the coordination mechanism of CABS, the agents are able to maintain their

utilization during failures by processing alternative tasks. This enables them to recover

throughput of failed tasks quickly by producing more of them after the resolution of

failures.

Fig. 5. CABS: WIP

www.intechopen.com

 Multiagent Systems

140

The benchmark system, on the other hand, does not handle failures with a special care. It
continues production of Product1 at the same demand rate during the failure (see Figure 7).
Thus, due to the suspension of the flow of Product2, the bottleneck agents suffer a capacity
loss and the system takes long time to recover the production shortage incurred during the
failure. The failure adversely affects production of Product1 as well. Since the EDD
dispatching rule tries to balance the deficit of both products, the finished inventory of
Product1 also drops after the resolution of failure (see Figure 6). Comparison of Figures 3 and
6 shows that the recovery to the desired product inventory level of both the products is
much slower (about at time 220,000) than CABS. More importantly, if the demand rates of
the products are higher (or the failure sustains longer), it is more likely that the benchmark
system cannot make up for the production loss caused by the failure permanently.

Fig. 6. Benchmark: Finished Product Inventory

Fig. 7. Benchmark: Production Rate

In the above experiments, we assumed no upper limitation of WIP size in the system. As a
result, in both CABS and the benchmark system, WIP was increased up to more than 90 lots
during the failure. In realistic manufacturing situations, WIP size should be suppressed
under certain level due to physical and economical reasons. Figures 9 - 11 show the
behaviors of CABS with a limited WIP size. In the experiment, we limit the total WIP size of
the system as 38 lots at its maximum. Figures 9 - 11 show that by limiting the WIP size CABS
still performs similarly to CABS with unlimited WIP size but takes more time to compensate

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

141

for the production loss caused by the failure. However, to be noted is that CABS with
limited WIP is still much faster to recover production loss (about at time 150,000) than the
benchmark system and the quick recovery of CABS requires less than half of WIP used in
the benchmark system (see Figure 11 and Figure 8).

Fig. 8. Benchmark: WIP

Fig. 9. CABS w/ limited WIP size: Finished Product Inventory

Fig. 10. CABS w/ limited WIP size: Production Rate

www.intechopen.com

 Multiagent Systems

142

Fig. 11. CABS w/ limited WIP size: WIP

4. Distributed deadlock avoidance

Unlike many other network systems, semiconductor fabrication processes are characterized

by existence of large number of re-entrant cycles in their process routes (Figure 2). Although

deadlocks can occur in other systems also due to limitation of buffers, semiconductor

fabrication processes are more prone to them due to large number of cycles. Deadlocks can

be of two types, permanent and transient deadlock. A permanent deadlock cannot be resolved

without external intervention, whereas a transient deadlock resolves itself over time

(Venkatesh & Smith 2005). The probability of having deadlocks increases when capacity of

buffers in system is reduced. As permanent bottlenecks bring the system to standstill, issue

of bottlenecks has to be addressed in order to have an autonomous system that can work

with limited buffer capacities. Because of the complexity of system, avoidance, identification

and resolution of deadlocks in semiconductor manufacturing processes is a difficult

problem and various sophisticated techniques are being investigated under current research

(Venkatesh & Smith 2005).

As the techniques for managing deadlocks in semiconductor fabrication processes are still

under investigation, in order to focus our attention on behavior of CABS, we have

developed an distributed algorithm that avoids permanent deadlocks in system. Our

deadlock avoidance algorithm avoids permanent deadlocks by:

• introducing a mechanism of reserved buffers

• utilizing an additional parameter in CABS message
We first explain the concept of our reserved buffers by using an example. Figure 12

describes a permanent deadlock that occurs in the part of system that has a small cycle

involving two agents. PROCESS ROUTE describes a cycle in process flow of job through

AGENT1 and AGENT2, where AGENT1 is processing two steps of process. As succeeding

agent should have a free buffer to park incoming job, agents in system wait for

authorization from their succeeding agent before they can start processing a new job. We

have used the token based mechanism (similar to Kanban (Ohno 1988)) for realizing such

authorization. Agents in this example have a shared buffer of size three, which can hold any

type of incoming job.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

143

In Figure 12 we first show the occurrence of permanent deadlock in a system that is not
using specific buffers, i.e. only has shared buffers. STAGE0 in Figure 12 shows that AGENT1
is processing stepP as it is authorized by a free buffer of AGENT2 (shown by directed solid
line). Because all buffers of AGENT1 are full, AGENT2 cannot process its jobs and is
awaiting its authorization from a free buffer of AGENT1 (shown by directed dashed line).
STAGE1 shows the permanent deadlock that occurs when buffers of AGENT2 also get full
after receiving the additional job from AGENT1. As both agents now wait for authorization
from each other indefinitely, this deadlock is permanent and cannot be resolved without
external intervention.
We now explain our mechanism of specific buffers and how it avoids the occurrence of
permanent deadlock during the same scenario. In CABS, each agent has two types of input
(WIP) buffers: one is a single-sized buffer specific to the WIP of each product step and the
other is a buffer shared by any WIP incoming to the agent. Hence, each agent in CABS has
(1) multiple single-sized specific buffers whose number is equal to that of the product steps
that are processed by the agent, and (2) a shared buffer whose size is not fixed.

Fig. 12. Deadlock: without specific buffers

We now explain our mechanism of specific buffers and how it avoids the occurrence of
permanent deadlock during the same scenario. In CABS, each agent has two types of input
(WIP) buffers: one is a single-sized buffer specific to the WIP of each product step and the

www.intechopen.com

 Multiagent Systems

144

other is a buffer shared by any WIP incoming to the agent. Hence, each agent in CABS has
(1) multiple single-sized specific buffers whose number is equal to that of the product steps
that are processed by the agent, and (2) a shared buffer whose size is not fixed.

Fig. 13. Deadlock: with specific buffers

We now explain the details of additional message parameter that is used to avoid deadlocks.
The additional message parameter, ETA (Estimated Time to Approval), is included in CABS
message and is utilized to control the flow of buffers when buffers get occupied. Along with
time limit, request rate and criticality, ETA is also sent in all the requirement
messages of a process step. ETA defines the time (in future) at which agent will be able to
accumulate a new coming lot of corresponding process step. When an agent has a (shared of
specific) free buffer to accommodate a lot, it can immediately authorize the preceding agent
to process new lot. However, when the agent does not have any free buffers to
accommodate new lot, it sends the ETA (a time in future) when it can accommodate a new
lot from its preceding agent. According to the received ETA, the agents plan their
dispatching and defer processing of lots accordingly.
If a shared buffer or the reserved buffer of a process step is free, agent sends a value 0 for
ETA in requirement message to preceding agent. If all shared buffers of agent including the
reserved buffer of a process step are occupied, agent calculates the time (ETA) at which a
buffer will become free according to its dispatching plan.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

145

In order to calculate ETA, agent uses the CABS dispatching algorithm (Algorithm 1) to make
dispatching plan of its buffered WIP. A new lot can be accommodated when any shared
buffer or the reserved buffer of process step becomes free. When all the buffers are occupied,
ETA will be a positive time in future and preceding agents should not send lot before that
time. In order to honour the ETA of their succeeding agents, agents defer dispatching of
their lots accordingly. The dispatching mechanism of CABS is modified to incorporate ETA
by addition of the following rule:

This additional rules implies that irrespective of other requirements (time limit and
criticality), the lots are dispatched in order of their ETA. Alternatively, rather than
sitting idle to honour the (late) ETA of a high criticality lot, agent will dispatch a
lower criticality job which has earlier ETA. To realize the desired working of ETA
mechanism in CABS, Algorithm 4 is called before CABS dispatching algorithm (Algorithm 1).

Algorithm 4 removes tasks with higher ETAs, and dispatching algorithm (Algorithm 1) then
chooses a lot to dispatch from the remaining tasks. In case there are multiple tasks with
minimum ETA, dispatching works as usual by considering their other requirement
parameters. Most of the times, when free buffers are available at agents, ETAs of tasks
remain 0 and Algorithm 4 has no effect. In such normal cases, all tasks are considered for
dispatching and execution of CABS takes place according to their requirement parameters.
However, when buffers become full, agents in CABS prioritize processing of lots with lower
ETAs. The last agent of process route assumes a static incoming ETA of 0. The agents
towards the end of process generally will have lower ETAs and reserved buffers ensure
availability of jobs of all process steps at agents. Hence, by prioritizing lots that will
complete earlier and propagating the ETA to remote agents, the flow of lots is perpetually
maintained which autonomously avoids the occurrence of permanent bottlenecks.

5. Empirical validation of CABS

In the experiments, using the same semiconductor fabrication problem as in Section 3.1,

we evaluate the performance of CABS when there are repeated failures at all agents in the

www.intechopen.com

 Multiagent Systems

146

system. Failures occur randomly based on the exponential distribution. MTBF of agents

ranges from 951.6 min to 47, 899.0 min with average of about 6, 900 min. And MTTR of

agents is between 0.0 min and 4, 009.0 min with average of about 500 min. Exact data of

failure patterns (MTBF and MTTR of all workstations) can be found in the MIMAC

datasets.

Fig. 14. CABS: Agents’ instantaneous criticality

Because of dynamic changes of workstations’ capacity and disruptions in product flows due
to failures, bottleneck workstations shift with time. In CABS we consider the dynamic
criticality of individual agents as their bottleneck factor. Figure 14 shows how
criticality values of different agents change in one of the experiments. Figure 14 gives
an idea of system’s dynamism and shows how different agents can become bottlenecks
during the course of execution.
As a criteria to evaluate performance of CABS, we exploit leadtime that achieves the same

level of throughput. In queueing theory, Little’s Law (Little 1961) states that the expected

WIP equals the average leadtime multiplied by the average throughput. Therefore, with

fixed throughput, reducing leadtime requires WIP to be reduced. However, with a variable

and unpredictable manufacturing environment, reducing WIP tends to decrease throughput

by cutting back job stocks of machines so that machine downtimes have a high probability

of forcing an idle time of machines due to lack of jobs to process. The system should strike a

suitable balance between leadtime (or WIP) and throughput in the face of failures. Hence,

the system that requires less leadtime to achieve the same throughput is considered more

efficient and robust against failures.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

147

To integrate system’s performance on multiple types of products with different

manufacturing processes, we calculate the aggregated processing time of all the products as

for representing overall throughput of the system and calculate the aggregated leadtime as

for representing overall leadtime of the system. Because

a system with a smaller aggregated leadtime corresponding to the same aggregated

processing time is more efficient and robust against failures.

5.1 Comparison with CONWIP

Fig. 15. Comparison of CABS and CONWIP in terms of tradeoff between leadtime and
processing time

We compared the performances of CABS with those of conventional manufacturing control

methods: CONWIP using the earliest due date first (EDD) dispatching rule and CONWIP

www.intechopen.com

 Multiagent Systems

148

using the Least Slack rule4. CONWIP processes jobs at the maximum speed as long as there

are jobs waiting to be processed and attempts to maintain a constant level of WIP

throughout a manufacturing system by introducing a new task into the system only after a

processed task has left the system. Since CONWIP is more flexible than JIT, it is supposed to

be more tolerant against instability of systems.

In the experiment, we compare performance of CABS and CONWIP based on more than ten

demand rates in which utilization of a bottleneck agent ranges from 50.8% to 86.5%. Since

the optimal WIP level for CONWIP can be decided only through trials and errors, we have

conducted extensive search (i.e., more than 1,000 runs of CONWIP simulation) of the

optimal WIP level for CONWIP at each demand rate of the experiments. Then we compare

the best result of CONWIP with the result of CABS. To be noted is that CABS determines its

WIP level autonomously in realtime without any input from users.

For both CABS and CONWIP, we conducted five independent runs of the system with

different random failures. The average of those results is shown as a single datapoint in

Figure 15. The experiments simulated over two months of operation after the system’s initial

stabilization at its startup.

Unlike to a single failure scenario in Section 3.2, in the experiments, since failures occur

randomly at all the agents, CABS may not be able to fully exploit its flexibility of controlling

flows of tasks to increase production of the appropriate products during failures and after

their resolutions. However, Figure 15 shows that CABS performs better than CONWIP with

EDD rule and Least Slack rule, succeeding to achieve higher throughput with shorter

leadtime, especially in the region of high demand rates. Figure 15 also shows that both

CABS and CONWIP fail to achieve the desired high demands due to failures.

5.2 Effects of buffer size limitations

In this section, we evaluate effects of each agent’s buffer size to the overall behaviors of

CABS. By using its messaging in conjunction with the specified buffer mechanism, CABS

can autonomously avoid deadlocks in a distributed manner. In the experiments, we

investigate how the size of shared buffers has effects on the performance of CABS.

In order to see the effectiveness of deadlock avoidance mechanism, we have conducted

experiments with different buffer capacity at agents. Figure 16 shows the performances of

CABS with the different shared buffer sizes. Each line shows the performance of CABS with

a certain shared buffer size for various demand rates. In the experiment, each agent of CABS

has the same size of shared buffer as depicted in a graph. From the graph it is clear that as

we decrease the buffers the performance of CABS degrades. The drop in performance is

logical and we have verified that even with minimal shared buffers (size 0), the system

continues to function and does not get stalled due to permanent deadlocks. In absence of

our deadlock avoidance mechanism, the system comes to a standstill after executing for

some time. The probability of deadlocks increases as we reduce the number of buffers.

The performance drop that is caused by reduction of buffer capacity is logical and is also

explained in Section 3.2 for hypothetical system-level buffer capacity (Figures 9 -11). In

4 See (Blackstone, Phillips & Hogg 1982) for detailed presentation of the rules.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

149

order to maintain utilization, agents need to process alternative jobs when some jobs are

unavailable due to failures. In the experiment there are many agents who are not processing

both kinds of jobs. Utilization of those agents cannot be maintained by increasing the

production of alternative products during failures. In order to maintain utilization, those

agents need to keep on processing the products that may not be finished because of failures

and utilize the shared buffers to keep WIP of those products. Therefore, CABS with smaller

buffer sizes has more chances of losing its agents’ capacity, and is more likely to degrade the

tradeoff between leadtime and throughput.

Fig. 16. Effect of buffer size limitations in CABS in terms of tradeoff between leadtime and
processing time

6. Conclusion and future works

In this paper, we investigated coordination techniques for maintaining desired throughput

of a semiconductor manufacturing system in the face of machine failures. The proposed

system, CABS, coordinates the action of agents (i.e., workstations) through a message-

passing mechanism that is similar to other token-based coordination methods. Among other

methods, what is unique in CABS is the contents of the message and the ways to use them.

By passing and utilizing the information of criticalities and job requirements of downstream

agents, CABS can sustain high throughput by preventing starvation of wandering

www.intechopen.com

 Multiagent Systems

150

bottleneck agents and, simultaneously, achieve short leadtime by reducing the amount of

inventories in the system.

In experiments using data of a semiconductor fabrication process, we have shown that

CABS can compensate for capacity loss caused by a machine failure efficiently and validated

that CABS achieves a better tradeoff between throughput and leadtime than a conventional

manufacturing control method CONWIP. We believe that the coordination mechanism of

CABS is suitable not only for semiconductor manufacturing, but also for other complex and

unstable network systems such as transportation and communication.

We also proposed our new distributed deadlock avoidance mechanism. The deadlock

avoidance algorithm works independently and can be therefore used with other

dispatching and control mechanisms, other that CABS. We have shown that the proposed

deadlock avoidance mechanism is distributed and it autonomously avoids the occurrence

of permanent deadlocks. However, the present mechanism requires marking and

reserving of some buffers (specific buffers). This additional constraint may lead to

underutilization of reserved buffers which may not get utilized optimally. As another

future work we want to investigate if and how this requirement of permanent reserved

buffered can be avoided. But dynamically reserving the buffers on need basis, more

buffers can be used as shared buffers and overall buffer occupancy and system’s

efficiency can be improved.

7. References

Allen, A. O. (1990), Probability, Statistics, and Queueing Theory, Academic Press.

Barabási, A.-L. (2002), LINKED: The New Science of Networks, Perseus Books Group.

Blackstone, J. H., Phillips, D. T. & Hogg, G. L. (1982), ‘A state-of-the-art survey of

dispatchin rules for manufacturing job shop operations’, International Journal of

Production Research 20, 27–45.

URL: http://www.informaworld.com/10.1080/00207548208947745

Durfee, E. H. (1996), Planning in distributed artificial intelligence, in G. O’Hare & N. R.

Jennings, eds, ‘Foundations of Distributed Artificial Intelligence’, John Wiley &

Sons, New York, NY, chapter 8, pp. 231–245.

Faltings, B. & Nguyen, Q. (2005), Multi-agent coordination using local search, in

‘Proceedings of IJCAI-05’, pp. 953–958.

Fowler, J., Hogg, G. & Mason, S. (2002), ‘Workload control in the semiconductor industry’,

Production Planning & Control 13(7), 568–578.

Fowler, J. & Robinson, J. (1995), Measurement and improvement of manufacturing

capacities (MIMAC): Final report, Technical Report Technical Report 95062861A-

TR, SEMATECH.

Gautam, R. & Miyashita, K. (2007a), Coordination to avoid starvation of bottleneck agents in

a large network system, in M. M. Veloso, ed., ‘IJCAI’, pp. 1281–1286. URL:
http://www.ijcai.org/papers07/Papers/IJCAI07-207.pdf

Gautam, R. & Miyashita, K. (2007b), Robust coordination to sustain throughput of an

unstable agent network, in ‘AAMAS ’07: Sixth international joint conference on

autonomous agents and multiagent systems’.

www.intechopen.com

Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks

151

Glassey, C. & Resende, M. (1988), ‘Closed-loop job release control for vlsi circuit

manufacturing’, IEEE Transactions on Semiconductor Manufacturing 1(1), 36–46. URL:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4371

Goldratt, E. & Cox, J. (1992), The Goal: A process of Ongoing Improvement (2nd rev

edition), North River Press.

Hopp, W. J. & Spearman, M. L. (2000), FACTORY PHYSICS, second edn, McGraw-Hill.

Imai, M. (1997), Gemba Kaizen: A Commonsense, Low-cost Approach to Management,

McGraw-Hill.

Jennings, N. R., P. Faratin, A. R. L., Parsons, S., Sierra, C. &Wooldridge, M. (2001),

‘Automated negotiation: Prospects, methods, and challenges’, International Journal

of Group Decision and Negotiation 10(2), 199–215.

Liberopoulos, G. & Dallery, Y. (2000), ‘A unified framework for pull control mechanisms in

multi-stage manufacturing systems’, Annals of Operations Research 93, 325–355.

Little, J. D. C. (1961), ‘A Proof of the Queueing Formula L = λW ’, Operations Research 9, 383–

387.

Miyashita, K., Okazaki, T. & Matsuo, H. (2004), Simulation-based advanced wip

management and control in semiconductor manufacturing, in ‘WSC ’04:

Proceedings of the 36th conference on Winter simulation’, Winter Simulation

Conference, pp. 1943–1950.

 URL: http://www.ingentaconnect.com/content/tandf/tprs/2000/
 00000038/00000008/art00010

Moyaux, T., Chaib-draa, B. & D’Amours, S. (2003), Multi-agent coordination based on

tokens: Reduction of the bullwhip effect in a forest supply chain, in ‘Proceedings of

AAMAS-03’, pp. 670–677.

Ohno, T. (1988), Toyota Production System: Beyond Large-Scale Production, Productivity Press.

Pfund, M., Mason, S. & Fowler, J. (2006), Dispatching and scheduling in

semiconductor manufacturing, in J. W. Herrmann, ed., ‘Handbook of Production

Scheduling’, Springer.

Riley, P. & Riley, G. (2003), SPADES — a distributed agent simulation environment with

software-in-the-loop execution, in P. J. S. Chick, S., D. Ferrin & D. J. Morrice, eds,

‘Winter Simulation Conference Proceedings’, Vol. 1, pp. 817–825.

Roser, C., Nakano, M. & Tanaka, M. (2002), Productivity improvement: shifting bottleneck

detection, in J. L. Snowdon & J. M. Charnes, eds, ‘Winter Simulation Conference’,

ACM, pp. 1079–1086. URL: http://doi.acm.org/10.1145/1030453.1030609

Sandholm, T. W. (1999), Distributed rational decision making, in G. Weiss, ed., ‘Multiagent

Systems: A Modern Approach to Distributed Artificial Intelligence’, The MIT Press,

Cambridge, MA, USA, chapter 5, pp. 201–258.

Venkatesh, S. & Smith, J. (2005), ‘An evaluation of deadlock handling strategies in

semiconductor cluster tools’, IEEE Transactions on Semiconductor Manufacturing

18(1), 197–201.

Wagner, T., Guralnik, V. & Phelps, J. (2003), A key-based coordination algorithm for

dynamic readiness and repair service coordination, in ‘AAMAS ’03: Proceedings of

the second international joint conference on Autonomous agents and multiagent

systems’, ACM Press, New York, NY, USA, pp. 757–764.

www.intechopen.com

 Multiagent Systems

152

Xu, Y., Scerri, P., Yu, B., Okamoto, S., Lewis, M. & Sycara, K. (2005), An integrated token-

based algorithm for scalable coordination, in ‘Proceedings of AAMAS-05’, pp. 407–

414.

www.intechopen.com

Multiagent Systems

Edited by Salman Ahmed and Mohd Noh Karsiti

ISBN 978-3-902613-51-6

Hard cover, 426 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents an overview of some of the research issues in the

field of multi agents. It is a presentation of a combination of different research issues which are pursued by

researchers in the domain of multi agent systems as they are one of the best ways to understand and model

human societies and behaviours. In fact, such systems are the systems of the future.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rajesh Gautam and Kazuo Miyashita (2009). Scalable Coordination Mechanism to Maintain Throughput of

Dynamic Multiagent Networks, Multiagent Systems, Salman Ahmed and Mohd Noh Karsiti (Ed.), ISBN: 978-3-

902613-51-6, InTech, Available from:

http://www.intechopen.com/books/multiagent_systems/scalable_coordination_mechanism_to_maintain_throug

hput_of_dynamic_multiagent_networks

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

