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1. Introduction 

Multi-agent systems have been studied for the past few decades. At this point in time, 
several multi-agent systems frameworks have been defined in order to apply the multi-
agent system concept to different applications. In a multi-agent system, several agents 
communicate and interact in order to solve a complex problem. A multi-agent system can be 
studied as a computer system that is concurrent, asynchronous, stochastic and distributed. 
These characteristics of multi-agent systems make them also a discrete-event dynamic 
system, and these have been studied under several analytical methodologies, particularly 
Petri nets. Petri nets have a well-defined mathematical structure that can be leveraged to 
provide formal analysis of discrete-event dynamic systems. From the discrete-event 
dynamic system point of view, multi-agent systems lack analysis and design methodologies. 
This chapter is concerned with the development of analytical methods for modeling and 
analysis of multi-agent systems, as well as the definition and assessment of system 
properties. The study of system properties is becoming more important due to the fact that 
we are faced more and more with handling large complex dynamic systems. Computer 
simulation is generally used to assess system properties and to verify that the system is 
achieving its design objectives. An important challenge in this field is the development of 
analytical methods to assess key properties of such systems. Such methods could be used to 
provide a preliminary analysis of the multi-agent system, providing design and operation 
feedback before the development of expensive simulation models. Furthermore, they will 
provide insight into design methodologies for multi-agent systems that will ensure that the 
system design under such methodologies complies with the required properties, hence 
being a dependable multi-agent system. 
The communication and interaction among agents is critical for the overall multi-agent 
system design and for the proper functioning of the system. Several interaction frameworks 
have been defined and they range from collaboration among agents, through competition 
for resources requiring some level of negotiation in the multi-agent system. This work 
focuses particularly at the interaction level, and studies the interactions between different 
agents in the system. 
The mission of the chapter is to present a methodology for modeling and analysis of multi-
agent systems at the agent interaction level. This will be carried out by studying the discrete-O
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event characteristics of the interactions and using the Petri net methodologies as the 
modeling and analysis tool. Properties known to be important in the discrete event systems 
and Petri net domains will be used to study multi-agent systems. Here, properties like 
boundedness and liveness will be analyzed and demonstrated for multiagent systems, as 
they relate to deadlock avoidance in the Petri net domain. Furthermore, these properties will 
be related to characteristics of the interaction mechanism. If modeled properly, a deadlock 
found in a Petri net domain will mean that the interaction mechanism in use in the multi-
agent system is prone to deadlocks in the interaction among agents. 
In particular, this chapter will include methodologies for mapping multi-agent systems into 
Petri net models. These methodologies will present the right level of detail/abstraction in 
order to map all the important behaviors of the interaction framework into the resulting 
Petri net models. Petri net analysis methods such as the reachability graph and the analysis 
of the network invariants will be used for the assessment of properties. Furthermore, Petri 
net synthesis techniques will allow the ability to provide more or less detail to the models, 
giving the ability to add detail/abstraction to the behavior of the multi-agent system to be 
modeled. 

1.1 Methodology 
The problem addressed in this chapter can be considered in two parts: properties, and 
methodologies for modeling and analysis. The following is the methodology followed for 
this work. 
Properties: If a multi-agent system is regarded as a discrete-event system and modeled 
using Petri nets, then properties known to be important in the discrete-event systems and 
Petri net domains could be used to study multi-agent systems. If we consider models of 
multi-agent systems as discrete-event systems, an important question to consider is which 
properties in the Petri net domain are important? As a starting point there are properties we 
would like to analyze and demonstrate for multi-agent systems. Examples of these are 
boundedness and liveness as related to deadlock avoidance in the Petri net domain. Other 
properties exist that are related to performance evaluation. These properties from the Petri 
net domain could be related to characteristics of the communication and interaction of the 
multi-agent system. If modeled properly, a deadlock found in a Petri net domain will mean 
that the interaction mechanism in use in the multi-agent system is prone to deadlocks in the 
interaction among individual agents. 
Methodologies for modeling and analysis: Considering that a multi-agent system can be 

regarded as a discrete-event system, Petri nets can be used as a modeling tool. This will 

require methodologies for mapping multi-agent systems into Petri net models. These 

methodologies will require the right level of detail/abstraction in order to map all the 

important behaviors of the communication and interaction framework into the resulting 

Petri net models. Having Petri net models of multi-agent systems will allow us to use the 

existing analysis methodologies for Petri nets. Important properties of discrete-event 

systems could be obtained with Petri net analysis methods such as the reachability graph 

and the analysis of the network invariants. New analysis techniques related directly to the 

multi-agent system domain can be designed or tailored from existing Petri net techniques. 

Furthermore, Petri net synthesis techniques allow us to provide more or less detail to our 

models giving the ability to add detail/abstraction to the behavior of the multi-agent system 

that we would like to model. 
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1.2 Related work 
Petri nets and Petri net extension methodologies have been used to model systems with 
more than one agent. Murata et al. [1] presented an algorithm to construct predicate/ 
transition models of robotic operations. Basically, robot actions were considered as firing 
transitions and the model was used for the planning of concurrent activities of multiple 
robots (agents). Even though the robotic system considered does not have direct interaction 
between the agents, the model used shows the ability of the Petri net-like models to capture 
interactions between the agents that are not evident in the design process. In a similar way, 
Xu et al. [2] proposed a methodology based on predicate/transition nets for multiple agents 
under static planning of activities. In addition, they proposed a validation algorithm for 
plans with parallel activities. The verification is done based on reachability graphs due to 
the fact that agents actions are modeled as transitions. Petri nets also have been used to 
model specific multi-agent system frameworks but the resulting models have not been used 
to provide a study of the properties of the multi-agent system. Ahn et al. [3] proposed a 
multi-agent system architecture for distributed and collaborative supply-chain 
management. The suggested architecture is aimed at discovering the structure of the 
supply-chain and predicting future demands based on local information sharing among the 
agents. A Petri net model is presented but no structural analysis of the model and no 
verification of the coordination activities were performed. The advantages of having a Petri 
net model were not exploited. The work of Leitao et al. [4], proposed a Petri net model 
approach to formal specification of holonic control systems for manufacturing. They 
developed a Petri net submodel for each of the four types of holons (agents) suggested in the 
ADACOR (Adaptive Holonic Control Architecture for Distributed Manufacturing Systems) 
architecture. There was no attempt to study the structural properties of the Petri net model 
in order to assess some sort of dependability in the proposed architecture. Formal modeling 
and specification of the multi-agent systems interaction framework has only been attempted 
in the holonic manufacturing system considering the contract net protocol as the interaction 
framework. The work presented by Hsieh in [5] proposed a new model called a collaborative 
Petri net and addressed the question of deadlock and undesirable state avoidance under the 
contract net protocol. Finally, multi-agent system survivability1 and fault tolerance using 
Petri net models have been used in the mobile-agent area. Lyu et al. [6] used a Stochastic 
Petri net model to assess survivability and fault tolerance of mobile agents systems. They use 
the model for design and verification of their proposed agent architecture. 

2. Introduction to Petri nets 

Petri nets are a graphical and mathematical modeling tool used to describe and analyze 
different kinds of real systems. Petri nets were first introduced by Carl Adam Petri in 1962 
in Germany [8], and evolved as a suitable tool for the study of systems that are concurrent, 
asynchronous, distributed, parallel and/or stochastic. Performance evaluation has been a 
very successful application area of Petri nets. In addition, Petri nets have been successfully 
used in several areas for the modeling and analysis of distributed-software systems, 
distributed-database systems, flexible manufacturing systems, concurrent and parallel 
programs and discrete-event dynamic systems (DEDS) to mention just a few [9][8][10][11]. A 

                                                 
1 Survivability is the agent's ability to recognize, resist and recover from attacks [7]. 
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multi-agent system is a kind of DEDS that is concurrent, asynchronous, stochastic and 
distributed. From the DEDS point of view, multi-agent systems lack analysis and design 
methodologies. Petri net methods are used in this work to develop analytical methodologies 
for multi-agent systems. 
Petri nets are often used in the modeling and analysis of DEDS. They include explicit 
conditions under which an event can occur; capturing also the relations between concurrent 
and asynchronous events. As a result, Petri nets are suitable for studying complex and 
general DEDS [10][11]. 
This section presents an introduction to Petri nets. Petri nets are defined followed by 
important properties and analysis methodologies. Finally, an example of a manufacturing 
application is presented. 

2.1 Petri nets definition 
Definition 1 The following is the formal definition of a Petri net [9][8][12][13]. A Petri net is a five-
tuple 

 (1)

where: 
P is a finite set of places 
T is a finite set of transitions 

A ⊆ (P × T) ∪ (T × P) is a set of arcs 

W : A → {1, 2, 3, …} is a weight function 

M0 : P → Z+ is the initial marking 
The meanings of places and transitions in Petri nets depend directly on the modeling 
approach. When modeling, several interpretations can be assigned to places and transitions. 
For a DEDS a transition is regarded as an event and the places are interpreted as a condition 
for an event to occur. 
Table 1 presents several typical interpretations for transitions and places. A simple Petri net 
example is presented in figure 1. This example is used later to define additional Petri net 
characteristics. 
 

 

Table 1. Modeling interpretations of transitions and places [8]. 

 

Fig. 1. Petri net example. 
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Places, transitions and arcs: Places are represented with circles and transitions are 
represented with bars. The arcs are directed from places to transitions or from transitions to 
places. The places contain tokens that travel through the net depending on the firing of a 
transition. A place p is said to be an input place to a transition t if an arc is directed from p to 
t. Similarly, an output place of t is any place in the net with an incoming arc from transition 
t. In the example (figure 1) p1 is an input place of t1, and p2 is an output place of t1. 
Transition firing: A transition can fire only if it is enabled. For a transition t to be enabled, all 
the input places of t must contain at least one token2. When a transition is fired, a token is 
removed from each input place, and one token is added to each output place. In this way the 
tokens travel through the net depending on the transitions fired. 

Definition 2 (Marking) The marking mi of a place pi ∈ P is a non-negative quantity representing the 
number of tokens in the place at a given state of the Petri net. The marking of the Petri net is defined 

as the function M : P → Z+ that maps the set of places to the set of non-negative integers. It is also 

defined as a vector Mj = (m1,m2, …, m⏐P⏐) were mi = M(pi), which represents the jth state of the net. 
Mj contains the marking of all the places and the initial marking is denoted by M0. 
In the example of figure 1 only transition t1 is enabled. When t1 fires, one token is removed 
from place p1 and one token is added to place p2. Figure 2 shows the evolution of the Petri 
net in the previous example. Figure 2 a) presents the initial marking of the net M0 = 
[M(p1),M(p2),M(p3)] = [2, 0, 0], only transition t1 is enabled. Figure 2 b) presents the net with 
marking M1 = [1, 1, 0] after t1 is fired. Here, transitions t1 and t2 are enabled and they can be 
fired. Finally, figure 2 c) represents the net after t2 is fired. In this case transitions t1 and t3 are 
enabled with marking M2 = [1, 0, 1]. 
 

 

Fig. 2. Petri net evolution after firing transitions t1 and t2. 

                                                 
2 Assuming the weights W of the Petri net are equal to one. When the weights are not 
indicated they are assumed to be one. The weight on an arc coming to a transition from one 
of the incoming places indicates the minimum number of tokens needed in the incoming 
place in order for that transition to be enabled. When the transition fires, it will remove from 
the incoming place the amount of tokens indicated by the weight of the arc. 
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The marking of the Petri net represents the state of the net. As described above, the 
transitions change the state of the Petri net in the same way an event changes the state of a 
DEDS. 
Definition 3 (Reachability graph) The reachability graph has the marking of the Petri net (or state 
of the Petri net) as a node. An arc of the graph joining Mi with Mj represents the transition when 
firing takes the Petri net from the marking (state) Mi to the marking Mj .  
The reachability graph of the Petri net in figure 1 is presented in figure 3. 
 

 

Fig. 3. Reachability graph. 

2.2 Properties 
This section covers some of the most important properties of Petri nets such as Reachability, 

Liveness, Boundedness and Reversibility. These properties are essential for the analysis of Petri 

net models. Furthermore, they are required characteristics for the use of Petri nets in 

performance evaluation [8][10][11]. 

These are properties that could be applied to multi-agent systems models. Examples of these 

properties are boundedness and liveness since they are related to deadlock avoidance in 

DEDS. Other properties are going to be relevant to multi-agent systems particularly to the 

communication, interaction, and single agent architectures. It is unknown how the available 

properties of Petri nets relate to models of multi-agent systems. This is a research question 

addressed in this study. In addition, the definition of new properties might be required to 

capture behaviors particular to multi-agent systems. A complete description of the available 

Petri net properties can be found in [8]. The analysis methods developed in this research will 

focus on the following properties. 

Definition 4 (Reachability) A marking Mj is said to be reachable from marking Mi if there exists a 
sequence of transitions that takes the Petri net from state Mi to Mj . The set of all possible markings 
that are reachable from M0 is called the reachability set and is defined by R(M0). 
The concept of reachability is essential for the study of the dynamic properties of a Petri net. 

The reachability set can be obtained from the reachability graph presented previously, e.g., 

figure 3 [8][11]. 
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Definition 5 (Liveness) A Petri net is said to be live for a marking M0 if for any marking in R(M0) 
it is possible to fire a transition. 
The liveness property guaranties the absence of deadlock in a Petri net. This property can 
also be observed from the reachability graph. If the reachability graph contains an absorbent 
state3, then the Petri net is not live at that state and it is said to have a deadlock [8][11]. 
Definition 6 (Boundedness) A Petri net is said to be bounded or k-bounded if the number of 
tokens in each place does not exceed a finite number k for any marking in R(M0). Furthermore, a Petri 
net is structurally bounded if it is bounded for any finite initial marking M0. A Petri net is said to 
be safe if it is 1-bounded [8]. 
Definition 7 (Reversibility) A Petri net is reversible, if for any marking in R(M0), M0 is reachable. 
This means that the Petri net can always return to the initial marking M0 [8][11]. 
For the example in figure 1 we have a reachability set R(M0) = {M1 = [1, 1, 0],M2 = [0, 2, 0],M3 

= [1, 0, 1],M4 = [0, 1, 1],M5 = [0, 0, 2]}. The Petri net is live, reversible and 2-bounded for the 
marking M0 = [2, 0, 0]. 

2.3 Structural analysis 
This section considers the structural analysis of Petri nets by using invariant analysis as 
described in [8][13]. Basically, the liveness and boundedness of the net will be assessed by 
using P-invariants and T-invariants. These invariants are obtained from the incidence matrix 
of the net and they give information regarding token conservation and transition firing 
sequences that leave the marking of the net unchanged. These concepts are used to assess 
the overall liveness and boundedness of the net. 
Definition 8 (Incidence matrix) Let 

 
= w(i, j) be the weight of the arc that goes from transition ti 

to place pj and  = w(j, i) be the weight of the arc from place pj to transition ti. The incidence matrix 

A of a Petri net has ⏐T⏐ number of rows and ⏐P⏐ number of columns. It is defined as A = [aij ] where 
aij =  -  . 

The example presented in figure 1 shows an ordinary Petri net (all the weights are equal to 
1) and the following is its corresponding incidence matrix. 

 

Definition 9 (Net-invariants) Let A be the incidence matrix. A P-invariant is a vector that satisfies 
the equation 

 (2)

and a T-invariant is a vector that satisfies the equation 

 (3)

                                                 
3 If the net is not live for marking M0 then at least one marking from R(M0) will not have any 
enabled outgoing transitions. If the reachability graph is considered as the state graph of the 
net, then an absorbent state is that from which the marking it is representing does not have 
any outgoing transitions enabled. As a result, when the net reaches an absorbent state, it will 
remain in it indefinitely. 
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2.3.1 Boundedness assessment 
The P-invariants of the incidence matrix are used in Theorem 1 to make an assessment of the 
boundedness of the Petri net. A Petri net model is covered by P-invariants if and only if, for 
each place s in the net, there exists a positive P-invariant x such that x(s) > 0. 
Theorem 1 A Petri net is structurally bounded if it is covered by P-invariants and the initial 
marking M0 is finite [13]. 

2.3.2 Liveness assessment 
The liveness of the Petri net model is assessed on Theorem 2 by means of the T-invariants of 
the incidence matrix. A Petri net model is covered by T-invariants if and only if, for each 
transition t in the net, there exists a positive T-invariant y such that y(t) > 0. This is a 
necessary condition but not sufficient. The liveness assessment by the use of T-invariants is 
still an open problem [8].  
Theorem 2 A Petri net that is finite is live and bounded if it is covered by T-invariants [13]. 

3. Modeling of multi-agent systems with indirect interaction 

The methodology presented here consists of defining a simple multi-agent system based on 
the abstract architecture for intelligent agents (M). The abstract architecture is modeled as a 
discrete-event system using Petri nets (N) and structural and reachability analysis provides 
an assessment of the interaction properties. Deadlock avoidance in the multiagent system is 
considered as a key property, and it is evaluated using the liveness and boundedness 
properties of the Petri net model. 
The purpose of this work consists of the definition of an abstract architecture for multiagent 
systems with indirect interaction, analogous to the abstract architecture for intelligent 
agents. The proposed architecture allows the description of agent-to-agent interactions via 
changes in the environment and serves as an initial description of the discrete-event 
dynamics of the multi-agent system. In addition, this work presents an algorithm 
(algorithms 1 and 2) to obtain a Petri net model of a multi-agent system by making use of 
the multi-agent system's abstract architecture. Finally, a methodology to ensure that the 
multi-agent system is deadlock free is presented; it is based on the analysis of the properties 
of the Petri net model. 
Here, the abstract architecture of intelligent agents is used as a starting point; particularly 
the abstract architecture for purely reactive agents. The level of abstraction of agents 
modeled by the abstract architecture makes it a good candidate for the study of multiagent 
systems as discrete-event dynamic systems. The study of interaction frameworks is first 
approached by studying the simplest means of interaction among agents (indirect 
interaction); assuming the agents have the perception/action capabilities and agents can 
interact by changing each others environment.  
Modeling approach based on interaction among agents: The interactions between agents 
can be either a direct agent-to-agent interaction or an indirect interaction. The typical 
structure of a multi-agent system was presented in [14] and is reproduced in figure 4. It 
shows how the agents interact among each other and how they operate over a metalevel 
(multi-agent level) environment. Arrows define direct agent interactions from agent to 
agent; the indirect interactions are based on the environment. In the indirect interaction, an 
agent modifies another agent's environment triggering a reaction. The indirect interaction 
occurs in the cases when two or more agents share a subset of the environment. It should be 
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noted that the overall multi-agent system acts over a meta-level environment. An agent that 
is part of the multi-agent system has its own environment that is somehow related to the 
meta-level environment of the multi-agent system. This meta-level environment of the 
multi-agent system is referred to in the literature as being an open environment [15]. A 
complex problem will provide an open environment, which is dynamic, has components 
that are unknown in advance, its structure changes over time and might be heterogeneous 
in its implementation [15]. By focusing on the interactions among agents as described above, 
it is natural to regard a multi-agent system as a discrete-event system. 
 

 

Fig. 4. Structure of a multi-agent system [14]. 

Following the goal of defining a methodology for modeling multi-agent systems, there is a 
need to define a modeling methodology that makes no use of the context of the system or at 
least abstracts itself from it. Basically, looking at an abstract architecture as a means of 
modeling single agents and multi-agent systems. The proposed modeling approach, uses 
the abstract architecture to obtain the Petri net models. 

3.1 Petri net models from the abstract architecture 
The artificial intelligence research considers three difierent paradigms for intelligent agents: 
a) reactive and b) deliberative; and c) hybrids between them. The abstract architecture 
models how an agent behaves with respect to changes in its environment. Here, an agent 
has its own environment and this environment is defined by the nature of the agent. The 
goals, objectives and the general purpose of the agent define its environment. This abstract 
architecture is based on the reactive paradigm of perception and action. A purely reactive 
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agent has a perception of the environment and it is used in the decision mechanism that 
provides an action in the agent. A reactive agent can also have an internal state as a decision 
mechanism for the actions to be undertaken. An agent with perception and internal state 
capabilities has more computational power than an agent without them and its 
computational power is now comparable with that of the Belief-Desired-Intention 
architecture as described in [14].  
Abstract model for purely reactive agents: In a purely reactive agent, the perception part 
records the changes in the state of the environment. The action part computes the actions to 
be taken in order to react to changes in the environment. The agent environment changes 
based on the actions applied by the agent, as well as actions by other agents, and it may be 
dynamic in that it may change by itself. 
The environment consists of a set of states S = {s1, s2,…}. The agent can undertake a set of 
actions A = {a1, a2, …} and perceive a set of percepts P = {p1, p2, …}. For a purely reactive 

agent, the behavior of the agent can be represented as the function action: P → A and 

perception : S → P. The deterministic behavior of an environment can be represented by the 

function environment : S × A → S. 
Petri net modeling of multi-agent systems: A Petri net is defined as a five-tuple (P, T, 

A,W,M0) where: P is a finite set of places, T is a finite set of transitions, A ⊆ (P × T) [ (T × P) is a 

set of arcs, W : A → {1, 2, 3, …] is a weight function, and M0 : P → 
 
is the initial marking. 

When modeling, several interpretations can be assigned to places and transitions. For a 
discrete-event dynamic system a transition is regarded as an event, and the places are 
interpreted as a condition for an event to occur. 
There are properties we would like to show for multi-agent systems. Examples of these 
properties are boundedness and liveness since they are related to deadlock avoidance in 
discrete-event systems. Other properties are going to be relevant to multi-agent systems 
particularly to the communication, interaction and individual agent architectures. The 
reachability, liveness and boundedness properties of Petri nets are going to be used in the 
analysis presented in this chapter. 

3.1.1 Obtaining Petri net models from the abstract architecture 
Places model the environmental state of the agent. Having a token in a place representing 
state si means that the agent is currently in such a state. 
Transitions model the actions of an agent. The environmental state is changed by actions so, 
for the Petri net model having tokens move from one place to another by firing transitions, 
this agrees with the execution process of the abstract architecture. 
Algorithm 1 (Petri net submodel for agent i) Let Si be the set of environmental states of agent i, 

and sij ∈ Si be the jth environmental state of agent i. Similarly, let Ai be the set of actions of agent i, 

and aik ∈ Ai be the kth action of agent i. 
1. Add a place for each element of the environment Si and label each place using notation Pij for sij . 
2. Add a transition for each action in Ai and label each transition using notation Tik for aik. 

3. For each instance of the function environment : Si ×Ai → Si say sij ×aik → sil: a) add an arc 
leaving from place Pij and ending in transition Tik; b) add an arc leaving from transition Tik and 
ending in place Pil; c) add a weight of 1 to each arc. 
If an arc from transition Tik to place Pil already exists, add a new transition and label it T’ik; 
perform this step using T’ik instead of Tik. 

4. Add a token in the place representing the initial state of the environment. 
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Algorithm 2 (Petri net model of the multi-agent system) The Petri net sub-models of each of the 
individual agents in the system should be joined based on their indirect interactions. In general, this 
indirect interaction will be in such a way that an agent i action will change an environment state of 
agent j. This communication act can be regarded as a regular action in the construction of the 
complete model. There will be arcs added from the places modeling the environmental states of agent j 
to the transition modeling the communication in agent i. 

3.1.2 Analysis of the Petri net model 
The Petri net model of the multi-agent system can be analyzed to assess system properties 
like deadlock. Inspection of the reachability graph of the Petri net model can indicate if the 
model is live and bounded. On the other hand, liveness and boundedness properties can 
also be assessed using invariant analysis [13]. Basically, the liveness and boundedness of the 
net can be assessed by using the P-invariants and T-invariants obtained from the incidence 
matrix which give information regarding token conservation and transition firing sequences 
that leave the marking of the net unchanged. 
Let  = w(i, j) be the weight of the arc that goes from transition ti to place pj and  = w(j, i) 

be the weight of the arc from place pj to transition ti. The incidence matrix A of a Petri net has 

⏐T⏐ number of rows and ⏐P⏐ number of columns. It is defined as A = [aij ] where  
aij =  -  . Furthermore, a P-invariant is a vector that satisfies Ax = 0 and a T-invariant is a 

vector that satisfies AT y = 0. 
A Petri Net model is covered by P-invariants if and only if for each place s in the net, there 
exists a positive P-invariant x such that x(s) > 0 . Furthermore, a Petri net is structurally 
bounded if it is covered by P-invariants and the initial marking M0 is finite. In addition, a 
Petri net model is covered by T-invariants if and only if for each transition t in the net, there 
exists a positive T-invariant y such that y(t) > 0. Furthermore, a Petri Net is live and 
bounded if it is covered by T-invariants. This is a necessary condition but not sufficient. 

3.2 Multi-agent system modeling and analysis example 
This section presents a description of a simple multi-agent system consisting of two physical 
agents that work together at a task. This system will be used throughout this chapter to 
illustrate how the Petri net and abstract architecture models can be applied to multi-agent 
systems. 
This system consists of two agents referred to as agent A and agent B. They move objects 
from one end of a path to the other. Figure 5 shows 4 scenarios in the operation of the 
system. Both agents are capable of moving objects and agent A moves faster than agent B. 
The objective of agent A is to go to the end of the path, pick an object, and return to the start 
of the path (figure 5a). Since it is faster than agent B it reaches the objects first (figure 5b). At 
the time they intersect in the path, agent A gives its object to agent B and returns to the end 
of the path to pick another object (figures 5c and 5d). On the other hand, the objective of 
agent B is to go in the direction of the end of the path, intersect with agent A and get its 
object. Once the agent has an object, it returns to the start of the path, places the object down 
and starts all over again. 
The meta-level environment of the system consists of a single path with a set of objects on one 
side and no objects on the other side. 
There is indirect interaction between the agents via changes in their environments. The 
exchange of the object between the agents should be regarded as a result of a change in the 
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environment of both agents. The two agents are regarded as purely reactive, which implies 
they do not have a record of history and they do not have an internal state. The decisions 
they make are about which actions to undertake and those decisions are directly influenced 
by the location of the agent in the path and whether the agent has an object or not. It should 
be noted also, that the goal of the overall multi-agent system is a little different from the goal 
of each specific agent. 
 

 

Fig. 5. Multi-agent system example for modeling and analysis. 

3.2.1 Abstract architecture description 
Under normal conditions, agent A will be walking to the end of the path to pick the object to 
be moved. The object is going to be taken away by the other agent at the intersection. Let M 
be the multi-agent system with agent A and B modeled with the abstract architecture. Agent 
A has environmental states SA, a set of actions AA, an action function actionA, and an 
environment evolution function environmentA. On the other hand, Agent B has 
environmental states SB, a set of actions AB, an action function actionB, and an environment 
evolution function environmentB. Tables 2 and 3 describe the possible environmental states 
(SA) and the actions (AA) that agent A can undertake. 
 

 

Table 2. Environmental states of agent A of M. 

 

Table 3. Actions for agent A of M. 

Table 4 presents the mapping of the environment (environmentA) describing how it will be 

changing as the agent undertakes actions. It should be noted that the notion of exchanging 

the part with agent B at the intersection has not been considered explicitly in the description 

of the environmentA : S × A → S for agent A. The agents decision mechanism is described by 

the actionA function as presented in (4). 
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(4)

Agent B will be walking toward the end of the path until it intersects with agent A which is 
on its way back to the beginning of the path carrying an object. At the intersection point, 
agent B takes over the object of agent A and proceeds to return to the beginning of the path 
to drop the object and start the cycle again. The abstract architecture of agent B is presented 
in Tables 4 and 5, and the actionB(s) function is described in (5). 
 

 

Table 4. Environment function for agent A of M. 

 

Table 5. Environmental states for agent B of M. 

 

Table 6. Actions for agent B of M. 

 

(5)

The mapping of the environment of agent B (environmentB) is presented in Table 7. The 
interaction with agent A (in the exchange of the part) is implicitly modeled by action a2 

although there is no indication in its abstract architecture that it will change the 
environment of agent A. 

3.2.2 Petri net model 
The Petri net model of the multi-agent system was obtained following the procedure 
described in algorithm 1 (Petri net submodel for an agent) and algorithm 2 (Petri net model of the 
multi-agent system). Basically, algorithm 1 is executed once for each agent in the system.  
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Table 7. Environment function for agent B of M. 

Furthermore, once all the individual agents' submodels are obtained, algorithm 2 is used to 
join the submodels of those agents that engage in indirect interaction. 
Petri net submodel for agent A: The Petri net submodel for agent A presented in figure 6 is 
obtained as follows. Step 1 of the algorithm is concerned with the places of the Petri net. For 
each of the environmental states of agent A as described in table 2, a place is added to the 
new submodel following the described notation. In this step, three places are added in total, 
e.g., place pA2 which models the environmental state s2. In this state, agent A does not have 
an object and it is not at the end of the path. The transitions of the model are added in the 
second step of the algorithm. For this agent, a total of three transitions are added which 
model the three actions agent A can undertake, e.g., transition tA2 models action a2 which in 
turn is the pick an object action of agent A as described in table 3. The arcs of the Petri net are 
added in Step 3 of the algorithm. These arcs are related directly to the function that 
describes the evolution of the environment of the agent. This function maps the Cartesian 
product of environmental states and actions into the environmental states resulting from the 
agent undertaking a particular action. From the Petri net model point of view, this means a 
Cartesian product of places and transitions that is mapped into a set of places. The addition 
of arcs revolves around the transitions/actions of each instance of this mapping as described 
in table 4, e.g., f(s2, a1) = s3 indicates that two arcs should be added to transition tA1, an 
incoming arc from place pA2 and an outgoing arc to place pA3. The last step of the algorithm 
consists of assigning the initial condition or current state to the model. A token is added to 
the place representing the current environmental state of the agent. A complete list with 
description of places and transitions is presented in table 8. 
 

 
Fig. 6. Petri net model of agent A. 
The Petri net submodel for agent A is not pure since place pA1 and transition tA3 form a self-
loop. A Petri net is said to be pure if there is no place p that is both the input and output 
place to a transition t [8]. This self-loop is an artifact of the abstract architecture model of the 
agent. A token in place pA1 indicates that the agent is currently at environmental state S1, 
which in turn means that agent A has an object. Furthermore, transition tA3 models action a3 

which indicates that agent A walks to the start of the path. This self-loop models agent A 
walking towards the start of the path while carrying an object. It does not model what will 
happen once the agent reaches the start of the path. It must be noted that this is not a 
deficiency in the Petri net construction model, but a choice made in generating the abstract 
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architecture description for this agent. This description assumes that when agent A is 
holding an object and walking towards the start of the path, the other agent will intersect 
with it and take over the object. 
From the Petri net analysis point of view it can be seen that a token will eventually reach 
place pA1 and remain there indefinitely. This is consistent with the abstract architecture 
description since it does not model the capabilities of the agent once it reaches the start of 
the path having an object to drop there. As a result, the dynamics of this agent by itself reach 
a stationary state. A stationary state in this context means that the agent will keep doing the 
same activity and that the Petri net model indicates that the dynamics eventually get 
trapped at one state. It can be seeen from the reachability graph in figure 7 that the agent 
reaches state M2 and remains there. The only transition enabled at state M2 is transition tA3 

and once it fires, the system remains in state M2. 
The states of the reachability graph are described in figure 7 as well. The initial marking M0 

describes the initial condition where agent A has no object and it is not at the end of the 
path. From the reachability graph it can be concluded that the net is bounded and live for 
M0 = [0, 1, 0]. Even though the subnet is live, it will remain in state M2 once such a state is 
reached, as a result, the subnet is not reversible. 
 

 

Fig. 7. Reachability graph of agent A. 

The incidence matrix AA of the Petri net submodel of agent A is presented in equation 6. The 
order of the places in the matrix is P = {pA1, pA2, pA3} and the order for transitions is  

T = {tA1, tA2, tA3}. The incidence matrix AA is a m × n matrix, where m = ⏐T⏐ and n = ⏐P⏐. Let 
x be a P-invariant of the subnet which satisfies equation Ax = 0, x1 = [1, 1, 1]T is the only P-
invariant of AA with integer elements. Furthermore, let y be a T-invariant of the subnet 
which satisfies equation AT y = 0, y1 = [0, 0, 1]T is the only T-invariant of AA with integer 
elements. 

 

(6)

The Petri net submodel of agent A is not covered by positive T-invariants. As a result, the 
necessary condition for liveness is not met and it can be concluded that the subnet is not 
structurally live. On the other hand, the subnet is covered by positive P-invariants, as a 
result, the subnet is bounded for finite initial markings.  
Petri net submodel of agent B: The Petri net submodel of agent B is presented in figure 8. 
This submodel is obtained in a similar way as that of agent A, following the steps presented 
in algorithm 1 and the abstract architecture description of the agent presented in the 
previous section. The first step of the algorithm results in the addition of four places to the 
model based on the set of environmental states described in table 5. The four transitions are 
added in step 2, representing the set of actions in table 6. The four instances of the 
environment evolution function presented in table 7 result in the eight arcs of the model. 
The token was added to place pB1 to indicate that the agent does not have an object. 
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Fig. 8. Petri net model of agent B. 

The reachability graph is presented in figure 9. The initial marking M0 describes the initial 
condition where agent B has no object. From the reachability graph it can be concluded that 
the net is bounded and live for M0 = [1, 0, 0, 0]. 
 

 

Fig. 9. Reachability graph of agent B. 

The incidence matrix AB of the Petri net submodel of agent B is presented in equation 7. The 
order of the places in the matrix is P = {pB1, pB2, pB3, pB4} and the order for transitions is T = 

{tB1, tB2, tB3, tB4}. The incidence matrix AB is a m × n matrix, where m = ⏐T⏐ and n = ⏐P⏐. Let x 
be a P-invariant of the subnet which satisfies equation Ax = 0, x1 = [1, 1, 1, 1]T is the only P-
invariant of AB with integer elements. Furthermore, let y be a T-invariant of the subnet 
which satisfies equation AT y = 0, y1 = [1, 1, 1, 1]T is the only T-invariant of AB with integer 
elements. 
The Petri net submodel of agent B is covered by positive T-invariants. As a result, the 
necessary condition for liveness is met so it can be structurally live. On the other hand, the 
subnet is also covered by positive P-invariants, as a result, the subnet is bounded for finite 
initial markings. 

 

(7)

Petri net model of the complete multi-agent system: Let N = (P, T, A,W,M0) be the Petri net 
model of the complete system with places P = {pA1, pA2, pA3, pB1, pB2, pB3, pB4}, transitions T = 
{tA1, tA2, tA3, tB1, tB2, tB3, tB4}, and M0 = [0, 1, 0, 1, 0, 0, 0]. Figure 10 shows N and the 
interpretation of places and transitions is presented in Table 8. 
This model was obtained by joining the Petri net submodels of the two agents, by following 
the methodology presented in algorithm 2. The premise of the algorithm is to identify 
agents engaging in indirect interaction in order to join their models. Furthermore, a 
transition firing from one of the agents will modify the other agent's environmental state. 
For this example, transition tB2 which models an action of agent B, modifies the 
environmental state of agent A. The interpretation in terms of the system's description is 
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that when agent B takes over the object from agent A, the environmental state of agent A 
changes from having an object to not having an object and not being at the end of the path. As a 
result, two additional arcs are added to the submodels in order to construct the overall 
multi-agent system model; an incoming arc to transition tB2 from place PA1, and an outgoing 
arc from transition tB2 to place pA2. 
 

 

Fig. 10. Petri net model N. 

 

Table 8. Description of Petri net model N. 

The tokens in places pA2 and pB1 represent the initial conditions of agent A and B 
respectively. The tokens travel through the net representing different environment states for 
the agents as the system executes. The systems execution scenarios presented in figure 5 can 
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be identified in the Petri net model, e.g., scenario d) of figure 5 will be represented in the 
Petri net model as having a token in pA2 and pB2. The Petri net model can now be analyzed to 
assess the deadlock property in a systematic way. 

3.2.3 Analysis of the Petri net model N 

The Petri net model presented in figure 10 (N) can now be analyzed to assess the deadlock 
property of the underlying multi-agent system. The reachability graph of the model is 
presented in figure 11 and it shows that the net is live and bounded. Therefore, the multi-
agent system is deadlock free. 
 

 

Fig. 11. Reachability graph of Petri net model N. 
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The reachability graph shows the different markings that can be reached by firing different 

enabled transitions in the model. Every node in the graph represents a marking from the 

reachability set R(M0) of the initial marking. The arcs leaving each node indicate the 

transitions that are enabled, e.g., at marking M6 transitions tA1 and tB3 are enabled. The initial 

marking M0 = [0, 1, 0, 1, 0, 0, 0] represents the initial state of the system where a token is 

present in place pA2 and pB1, which in turn represents the initial state of both agents. It 

should be noted that the reachability graph is generated taking M0 as a starting state, 

therefore, the assessment of properties using this graph will result in such properties being 

valid only when M0 = [0, 1, 0, 1, 0, 0, 0]. 

It can be seen from this graph that at every marking of R(M0), there is always an enabled 
transition (every node in the graph has an outgoing arc). As a result the net is live when the 
initial marking (initial condition) is M0 = [0, 1, 0, 1, 0, 0, 0]. 
The boundedness of the net when M0 = [0, 1, 0, 1, 0, 0, 0] can also be observed from the 
reachability graph. The number of tokens present at a particular place is indicated for all the 
markings reachable from M0, hence it is possible to observe the maximum number of tokens 
a place can have. The reachability graph of M0 = [0, 1, 0, 1, 0, 0, 0] shows that the bound in 
the number of tokens for all the places in the net is one, therefore, the net is safe (1-bounded). 
Structural analysis is done using the incidence matrix (9) of the net and its invariants (10). It 
shows that the net is bounded and that the necessary condition for liveness is satisfied; this 
is a slightly weaker conclusion on “liveness” than when both necessary and sufficient 

conditions are met. The incidence matrix A4 for net N is a m × n matrix, where m = ⏐T⏐ and n 

= ⏐P⏐. The row order of transitions is given by T = {tA1, tA2, tA3, tB1, tB2, tB3, tB4} and the 
column order of places is P = {pA1, pA2, pA3, pB1, pB2, pB3, pB4}. 
The incidence matrix gives an indication on the number of tokens gained for every place in 
the net as a result of a transition firing. The state equation (8) presented below, models the 
marking evolution as a function of firing transitions. It is defined as 

 (8)

were u is a row vector of m elements of nonnegative integers. The ith element of u represents 
the number of times transition ti is fired in order to reach Mf from M0. M0 is the current 
marking of the net, and Mf is the marking reached by firing the transitions indicated by u. 

 

(9)

 

(10)
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The state equation for N is Mf = M0 + uA4. This equation can be used to find reachable 

markings as described by the reachability graph. Lets assume that a series of transition 

firings are executed in N starting from M0 = [0, 1, 0, 1, 0, 0, 0]. These transitions are tA1, tB1, 

tA2, tB2, tA1 in this specific order, which renders u = [2, 1, 0, 1, 1, 0, 0]. Use the state equation to 

compute the current marking Mf = [0, 0, 1, 0, 1, 0, 0]. This is equivalent to marking M8 from 

the reachability graph in figure 11 which was reached from M0 after firing the same 

transitions in the same order. 

The state equation is the basis for the structural analysis based on the P-invariants for 

boundedness and T-invariants for liveness (reachability). Let x be a P-invariant of the net 

which by definition satisfies Ax = 0, e.g., x1 = [1, 1, 1, 0, 0, 0, 0]T is a P-invariant of A4 from 

(10). Multiplying the state equation (8) by x we get Mfx = M0x+uAx. The last term of the right 

hand side of the equality is zero given that x is a P-invariant. As a result Mfx = M0x, which in 

turn indicates that the total number of tokens in the places for which the P-invariant is one 

(places pA1, pA2 and pA3, for P-invariant x1) does not change; disregarding which transition or 

set of transitions was fired. This token conservation property is also independent from M0, 

hence, it can be used to assess structural boundedness of such places. 

For P-invariant x1, M f x1 = M0x1 implies that Mf (pA1) + Mf (pA2) + Mf (pA3) = M0(pA1) + M0(pA2) 

+ M0(pA3). This means that places {pA1, pA2, pA3} are bounded by k = M0(pA1) + M0(pA2) + 

M0(pA3). This result applies for every initial marking M0. Furthermore, if the markings of 

these places are assumed to be finite, then it can be concluded that such places are k bounded. 

Further analysis can be done if more knowledge of M0 is assumed. For M0 = [0, 1, 0, 1, 0, 0, 

0], k = M0(pA1) + M0(pA2) + M0(pA3) = 1, therefore these places are 1-bounded (safe). 

The same methodology is used to make an assessment about the structural boundedness of 

the rest of the places of N. The second P-invariant vector in (10) is x2 = [0, 0, 0, 1, 1, 1, 1]T . It 

can be concluded that places {pB1, pB2, pB3, pB4} are bounded by k = M0(pB1)+M0(pB2)+ 

M0(pB3)+M0(pB4) for every possible initial marking. Furthermore, since M0 = [0, 1, 0, 1, 0, 0, 0], 

then k = M0(pB1)+M0(pB2)+M0(pB3)+M0(pB4) = 1, therefore these places are 1-bounded (safe). 

The structural boundedness by net invariants can also be assessed as described in theorem 1. 

The basis for the theorem is the same as presented above, even though it is more restrictive 

since it is focused on assessing boundedness of the whole net. From theorem 1 it can only be 

concluded that the net is bounded, but doing a more detailed analysis of the situation 

allowed the conclusion that the net is safe. For cases where the model complexity is large, it 

could be difficult to find instances in which the whole net is bounded. In such cases, 

knowledge of the details of token conservation should be leveraged to provide boundedness 

assessment of submodels of the net. 

Another use of the state equation (8) is in the solution of the reachability problem. The 
reachability problem consists of knowing whether marking Mf can be reached by firing a 
sequence of transitions given that the net is currently on marking M0. Basically, if  

Mf ∈R(M0), then u is a nonnegative integer solution to Mf = M0 + uA. Solution to the state 
equation is just a necessary condition for reachability. This is due to the fact that u tells only 
which transitions are firing and how many firings per transition will result in marking Mf . It 
does not tell the order in which such transitions should be fired (sequence of transition 
firings), furthermore, it does not warranty that firing sequences consistent with u will be 
feasible, given that there could exist transitions in the sequence that are not enabled in 
markings where they are expected to fire. 
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The reachability problem is closely related to the liveness assessment. Structural liveness is 

difficult to prove based on the network invariants. As a matter of fact, only a necessary 

condition for structural liveness is available; which was described earlier in theorem 2. For 

net N, which is bounded and covered by T-invariants (8), the necessary condition for 

liveness is satisfied. 

Further interpretation of the T-invariants, in addition to the fact that the state equation 

solution provides only a necessary condition for reachability, gives further insight on why a 

T-invariant coverage provides only a necessary condition for liveness. The T-invariant of a 

net is defined as AT y = 0, where A is the incidence matrix. This equation is equivalent to yTA 

= 0. Let u = yT , then the state equation Mf = M0 + yTA becomes Mf = M0. This means that 

firing the transitions described by the T-invariant does not change the marking of the 

network. Furthermore, by firing such transitions, the net returns to marking M0. This 

property is key in the construction of theorem 2. In addition, the fact that only the set of 

transition firings is known, but not a feasible transition firing sequence, results in this 

theorem being a necessary condition only. 

4. Analysis of Petri net models from multi-agent systems 

This section presents the application of Petri net synthesis and reduction methods for the 

modeling and analysis of multi-agent systems using Petri nets. In particular, the use of 

synthesis and reduction methodologies for Petri net models of multi-agent systems with 

indirect interaction, and presents a simple example where the principles are demonstrated. 

This work builds on the methodology presented in section 3 which presents a systematic 

approach to building Petri net models of multi-agent systems with indirect interaction. In 

the examples presented in section 3 only a mutli-agent system consisting of two agents was 

studied and liveness and boundedness properties were assessed. The question now is how 

could these properties be proved for larger systems or for any multi-agent system in general 

that has indirect interaction. One way to do it will be to build the Petri net model for the 

entire multi-agent system and apply the structural or behavioral analysis approaches to the 

entire model in order to make an assessment. The drawback of this approach is the 

complexity involved in a) generating a detailed Petri net model for the complete system, b) 

generating reachability graphs for large Petri nets, and c) finding the invariants of a large 

incidence matrix since the null space of the matrix must be computed. Structural analysis is 

also restrictive since results must apply to every initial marking. An additional drawback 

could be the interpretation of such an assessment and its usefulness. Another approach is 

the divide and conquer approach where we can leverage Petri net synthesis and reduction 

methodologies for analysis to prove liveness and boundedness of the whole system. This is 

done either by proving the properties at a subsystem level and then building them up, or by 

reducing the complete model while preserving its properties until a model of manageable 

size is obtained to assess properties [16]. 

The synthesis and reduction approaches have been successfully applied to the analysis of 
Petri net models of manufacturing systems [17][18][16]. There is no evidence that these 
methodologies have been applied in the analysis of Petri net models of multi-agent systems. 
In general, the focus has been on obtaining Petri net models of specific multi-agent systems, 
but not in the analysis of such models. 
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4.1 Introduction to synthesis and reduction methods for Petri nets 
Petri net synthesis for analysis is the process of adding refinement to Petri net models in a 

manner in which certain properties like liveness and boundedness are preserved. The 

synthesis methodologies consist of starting with a simple model where certain properties 

hold, and then adding detail in the form of more places and transitions following rules that 

ensure that such properties will hold in the new more detailed model [17]. The synthesis 

and reduction methodologies can be described as: i) top-down, ii) bottom-up and iii) hybrid. 

The top-down approach starts with a high level model of the system under consideration 

and then adds stepwise refinements until the desired level of detail is achieved in the model 

[17][19][20]. The bottom-up approach also referred to as a reduction approach consists of 

joining Petri net sub-models that share places or transitions. This approach can also be 

described as transforming the detailed Petri net models using macroplaces and 

macrotransitions so as to obtain a smaller model where the desired properties can be proved 

[17][21][22]. 

Petri net transformations for analysis: Petri net transformations play a crucial role in the 

analysis and assessment of properties. Reduction and synthesis methodologies for analysis 

make use of transformations in order to facilitate the analysis. Such transformations are 

required to preserve system properties; which might vary depending on the focus of the 

analysis, e.g., liveness should be preserved if deadlock is to be assessed for the whole model. 

Transformations might involve places, transitions, or even sections of a Petri net. They range 

from removal of redundant transitions and places, to the exchange of a place or a transition 

by a submodel with higher level of detail. Property preserving transformations are usually 

bi-directional. If a type of transformation removes a redundant place preserving liveness, 

then the same transformation in reverse order can also be used the other way around to 

provide more detail preserving the liveness property. 

Petri net model construction and analysis: In general, the differences between model 

assessment and model construction processes are well understood, since they are present for 

every type of modeling activity in engineering and science. The model analysis process 

starts when a model of a natural or man-made system is readily available, then analysis of 

key properties and behavior of such a model is performed. It is easy to visualize how 

reduction or even synthesis methodologies can be applied for this situation. On the other 

hand, model construction has subtle details that must be clarified in order to understand 

how the synthesis and reduction techniques can be applied to it. 

For a model construction process for existing systems, either man-made or natural, the 

purpose is to build a model, often times a mathematical model which mimics the behavior 

of the existing system. There could be a multiple number of models ranging from different 

levels of detail to different methodologies. An example where different levels of detail are 

present is in dynamic systems, which could either be a lumped-parameter model (ordinary 

differential equations), a distributed parameter model (partial differential equation) or even 

a stochastic model (removing the assumption that some variables are deterministic). An 

example of different methodologies for modeling could be that of a manufacturing system; 

which can either be modeled as a queuing system, with discrete-event simulation, or even 

Petri nets. The selection of the level of detail and methodologies is often guided by the 

requirements of the problem at hand. 
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For the Petri net case, synthesis methodologies can be used in the model construction 

process. One can start with a high level of abstraction model which presents certain key 

properties, additional levels of detail are then added by following property preserving 

transformations. A similar approach is to construct models of different sections of the 

system, then use synthesis procedures to join the different submodels in such a way that the 

properties of interest are preserved. 

For a model construction of a system that does not already exist, like the control logic for an 

automated manufacturing facility, the purpose is to build a model that satisfies a series of 

conditions and properties. In such cases, models can be constructed taking desired 

properties into account during the construction process. 

The concepts described above apply to the multi-agent system domain directly. There are 

cases where a multi-agent system is used to model an existing system, as in the case studies 

presented in previous sections. In other situations, like the control of the national airspace 

system, multi-agent system controllers have been proposed to carry out space management 

operations in a safe and efficient manner. In both cases, analysis methodologies should be 

employed to assess properties of the system. Such multi-agent systems models can be 

translated into the Petri net domain to assess deadlock or other properties. For a multi-agent 

system construction process, the development can start with a high-level model and then 

add more detail to the individual agents. Furthermore, Petri net synthesis concepts could be 

used to aid the design of interaction mechanisms among the agents in such a way that 

properties of the individual agents are preserved through the interaction.  

On synthesis and reduction methodologies: The reduction approach presented in figure 

4.1a shows how starting from a high fidelity model with high-level of detail, the model is 

reduced to a size manageable to perform behavioral or structural analysis. The model Na1 is 

a high-level of detail model used as a starting point, transformation Ta1 reduces the model in 

complexity resulting in a new model Na2. Transformation Ta1 should be a property 

preserving transformation so that Na2 preserves the properties of interest from Na1. For 

example, if liveness and boundedness properties are to be assessed for Na1, then 

transformations Ta1 and Ta2 must preserve these properties. The final model Na3 will have 

lower complexity than the high fidelity model. Analysis of Na3 is now easier or even possible 

if the complexity of Na1 is such that analysis is intractable. The following are situations when 

the reduction approach is helpful. 

• When a high fidelity model is too large to assess behavioral properties of the complete 
model. For this situation, the number of markings in R(M0) is too large and the 
construction of the reachability graph is cumbersome even with the aid of 
computational tools. 

• When there is more interest in the behavior of a section of the model and how it 
interacts with the rest of the model. In this situation, the rest of the net could be reduced 
as much as possible to facilitate the analysis of the section of interest. 

The synthesis approach is also depicted in figure 4.1b. Synthesis methods focus on the 

composition of models from submodels. Two submodels can be joined to form a larger one 

or a place or transition can be exchanged for a submodel with higher level of detail. Similar 

to the reduction approach, these transformations should also be property preserving. 

Assuming that transformations Tb1 and Tb2 preserve properties like liveness and 
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boundedness, then model Nb3 will be live and bounded if model Nb1 is live and bounded. 

This allows one to perform the analysis in the model of smaller complexity and then 

extrapolate those results for the larger model. 

4.2 Literature review 
The work by Suzuki in [23] and Suzuki and Murata in [20] presents a methodology for 
expanding and reducing Petri nets to a desired level of detail. This methodology consists of 
stepwise refinements of transitions and places, as well as abstraction of subnets into a single  
 

              a) Reduction approach                                               b) Synthesis approach 

 

Fig. 12. Synthesis and reduction of Petri net models. 

transition. The transformations presented preserve liveness and boundedness. Reduction is 
presented as a substitution of a subnet by a single transition, hence generating a new model 
with higher level of abstraction. 
Synthesis is approached by way of stepwise refinements. Datta and Ghosh in [24] present a 

top-down approach to analysis of regular Petri nets. Regular Petri nets are live and bounded 

by construction. The properties considered to be preserved by the transformations are 

liveness and boundedness. The work by Lee and Favrel in [22] presents a hierarchical 

(bottom-up) approach to analysis. This consists of a hierarchical reduction and 

decomposition by transforming subnets into macroplaces or macrotransitions. Liveness and 

boundedness are preserved by these transformations. The work by Berthelot in [25] presents 

a series of transformations to provide reduction and synthesis. The properties considered 

include liveness, boundedness, safety, covering of P-invariants, return to home state and 

others. Place transformations and fusion of transitions are presented to provide reduction. 

Synthesis is considered by addition of submodels. Lee et al. in [21] present a reduction 

methodology for generalized Petri nets. In generalized Petri nets, multiple arcs are allowed 

between transitions and places, as a result, the weights of the arcs can be larger than one. 

The purpose of the methodology is to reduce the state-space of the net to a manageable size 

based on the structure of the net. Liveness, boundedness and proper termination properties 
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are preserved by reducing subnets into macroplaces or macrotransitions. The work by Jeng 

and DiCesare in [26] presents a review of synthesis and reduction methods. Examples of 

applications in the manufacturing domain are presented as well. Zhou et al. in [18] present a 

hybrid methodology for synthesis of Petri net models of automated manufacturing systems. 

In this work, modeling details are included as increments by refining places. Reversibility, 

boundedness and liveness are preserved by this methodology. The work by Jeng and 

DiCesare [27] presents a review of reduction and synthesis technologies and their 

applications to manufacturing. Methodologies for synthesis are presented by considering 

merging of places from different subnets, and refinement of transitions. The properties 

preserved depend on the transformations applied. Synthesis and analysis of flexible 

manufacturing systems is presented in Zhou et al. [16]. In this work, the synthesis process is 

used for the model construction process. Petri net design approaches and the modeling 

process are considered, as well as the analysis of the system. Refinement is used to design a 

system that conforms to certain desired properties like liveness, boundedness and 

reversibility. The work by Jeng in [28] presents a methodology for synthesis of flexible 

manufacturing systems. A bottom-up approach is used to construct models and interactions 

among submodels is investigated. This is an application of reduction and refinement for the 

construction of Petri net models of flexible manufacturing systems. 

4.3 Analysis of Petri net model N using reduction techniques 
The Petri net model N from the example (figure 13) in the previous section is presented here 

to illustrate how reduction techniques are used for the assessment of liveness and 

boundedness. From the results presented in the previous section we learned that this Petri 

net model is live and bounded for the initial marking M0 (which is indicated in figure 13). 

The Petri net is also structurally bounded given that the number of places in the model must 

be finite in the initial condition. For structural liveness, only the necessary condition is 

satisfied. From the individual agent submodels (figure 6 and figure 8) it can be concluded 

that only the model for agent B is live and bounded. 

The objective here is to prove that the model is live and bounded. In order to do so, it is 

assumed that it is not known in advance that the model is live and bounded. By applying 

the reduction techniques, the model will be reduced in size until the liveness and 

boundedness properties are evident from the reduced model. 

Transformations: The transformations considered for this example are presented in [17]. 

Basically, two transition transformations fusion and pre-fusion will be used to reduce the 

model. These transformations preserve liveness and boundedness, and they are intended to 

reduce the number of reachable markings of the net; making easier the analysis of the 

reduced model. 

The fusion transformation combines two transitions ti and tj that are separated by a single 
place pk. Place pk must be the only output place of transition ti and it is also an input place of 
transition tj . The transformation removes place pk and combines the transitions into a single 
transition tij , which will have the same input places as ti and the same output places as tj . 
This transformation preserves liveness and boundedness [17]. 
The pre-fusion is a liveness and boundedness preserving transformation that combines two 
transitions ti and tj that are separated by a single place pk. Place pk must be the only output 
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place of transition ti and it is also an input place of transition tj . In addition, transition tj can 
have additional input places besides pk. The transformation removes place pk and combines 
the transitions into a single transition tij , which will have the same input places as ti and the 
same input and output places as tj [17]. 
 

 

Fig. 13. Petri net model N. 

Reduction procedure: The Petri net model N is presented in figure 14. In this figure, a series 

of fusion transformations are indicated. Transitions tA1 and tA2 will be fused, as a result, 

place pA3 will be removed resulting in the model in figure 15a. Fusion of transitions is 

applied twice in the bottom part of the model. First transitions tB1 and tB4 are fused. The 

resulting transition is then fused with transition tB3 to form transition tB134 in figure 15a. In 

addition, transition tA3 was removed since it does not change the marking when it fires. 
 

 

Fig. 14. Fusion transformations in Petri net model N. 
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The final model is presented in figure 15b. It is obtained after applying the pre-fusion 
transformation to the model in figure 15a. 
The pre-fusion transformation will remove place pB4 and combine transition tB2 with 
transition tB134. The resulting model is sufficiently simple to perform the assessment of 
liveness and boundedness by inspection. The size of the reachability set is two since there 
are only two possible markings in the model. The maximum number of tokens in all the 
places is one, as a result the net is 1-bounded (safe). It is also evident that there is always an 
enabled transition, as a result the model is live. 
 

 

Fig. 15. Reduced Petri net model N. 

Since all the transformations applied preserve liveness and boundedness, the fact that the 
reduced model is live and bounded implies that the original Petri net model (figure 13) is 
also live and bounded. 

5. Discussion 

This chapter presented a methodology for the modeling and analysis of multi-agent systems 

using Petri nets. Multi-agent systems with indirect interaction were considered as a starting 

point for the development of Petri net based tools for multi-agent systems. 

The interaction framework considered was the simplest means of interaction among agents 

and referred to in this work as indirect interaction. In the indirect interaction framework 

agents can interact with each other by changing each other's environment. At the interaction 

level, it is natural to regard a multi-agent system as a discrete-event system, and by focusing 

at this level, this work presents a methodology to assess how indirect interactions will work 

with respect to the discrete-event system properties of the multiagent system. Petri nets 

have been used in several applications of discrete-event dynamic systems. In this work, 

multi-agent systems were regarded as a discrete event-system and modeled using the Petri 

net methodology. Thus, properties of Petri nets were analyzed and related to multi-agent 
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systems. The liveness and boundedness properties in the Petri net domain are important for 

multi-agent systems as they relate to deadlock avoidance. Furthermore, properties from the 

Petri net domain could be related to characteristics of the communication and interaction 

mechanism of the multi-agent system. The abstract architecture of intelligent agents is 

considered as a preliminary step of the Petri net model construction process. The 

methodology proposed in this work consists of describing a multi-agent system with the 

abstract architecture for intelligent agents, and then constructing a Petri net model 

systematically from the abstract architecture description of the system. Different scenarios 

were considered in order to indicate how the Petri net analysis methodologies can be used 

to assess key system properties, showing that there is a relationship between multi-agent 

systems with indirect interaction and Petri nets. The mapping of multi-agent systems 

models with the abstract architecture into Petri net models captured the discrete-event 

dynamics of the systems under consideration. This allowed the assessment of properties like 

deadlock avoidance in a multi-agent system, which can be assessed systematically from the 

Petri net model. 

In general, the results presented in this work show the potential for using Petri nets to assess 

key properties of multi-agent systems. In addition, they provide the foundation to further 

investigate the application of Petri net methodologies for the modeling, analysis and design 

of multi-agent systems. 
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