
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Modeling and Analysis Methods
for Multi-agent Systems

Jose R. Celaya1 and Alan A. Desrochers2

1Decision Sciences and Engineering Systems Department
2Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic InstituteTroy, NY 12180
USA

1. Introduction

Multi-agent systems have been studied for the past few decades. At this point in time,
several multi-agent systems frameworks have been defined in order to apply the multi-
agent system concept to different applications. In a multi-agent system, several agents
communicate and interact in order to solve a complex problem. A multi-agent system can be
studied as a computer system that is concurrent, asynchronous, stochastic and distributed.
These characteristics of multi-agent systems make them also a discrete-event dynamic
system, and these have been studied under several analytical methodologies, particularly
Petri nets. Petri nets have a well-defined mathematical structure that can be leveraged to
provide formal analysis of discrete-event dynamic systems. From the discrete-event
dynamic system point of view, multi-agent systems lack analysis and design methodologies.
This chapter is concerned with the development of analytical methods for modeling and
analysis of multi-agent systems, as well as the definition and assessment of system
properties. The study of system properties is becoming more important due to the fact that
we are faced more and more with handling large complex dynamic systems. Computer
simulation is generally used to assess system properties and to verify that the system is
achieving its design objectives. An important challenge in this field is the development of
analytical methods to assess key properties of such systems. Such methods could be used to
provide a preliminary analysis of the multi-agent system, providing design and operation
feedback before the development of expensive simulation models. Furthermore, they will
provide insight into design methodologies for multi-agent systems that will ensure that the
system design under such methodologies complies with the required properties, hence
being a dependable multi-agent system.
The communication and interaction among agents is critical for the overall multi-agent
system design and for the proper functioning of the system. Several interaction frameworks
have been defined and they range from collaboration among agents, through competition
for resources requiring some level of negotiation in the multi-agent system. This work
focuses particularly at the interaction level, and studies the interactions between different
agents in the system.
The mission of the chapter is to present a methodology for modeling and analysis of multi-
agent systems at the agent interaction level. This will be carried out by studying the discrete-O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Multiagent Systems, Book edited by: Salman Ahmed and Mohd Noh Karsiti,
 ISBN 978-3-902613-51-6, pp. 426, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Multiagent Systems

74

event characteristics of the interactions and using the Petri net methodologies as the
modeling and analysis tool. Properties known to be important in the discrete event systems
and Petri net domains will be used to study multi-agent systems. Here, properties like
boundedness and liveness will be analyzed and demonstrated for multiagent systems, as
they relate to deadlock avoidance in the Petri net domain. Furthermore, these properties will
be related to characteristics of the interaction mechanism. If modeled properly, a deadlock
found in a Petri net domain will mean that the interaction mechanism in use in the multi-
agent system is prone to deadlocks in the interaction among agents.
In particular, this chapter will include methodologies for mapping multi-agent systems into
Petri net models. These methodologies will present the right level of detail/abstraction in
order to map all the important behaviors of the interaction framework into the resulting
Petri net models. Petri net analysis methods such as the reachability graph and the analysis
of the network invariants will be used for the assessment of properties. Furthermore, Petri
net synthesis techniques will allow the ability to provide more or less detail to the models,
giving the ability to add detail/abstraction to the behavior of the multi-agent system to be
modeled.

1.1 Methodology
The problem addressed in this chapter can be considered in two parts: properties, and
methodologies for modeling and analysis. The following is the methodology followed for
this work.
Properties: If a multi-agent system is regarded as a discrete-event system and modeled
using Petri nets, then properties known to be important in the discrete-event systems and
Petri net domains could be used to study multi-agent systems. If we consider models of
multi-agent systems as discrete-event systems, an important question to consider is which
properties in the Petri net domain are important? As a starting point there are properties we
would like to analyze and demonstrate for multi-agent systems. Examples of these are
boundedness and liveness as related to deadlock avoidance in the Petri net domain. Other
properties exist that are related to performance evaluation. These properties from the Petri
net domain could be related to characteristics of the communication and interaction of the
multi-agent system. If modeled properly, a deadlock found in a Petri net domain will mean
that the interaction mechanism in use in the multi-agent system is prone to deadlocks in the
interaction among individual agents.
Methodologies for modeling and analysis: Considering that a multi-agent system can be

regarded as a discrete-event system, Petri nets can be used as a modeling tool. This will

require methodologies for mapping multi-agent systems into Petri net models. These

methodologies will require the right level of detail/abstraction in order to map all the

important behaviors of the communication and interaction framework into the resulting

Petri net models. Having Petri net models of multi-agent systems will allow us to use the

existing analysis methodologies for Petri nets. Important properties of discrete-event

systems could be obtained with Petri net analysis methods such as the reachability graph

and the analysis of the network invariants. New analysis techniques related directly to the

multi-agent system domain can be designed or tailored from existing Petri net techniques.

Furthermore, Petri net synthesis techniques allow us to provide more or less detail to our

models giving the ability to add detail/abstraction to the behavior of the multi-agent system

that we would like to model.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

75

1.2 Related work
Petri nets and Petri net extension methodologies have been used to model systems with
more than one agent. Murata et al. [1] presented an algorithm to construct predicate/
transition models of robotic operations. Basically, robot actions were considered as firing
transitions and the model was used for the planning of concurrent activities of multiple
robots (agents). Even though the robotic system considered does not have direct interaction
between the agents, the model used shows the ability of the Petri net-like models to capture
interactions between the agents that are not evident in the design process. In a similar way,
Xu et al. [2] proposed a methodology based on predicate/transition nets for multiple agents
under static planning of activities. In addition, they proposed a validation algorithm for
plans with parallel activities. The verification is done based on reachability graphs due to
the fact that agents actions are modeled as transitions. Petri nets also have been used to
model specific multi-agent system frameworks but the resulting models have not been used
to provide a study of the properties of the multi-agent system. Ahn et al. [3] proposed a
multi-agent system architecture for distributed and collaborative supply-chain
management. The suggested architecture is aimed at discovering the structure of the
supply-chain and predicting future demands based on local information sharing among the
agents. A Petri net model is presented but no structural analysis of the model and no
verification of the coordination activities were performed. The advantages of having a Petri
net model were not exploited. The work of Leitao et al. [4], proposed a Petri net model
approach to formal specification of holonic control systems for manufacturing. They
developed a Petri net submodel for each of the four types of holons (agents) suggested in the
ADACOR (Adaptive Holonic Control Architecture for Distributed Manufacturing Systems)
architecture. There was no attempt to study the structural properties of the Petri net model
in order to assess some sort of dependability in the proposed architecture. Formal modeling
and specification of the multi-agent systems interaction framework has only been attempted
in the holonic manufacturing system considering the contract net protocol as the interaction
framework. The work presented by Hsieh in [5] proposed a new model called a collaborative
Petri net and addressed the question of deadlock and undesirable state avoidance under the
contract net protocol. Finally, multi-agent system survivability1 and fault tolerance using
Petri net models have been used in the mobile-agent area. Lyu et al. [6] used a Stochastic
Petri net model to assess survivability and fault tolerance of mobile agents systems. They use
the model for design and verification of their proposed agent architecture.

2. Introduction to Petri nets

Petri nets are a graphical and mathematical modeling tool used to describe and analyze
different kinds of real systems. Petri nets were first introduced by Carl Adam Petri in 1962
in Germany [8], and evolved as a suitable tool for the study of systems that are concurrent,
asynchronous, distributed, parallel and/or stochastic. Performance evaluation has been a
very successful application area of Petri nets. In addition, Petri nets have been successfully
used in several areas for the modeling and analysis of distributed-software systems,
distributed-database systems, flexible manufacturing systems, concurrent and parallel
programs and discrete-event dynamic systems (DEDS) to mention just a few [9][8][10][11]. A

1 Survivability is the agent's ability to recognize, resist and recover from attacks [7].

www.intechopen.com

 Multiagent Systems

76

multi-agent system is a kind of DEDS that is concurrent, asynchronous, stochastic and
distributed. From the DEDS point of view, multi-agent systems lack analysis and design
methodologies. Petri net methods are used in this work to develop analytical methodologies
for multi-agent systems.
Petri nets are often used in the modeling and analysis of DEDS. They include explicit
conditions under which an event can occur; capturing also the relations between concurrent
and asynchronous events. As a result, Petri nets are suitable for studying complex and
general DEDS [10][11].
This section presents an introduction to Petri nets. Petri nets are defined followed by
important properties and analysis methodologies. Finally, an example of a manufacturing
application is presented.

2.1 Petri nets definition
Definition 1 The following is the formal definition of a Petri net [9][8][12][13]. A Petri net is a five-
tuple

 (1)

where:
P is a finite set of places
T is a finite set of transitions

A ⊆ (P × T) ∪ (T × P) is a set of arcs

W : A → {1, 2, 3, …} is a weight function

M0 : P → Z+ is the initial marking
The meanings of places and transitions in Petri nets depend directly on the modeling
approach. When modeling, several interpretations can be assigned to places and transitions.
For a DEDS a transition is regarded as an event and the places are interpreted as a condition
for an event to occur.
Table 1 presents several typical interpretations for transitions and places. A simple Petri net
example is presented in figure 1. This example is used later to define additional Petri net
characteristics.

Table 1. Modeling interpretations of transitions and places [8].

Fig. 1. Petri net example.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

77

Places, transitions and arcs: Places are represented with circles and transitions are
represented with bars. The arcs are directed from places to transitions or from transitions to
places. The places contain tokens that travel through the net depending on the firing of a
transition. A place p is said to be an input place to a transition t if an arc is directed from p to
t. Similarly, an output place of t is any place in the net with an incoming arc from transition
t. In the example (figure 1) p1 is an input place of t1, and p2 is an output place of t1.
Transition firing: A transition can fire only if it is enabled. For a transition t to be enabled, all
the input places of t must contain at least one token2. When a transition is fired, a token is
removed from each input place, and one token is added to each output place. In this way the
tokens travel through the net depending on the transitions fired.

Definition 2 (Marking) The marking mi of a place pi ∈ P is a non-negative quantity representing the
number of tokens in the place at a given state of the Petri net. The marking of the Petri net is defined

as the function M : P → Z+ that maps the set of places to the set of non-negative integers. It is also

defined as a vector Mj = (m1,m2, …, m⏐P⏐) were mi = M(pi), which represents the jth state of the net.
Mj contains the marking of all the places and the initial marking is denoted by M0.
In the example of figure 1 only transition t1 is enabled. When t1 fires, one token is removed
from place p1 and one token is added to place p2. Figure 2 shows the evolution of the Petri
net in the previous example. Figure 2 a) presents the initial marking of the net M0 =
[M(p1),M(p2),M(p3)] = [2, 0, 0], only transition t1 is enabled. Figure 2 b) presents the net with
marking M1 = [1, 1, 0] after t1 is fired. Here, transitions t1 and t2 are enabled and they can be
fired. Finally, figure 2 c) represents the net after t2 is fired. In this case transitions t1 and t3 are
enabled with marking M2 = [1, 0, 1].

Fig. 2. Petri net evolution after firing transitions t1 and t2.

2 Assuming the weights W of the Petri net are equal to one. When the weights are not
indicated they are assumed to be one. The weight on an arc coming to a transition from one
of the incoming places indicates the minimum number of tokens needed in the incoming
place in order for that transition to be enabled. When the transition fires, it will remove from
the incoming place the amount of tokens indicated by the weight of the arc.

www.intechopen.com

 Multiagent Systems

78

The marking of the Petri net represents the state of the net. As described above, the
transitions change the state of the Petri net in the same way an event changes the state of a
DEDS.
Definition 3 (Reachability graph) The reachability graph has the marking of the Petri net (or state
of the Petri net) as a node. An arc of the graph joining Mi with Mj represents the transition when
firing takes the Petri net from the marking (state) Mi to the marking Mj .
The reachability graph of the Petri net in figure 1 is presented in figure 3.

Fig. 3. Reachability graph.

2.2 Properties
This section covers some of the most important properties of Petri nets such as Reachability,

Liveness, Boundedness and Reversibility. These properties are essential for the analysis of Petri

net models. Furthermore, they are required characteristics for the use of Petri nets in

performance evaluation [8][10][11].

These are properties that could be applied to multi-agent systems models. Examples of these

properties are boundedness and liveness since they are related to deadlock avoidance in

DEDS. Other properties are going to be relevant to multi-agent systems particularly to the

communication, interaction, and single agent architectures. It is unknown how the available

properties of Petri nets relate to models of multi-agent systems. This is a research question

addressed in this study. In addition, the definition of new properties might be required to

capture behaviors particular to multi-agent systems. A complete description of the available

Petri net properties can be found in [8]. The analysis methods developed in this research will

focus on the following properties.

Definition 4 (Reachability) A marking Mj is said to be reachable from marking Mi if there exists a
sequence of transitions that takes the Petri net from state Mi to Mj . The set of all possible markings
that are reachable from M0 is called the reachability set and is defined by R(M0).
The concept of reachability is essential for the study of the dynamic properties of a Petri net.

The reachability set can be obtained from the reachability graph presented previously, e.g.,

figure 3 [8][11].

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

79

Definition 5 (Liveness) A Petri net is said to be live for a marking M0 if for any marking in R(M0)
it is possible to fire a transition.
The liveness property guaranties the absence of deadlock in a Petri net. This property can
also be observed from the reachability graph. If the reachability graph contains an absorbent
state3, then the Petri net is not live at that state and it is said to have a deadlock [8][11].
Definition 6 (Boundedness) A Petri net is said to be bounded or k-bounded if the number of
tokens in each place does not exceed a finite number k for any marking in R(M0). Furthermore, a Petri
net is structurally bounded if it is bounded for any finite initial marking M0. A Petri net is said to
be safe if it is 1-bounded [8].
Definition 7 (Reversibility) A Petri net is reversible, if for any marking in R(M0), M0 is reachable.
This means that the Petri net can always return to the initial marking M0 [8][11].
For the example in figure 1 we have a reachability set R(M0) = {M1 = [1, 1, 0],M2 = [0, 2, 0],M3

= [1, 0, 1],M4 = [0, 1, 1],M5 = [0, 0, 2]}. The Petri net is live, reversible and 2-bounded for the
marking M0 = [2, 0, 0].

2.3 Structural analysis
This section considers the structural analysis of Petri nets by using invariant analysis as
described in [8][13]. Basically, the liveness and boundedness of the net will be assessed by
using P-invariants and T-invariants. These invariants are obtained from the incidence matrix
of the net and they give information regarding token conservation and transition firing
sequences that leave the marking of the net unchanged. These concepts are used to assess
the overall liveness and boundedness of the net.
Definition 8 (Incidence matrix) Let

= w(i, j) be the weight of the arc that goes from transition ti

to place pj and = w(j, i) be the weight of the arc from place pj to transition ti. The incidence matrix

A of a Petri net has ⏐T⏐ number of rows and ⏐P⏐ number of columns. It is defined as A = [aij] where
aij = - .

The example presented in figure 1 shows an ordinary Petri net (all the weights are equal to
1) and the following is its corresponding incidence matrix.

Definition 9 (Net-invariants) Let A be the incidence matrix. A P-invariant is a vector that satisfies
the equation

 (2)

and a T-invariant is a vector that satisfies the equation

 (3)

3 If the net is not live for marking M0 then at least one marking from R(M0) will not have any
enabled outgoing transitions. If the reachability graph is considered as the state graph of the
net, then an absorbent state is that from which the marking it is representing does not have
any outgoing transitions enabled. As a result, when the net reaches an absorbent state, it will
remain in it indefinitely.

www.intechopen.com

 Multiagent Systems

80

2.3.1 Boundedness assessment
The P-invariants of the incidence matrix are used in Theorem 1 to make an assessment of the
boundedness of the Petri net. A Petri net model is covered by P-invariants if and only if, for
each place s in the net, there exists a positive P-invariant x such that x(s) > 0.
Theorem 1 A Petri net is structurally bounded if it is covered by P-invariants and the initial
marking M0 is finite [13].

2.3.2 Liveness assessment
The liveness of the Petri net model is assessed on Theorem 2 by means of the T-invariants of
the incidence matrix. A Petri net model is covered by T-invariants if and only if, for each
transition t in the net, there exists a positive T-invariant y such that y(t) > 0. This is a
necessary condition but not sufficient. The liveness assessment by the use of T-invariants is
still an open problem [8].
Theorem 2 A Petri net that is finite is live and bounded if it is covered by T-invariants [13].

3. Modeling of multi-agent systems with indirect interaction

The methodology presented here consists of defining a simple multi-agent system based on
the abstract architecture for intelligent agents (M). The abstract architecture is modeled as a
discrete-event system using Petri nets (N) and structural and reachability analysis provides
an assessment of the interaction properties. Deadlock avoidance in the multiagent system is
considered as a key property, and it is evaluated using the liveness and boundedness
properties of the Petri net model.
The purpose of this work consists of the definition of an abstract architecture for multiagent
systems with indirect interaction, analogous to the abstract architecture for intelligent
agents. The proposed architecture allows the description of agent-to-agent interactions via
changes in the environment and serves as an initial description of the discrete-event
dynamics of the multi-agent system. In addition, this work presents an algorithm
(algorithms 1 and 2) to obtain a Petri net model of a multi-agent system by making use of
the multi-agent system's abstract architecture. Finally, a methodology to ensure that the
multi-agent system is deadlock free is presented; it is based on the analysis of the properties
of the Petri net model.
Here, the abstract architecture of intelligent agents is used as a starting point; particularly
the abstract architecture for purely reactive agents. The level of abstraction of agents
modeled by the abstract architecture makes it a good candidate for the study of multiagent
systems as discrete-event dynamic systems. The study of interaction frameworks is first
approached by studying the simplest means of interaction among agents (indirect
interaction); assuming the agents have the perception/action capabilities and agents can
interact by changing each others environment.
Modeling approach based on interaction among agents: The interactions between agents
can be either a direct agent-to-agent interaction or an indirect interaction. The typical
structure of a multi-agent system was presented in [14] and is reproduced in figure 4. It
shows how the agents interact among each other and how they operate over a metalevel
(multi-agent level) environment. Arrows define direct agent interactions from agent to
agent; the indirect interactions are based on the environment. In the indirect interaction, an
agent modifies another agent's environment triggering a reaction. The indirect interaction
occurs in the cases when two or more agents share a subset of the environment. It should be

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

81

noted that the overall multi-agent system acts over a meta-level environment. An agent that
is part of the multi-agent system has its own environment that is somehow related to the
meta-level environment of the multi-agent system. This meta-level environment of the
multi-agent system is referred to in the literature as being an open environment [15]. A
complex problem will provide an open environment, which is dynamic, has components
that are unknown in advance, its structure changes over time and might be heterogeneous
in its implementation [15]. By focusing on the interactions among agents as described above,
it is natural to regard a multi-agent system as a discrete-event system.

Fig. 4. Structure of a multi-agent system [14].

Following the goal of defining a methodology for modeling multi-agent systems, there is a
need to define a modeling methodology that makes no use of the context of the system or at
least abstracts itself from it. Basically, looking at an abstract architecture as a means of
modeling single agents and multi-agent systems. The proposed modeling approach, uses
the abstract architecture to obtain the Petri net models.

3.1 Petri net models from the abstract architecture
The artificial intelligence research considers three difierent paradigms for intelligent agents:
a) reactive and b) deliberative; and c) hybrids between them. The abstract architecture
models how an agent behaves with respect to changes in its environment. Here, an agent
has its own environment and this environment is defined by the nature of the agent. The
goals, objectives and the general purpose of the agent define its environment. This abstract
architecture is based on the reactive paradigm of perception and action. A purely reactive

www.intechopen.com

 Multiagent Systems

82

agent has a perception of the environment and it is used in the decision mechanism that
provides an action in the agent. A reactive agent can also have an internal state as a decision
mechanism for the actions to be undertaken. An agent with perception and internal state
capabilities has more computational power than an agent without them and its
computational power is now comparable with that of the Belief-Desired-Intention
architecture as described in [14].
Abstract model for purely reactive agents: In a purely reactive agent, the perception part
records the changes in the state of the environment. The action part computes the actions to
be taken in order to react to changes in the environment. The agent environment changes
based on the actions applied by the agent, as well as actions by other agents, and it may be
dynamic in that it may change by itself.
The environment consists of a set of states S = {s1, s2,…}. The agent can undertake a set of
actions A = {a1, a2, …} and perceive a set of percepts P = {p1, p2, …}. For a purely reactive

agent, the behavior of the agent can be represented as the function action: P → A and

perception : S → P. The deterministic behavior of an environment can be represented by the

function environment : S × A → S.
Petri net modeling of multi-agent systems: A Petri net is defined as a five-tuple (P, T,

A,W,M0) where: P is a finite set of places, T is a finite set of transitions, A ⊆ (P × T) [(T × P) is a

set of arcs, W : A → {1, 2, 3, …] is a weight function, and M0 : P →

is the initial marking.

When modeling, several interpretations can be assigned to places and transitions. For a
discrete-event dynamic system a transition is regarded as an event, and the places are
interpreted as a condition for an event to occur.
There are properties we would like to show for multi-agent systems. Examples of these
properties are boundedness and liveness since they are related to deadlock avoidance in
discrete-event systems. Other properties are going to be relevant to multi-agent systems
particularly to the communication, interaction and individual agent architectures. The
reachability, liveness and boundedness properties of Petri nets are going to be used in the
analysis presented in this chapter.

3.1.1 Obtaining Petri net models from the abstract architecture
Places model the environmental state of the agent. Having a token in a place representing
state si means that the agent is currently in such a state.
Transitions model the actions of an agent. The environmental state is changed by actions so,
for the Petri net model having tokens move from one place to another by firing transitions,
this agrees with the execution process of the abstract architecture.
Algorithm 1 (Petri net submodel for agent i) Let Si be the set of environmental states of agent i,

and sij ∈ Si be the jth environmental state of agent i. Similarly, let Ai be the set of actions of agent i,

and aik ∈ Ai be the kth action of agent i.
1. Add a place for each element of the environment Si and label each place using notation Pij for sij .
2. Add a transition for each action in Ai and label each transition using notation Tik for aik.

3. For each instance of the function environment : Si ×Ai → Si say sij ×aik → sil: a) add an arc
leaving from place Pij and ending in transition Tik; b) add an arc leaving from transition Tik and
ending in place Pil; c) add a weight of 1 to each arc.
If an arc from transition Tik to place Pil already exists, add a new transition and label it T’ik;
perform this step using T’ik instead of Tik.

4. Add a token in the place representing the initial state of the environment.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

83

Algorithm 2 (Petri net model of the multi-agent system) The Petri net sub-models of each of the
individual agents in the system should be joined based on their indirect interactions. In general, this
indirect interaction will be in such a way that an agent i action will change an environment state of
agent j. This communication act can be regarded as a regular action in the construction of the
complete model. There will be arcs added from the places modeling the environmental states of agent j
to the transition modeling the communication in agent i.

3.1.2 Analysis of the Petri net model
The Petri net model of the multi-agent system can be analyzed to assess system properties
like deadlock. Inspection of the reachability graph of the Petri net model can indicate if the
model is live and bounded. On the other hand, liveness and boundedness properties can
also be assessed using invariant analysis [13]. Basically, the liveness and boundedness of the
net can be assessed by using the P-invariants and T-invariants obtained from the incidence
matrix which give information regarding token conservation and transition firing sequences
that leave the marking of the net unchanged.
Let = w(i, j) be the weight of the arc that goes from transition ti to place pj and = w(j, i)

be the weight of the arc from place pj to transition ti. The incidence matrix A of a Petri net has

⏐T⏐ number of rows and ⏐P⏐ number of columns. It is defined as A = [aij] where
aij = - . Furthermore, a P-invariant is a vector that satisfies Ax = 0 and a T-invariant is a

vector that satisfies AT y = 0.
A Petri Net model is covered by P-invariants if and only if for each place s in the net, there
exists a positive P-invariant x such that x(s) > 0 . Furthermore, a Petri net is structurally
bounded if it is covered by P-invariants and the initial marking M0 is finite. In addition, a
Petri net model is covered by T-invariants if and only if for each transition t in the net, there
exists a positive T-invariant y such that y(t) > 0. Furthermore, a Petri Net is live and
bounded if it is covered by T-invariants. This is a necessary condition but not sufficient.

3.2 Multi-agent system modeling and analysis example
This section presents a description of a simple multi-agent system consisting of two physical
agents that work together at a task. This system will be used throughout this chapter to
illustrate how the Petri net and abstract architecture models can be applied to multi-agent
systems.
This system consists of two agents referred to as agent A and agent B. They move objects
from one end of a path to the other. Figure 5 shows 4 scenarios in the operation of the
system. Both agents are capable of moving objects and agent A moves faster than agent B.
The objective of agent A is to go to the end of the path, pick an object, and return to the start
of the path (figure 5a). Since it is faster than agent B it reaches the objects first (figure 5b). At
the time they intersect in the path, agent A gives its object to agent B and returns to the end
of the path to pick another object (figures 5c and 5d). On the other hand, the objective of
agent B is to go in the direction of the end of the path, intersect with agent A and get its
object. Once the agent has an object, it returns to the start of the path, places the object down
and starts all over again.
The meta-level environment of the system consists of a single path with a set of objects on one
side and no objects on the other side.
There is indirect interaction between the agents via changes in their environments. The
exchange of the object between the agents should be regarded as a result of a change in the

www.intechopen.com

 Multiagent Systems

84

environment of both agents. The two agents are regarded as purely reactive, which implies
they do not have a record of history and they do not have an internal state. The decisions
they make are about which actions to undertake and those decisions are directly influenced
by the location of the agent in the path and whether the agent has an object or not. It should
be noted also, that the goal of the overall multi-agent system is a little different from the goal
of each specific agent.

Fig. 5. Multi-agent system example for modeling and analysis.

3.2.1 Abstract architecture description
Under normal conditions, agent A will be walking to the end of the path to pick the object to
be moved. The object is going to be taken away by the other agent at the intersection. Let M
be the multi-agent system with agent A and B modeled with the abstract architecture. Agent
A has environmental states SA, a set of actions AA, an action function actionA, and an
environment evolution function environmentA. On the other hand, Agent B has
environmental states SB, a set of actions AB, an action function actionB, and an environment
evolution function environmentB. Tables 2 and 3 describe the possible environmental states
(SA) and the actions (AA) that agent A can undertake.

Table 2. Environmental states of agent A of M.

Table 3. Actions for agent A of M.

Table 4 presents the mapping of the environment (environmentA) describing how it will be

changing as the agent undertakes actions. It should be noted that the notion of exchanging

the part with agent B at the intersection has not been considered explicitly in the description

of the environmentA : S × A → S for agent A. The agents decision mechanism is described by

the actionA function as presented in (4).

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

85

(4)

Agent B will be walking toward the end of the path until it intersects with agent A which is
on its way back to the beginning of the path carrying an object. At the intersection point,
agent B takes over the object of agent A and proceeds to return to the beginning of the path
to drop the object and start the cycle again. The abstract architecture of agent B is presented
in Tables 4 and 5, and the actionB(s) function is described in (5).

Table 4. Environment function for agent A of M.

Table 5. Environmental states for agent B of M.

Table 6. Actions for agent B of M.

(5)

The mapping of the environment of agent B (environmentB) is presented in Table 7. The
interaction with agent A (in the exchange of the part) is implicitly modeled by action a2

although there is no indication in its abstract architecture that it will change the
environment of agent A.

3.2.2 Petri net model
The Petri net model of the multi-agent system was obtained following the procedure
described in algorithm 1 (Petri net submodel for an agent) and algorithm 2 (Petri net model of the
multi-agent system). Basically, algorithm 1 is executed once for each agent in the system.

www.intechopen.com

 Multiagent Systems

86

Table 7. Environment function for agent B of M.

Furthermore, once all the individual agents' submodels are obtained, algorithm 2 is used to
join the submodels of those agents that engage in indirect interaction.
Petri net submodel for agent A: The Petri net submodel for agent A presented in figure 6 is
obtained as follows. Step 1 of the algorithm is concerned with the places of the Petri net. For
each of the environmental states of agent A as described in table 2, a place is added to the
new submodel following the described notation. In this step, three places are added in total,
e.g., place pA2 which models the environmental state s2. In this state, agent A does not have
an object and it is not at the end of the path. The transitions of the model are added in the
second step of the algorithm. For this agent, a total of three transitions are added which
model the three actions agent A can undertake, e.g., transition tA2 models action a2 which in
turn is the pick an object action of agent A as described in table 3. The arcs of the Petri net are
added in Step 3 of the algorithm. These arcs are related directly to the function that
describes the evolution of the environment of the agent. This function maps the Cartesian
product of environmental states and actions into the environmental states resulting from the
agent undertaking a particular action. From the Petri net model point of view, this means a
Cartesian product of places and transitions that is mapped into a set of places. The addition
of arcs revolves around the transitions/actions of each instance of this mapping as described
in table 4, e.g., f(s2, a1) = s3 indicates that two arcs should be added to transition tA1, an
incoming arc from place pA2 and an outgoing arc to place pA3. The last step of the algorithm
consists of assigning the initial condition or current state to the model. A token is added to
the place representing the current environmental state of the agent. A complete list with
description of places and transitions is presented in table 8.

Fig. 6. Petri net model of agent A.
The Petri net submodel for agent A is not pure since place pA1 and transition tA3 form a self-
loop. A Petri net is said to be pure if there is no place p that is both the input and output
place to a transition t [8]. This self-loop is an artifact of the abstract architecture model of the
agent. A token in place pA1 indicates that the agent is currently at environmental state S1,
which in turn means that agent A has an object. Furthermore, transition tA3 models action a3

which indicates that agent A walks to the start of the path. This self-loop models agent A
walking towards the start of the path while carrying an object. It does not model what will
happen once the agent reaches the start of the path. It must be noted that this is not a
deficiency in the Petri net construction model, but a choice made in generating the abstract

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

87

architecture description for this agent. This description assumes that when agent A is
holding an object and walking towards the start of the path, the other agent will intersect
with it and take over the object.
From the Petri net analysis point of view it can be seen that a token will eventually reach
place pA1 and remain there indefinitely. This is consistent with the abstract architecture
description since it does not model the capabilities of the agent once it reaches the start of
the path having an object to drop there. As a result, the dynamics of this agent by itself reach
a stationary state. A stationary state in this context means that the agent will keep doing the
same activity and that the Petri net model indicates that the dynamics eventually get
trapped at one state. It can be seeen from the reachability graph in figure 7 that the agent
reaches state M2 and remains there. The only transition enabled at state M2 is transition tA3

and once it fires, the system remains in state M2.
The states of the reachability graph are described in figure 7 as well. The initial marking M0

describes the initial condition where agent A has no object and it is not at the end of the
path. From the reachability graph it can be concluded that the net is bounded and live for
M0 = [0, 1, 0]. Even though the subnet is live, it will remain in state M2 once such a state is
reached, as a result, the subnet is not reversible.

Fig. 7. Reachability graph of agent A.

The incidence matrix AA of the Petri net submodel of agent A is presented in equation 6. The
order of the places in the matrix is P = {pA1, pA2, pA3} and the order for transitions is

T = {tA1, tA2, tA3}. The incidence matrix AA is a m × n matrix, where m = ⏐T⏐ and n = ⏐P⏐. Let
x be a P-invariant of the subnet which satisfies equation Ax = 0, x1 = [1, 1, 1]T is the only P-
invariant of AA with integer elements. Furthermore, let y be a T-invariant of the subnet
which satisfies equation AT y = 0, y1 = [0, 0, 1]T is the only T-invariant of AA with integer
elements.

(6)

The Petri net submodel of agent A is not covered by positive T-invariants. As a result, the
necessary condition for liveness is not met and it can be concluded that the subnet is not
structurally live. On the other hand, the subnet is covered by positive P-invariants, as a
result, the subnet is bounded for finite initial markings.
Petri net submodel of agent B: The Petri net submodel of agent B is presented in figure 8.
This submodel is obtained in a similar way as that of agent A, following the steps presented
in algorithm 1 and the abstract architecture description of the agent presented in the
previous section. The first step of the algorithm results in the addition of four places to the
model based on the set of environmental states described in table 5. The four transitions are
added in step 2, representing the set of actions in table 6. The four instances of the
environment evolution function presented in table 7 result in the eight arcs of the model.
The token was added to place pB1 to indicate that the agent does not have an object.

www.intechopen.com

 Multiagent Systems

88

Fig. 8. Petri net model of agent B.

The reachability graph is presented in figure 9. The initial marking M0 describes the initial
condition where agent B has no object. From the reachability graph it can be concluded that
the net is bounded and live for M0 = [1, 0, 0, 0].

Fig. 9. Reachability graph of agent B.

The incidence matrix AB of the Petri net submodel of agent B is presented in equation 7. The
order of the places in the matrix is P = {pB1, pB2, pB3, pB4} and the order for transitions is T =

{tB1, tB2, tB3, tB4}. The incidence matrix AB is a m × n matrix, where m = ⏐T⏐ and n = ⏐P⏐. Let x
be a P-invariant of the subnet which satisfies equation Ax = 0, x1 = [1, 1, 1, 1]T is the only P-
invariant of AB with integer elements. Furthermore, let y be a T-invariant of the subnet
which satisfies equation AT y = 0, y1 = [1, 1, 1, 1]T is the only T-invariant of AB with integer
elements.
The Petri net submodel of agent B is covered by positive T-invariants. As a result, the
necessary condition for liveness is met so it can be structurally live. On the other hand, the
subnet is also covered by positive P-invariants, as a result, the subnet is bounded for finite
initial markings.

(7)

Petri net model of the complete multi-agent system: Let N = (P, T, A,W,M0) be the Petri net
model of the complete system with places P = {pA1, pA2, pA3, pB1, pB2, pB3, pB4}, transitions T =
{tA1, tA2, tA3, tB1, tB2, tB3, tB4}, and M0 = [0, 1, 0, 1, 0, 0, 0]. Figure 10 shows N and the
interpretation of places and transitions is presented in Table 8.
This model was obtained by joining the Petri net submodels of the two agents, by following
the methodology presented in algorithm 2. The premise of the algorithm is to identify
agents engaging in indirect interaction in order to join their models. Furthermore, a
transition firing from one of the agents will modify the other agent's environmental state.
For this example, transition tB2 which models an action of agent B, modifies the
environmental state of agent A. The interpretation in terms of the system's description is

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

89

that when agent B takes over the object from agent A, the environmental state of agent A
changes from having an object to not having an object and not being at the end of the path. As a
result, two additional arcs are added to the submodels in order to construct the overall
multi-agent system model; an incoming arc to transition tB2 from place PA1, and an outgoing
arc from transition tB2 to place pA2.

Fig. 10. Petri net model N.

Table 8. Description of Petri net model N.

The tokens in places pA2 and pB1 represent the initial conditions of agent A and B
respectively. The tokens travel through the net representing different environment states for
the agents as the system executes. The systems execution scenarios presented in figure 5 can

www.intechopen.com

 Multiagent Systems

90

be identified in the Petri net model, e.g., scenario d) of figure 5 will be represented in the
Petri net model as having a token in pA2 and pB2. The Petri net model can now be analyzed to
assess the deadlock property in a systematic way.

3.2.3 Analysis of the Petri net model N

The Petri net model presented in figure 10 (N) can now be analyzed to assess the deadlock
property of the underlying multi-agent system. The reachability graph of the model is
presented in figure 11 and it shows that the net is live and bounded. Therefore, the multi-
agent system is deadlock free.

Fig. 11. Reachability graph of Petri net model N.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

91

The reachability graph shows the different markings that can be reached by firing different

enabled transitions in the model. Every node in the graph represents a marking from the

reachability set R(M0) of the initial marking. The arcs leaving each node indicate the

transitions that are enabled, e.g., at marking M6 transitions tA1 and tB3 are enabled. The initial

marking M0 = [0, 1, 0, 1, 0, 0, 0] represents the initial state of the system where a token is

present in place pA2 and pB1, which in turn represents the initial state of both agents. It

should be noted that the reachability graph is generated taking M0 as a starting state,

therefore, the assessment of properties using this graph will result in such properties being

valid only when M0 = [0, 1, 0, 1, 0, 0, 0].

It can be seen from this graph that at every marking of R(M0), there is always an enabled
transition (every node in the graph has an outgoing arc). As a result the net is live when the
initial marking (initial condition) is M0 = [0, 1, 0, 1, 0, 0, 0].
The boundedness of the net when M0 = [0, 1, 0, 1, 0, 0, 0] can also be observed from the
reachability graph. The number of tokens present at a particular place is indicated for all the
markings reachable from M0, hence it is possible to observe the maximum number of tokens
a place can have. The reachability graph of M0 = [0, 1, 0, 1, 0, 0, 0] shows that the bound in
the number of tokens for all the places in the net is one, therefore, the net is safe (1-bounded).
Structural analysis is done using the incidence matrix (9) of the net and its invariants (10). It
shows that the net is bounded and that the necessary condition for liveness is satisfied; this
is a slightly weaker conclusion on “liveness” than when both necessary and sufficient

conditions are met. The incidence matrix A4 for net N is a m × n matrix, where m = ⏐T⏐ and n

= ⏐P⏐. The row order of transitions is given by T = {tA1, tA2, tA3, tB1, tB2, tB3, tB4} and the
column order of places is P = {pA1, pA2, pA3, pB1, pB2, pB3, pB4}.
The incidence matrix gives an indication on the number of tokens gained for every place in
the net as a result of a transition firing. The state equation (8) presented below, models the
marking evolution as a function of firing transitions. It is defined as

 (8)

were u is a row vector of m elements of nonnegative integers. The ith element of u represents
the number of times transition ti is fired in order to reach Mf from M0. M0 is the current
marking of the net, and Mf is the marking reached by firing the transitions indicated by u.

(9)

(10)

www.intechopen.com

 Multiagent Systems

92

The state equation for N is Mf = M0 + uA4. This equation can be used to find reachable

markings as described by the reachability graph. Lets assume that a series of transition

firings are executed in N starting from M0 = [0, 1, 0, 1, 0, 0, 0]. These transitions are tA1, tB1,

tA2, tB2, tA1 in this specific order, which renders u = [2, 1, 0, 1, 1, 0, 0]. Use the state equation to

compute the current marking Mf = [0, 0, 1, 0, 1, 0, 0]. This is equivalent to marking M8 from

the reachability graph in figure 11 which was reached from M0 after firing the same

transitions in the same order.

The state equation is the basis for the structural analysis based on the P-invariants for

boundedness and T-invariants for liveness (reachability). Let x be a P-invariant of the net

which by definition satisfies Ax = 0, e.g., x1 = [1, 1, 1, 0, 0, 0, 0]T is a P-invariant of A4 from

(10). Multiplying the state equation (8) by x we get Mfx = M0x+uAx. The last term of the right

hand side of the equality is zero given that x is a P-invariant. As a result Mfx = M0x, which in

turn indicates that the total number of tokens in the places for which the P-invariant is one

(places pA1, pA2 and pA3, for P-invariant x1) does not change; disregarding which transition or

set of transitions was fired. This token conservation property is also independent from M0,

hence, it can be used to assess structural boundedness of such places.

For P-invariant x1, M f x1 = M0x1 implies that Mf (pA1) + Mf (pA2) + Mf (pA3) = M0(pA1) + M0(pA2)

+ M0(pA3). This means that places {pA1, pA2, pA3} are bounded by k = M0(pA1) + M0(pA2) +

M0(pA3). This result applies for every initial marking M0. Furthermore, if the markings of

these places are assumed to be finite, then it can be concluded that such places are k bounded.

Further analysis can be done if more knowledge of M0 is assumed. For M0 = [0, 1, 0, 1, 0, 0,

0], k = M0(pA1) + M0(pA2) + M0(pA3) = 1, therefore these places are 1-bounded (safe).

The same methodology is used to make an assessment about the structural boundedness of

the rest of the places of N. The second P-invariant vector in (10) is x2 = [0, 0, 0, 1, 1, 1, 1]T . It

can be concluded that places {pB1, pB2, pB3, pB4} are bounded by k = M0(pB1)+M0(pB2)+

M0(pB3)+M0(pB4) for every possible initial marking. Furthermore, since M0 = [0, 1, 0, 1, 0, 0, 0],

then k = M0(pB1)+M0(pB2)+M0(pB3)+M0(pB4) = 1, therefore these places are 1-bounded (safe).

The structural boundedness by net invariants can also be assessed as described in theorem 1.

The basis for the theorem is the same as presented above, even though it is more restrictive

since it is focused on assessing boundedness of the whole net. From theorem 1 it can only be

concluded that the net is bounded, but doing a more detailed analysis of the situation

allowed the conclusion that the net is safe. For cases where the model complexity is large, it

could be difficult to find instances in which the whole net is bounded. In such cases,

knowledge of the details of token conservation should be leveraged to provide boundedness

assessment of submodels of the net.

Another use of the state equation (8) is in the solution of the reachability problem. The
reachability problem consists of knowing whether marking Mf can be reached by firing a
sequence of transitions given that the net is currently on marking M0. Basically, if

Mf ∈R(M0), then u is a nonnegative integer solution to Mf = M0 + uA. Solution to the state
equation is just a necessary condition for reachability. This is due to the fact that u tells only
which transitions are firing and how many firings per transition will result in marking Mf . It
does not tell the order in which such transitions should be fired (sequence of transition
firings), furthermore, it does not warranty that firing sequences consistent with u will be
feasible, given that there could exist transitions in the sequence that are not enabled in
markings where they are expected to fire.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

93

The reachability problem is closely related to the liveness assessment. Structural liveness is

difficult to prove based on the network invariants. As a matter of fact, only a necessary

condition for structural liveness is available; which was described earlier in theorem 2. For

net N, which is bounded and covered by T-invariants (8), the necessary condition for

liveness is satisfied.

Further interpretation of the T-invariants, in addition to the fact that the state equation

solution provides only a necessary condition for reachability, gives further insight on why a

T-invariant coverage provides only a necessary condition for liveness. The T-invariant of a

net is defined as AT y = 0, where A is the incidence matrix. This equation is equivalent to yTA

= 0. Let u = yT , then the state equation Mf = M0 + yTA becomes Mf = M0. This means that

firing the transitions described by the T-invariant does not change the marking of the

network. Furthermore, by firing such transitions, the net returns to marking M0. This

property is key in the construction of theorem 2. In addition, the fact that only the set of

transition firings is known, but not a feasible transition firing sequence, results in this

theorem being a necessary condition only.

4. Analysis of Petri net models from multi-agent systems

This section presents the application of Petri net synthesis and reduction methods for the

modeling and analysis of multi-agent systems using Petri nets. In particular, the use of

synthesis and reduction methodologies for Petri net models of multi-agent systems with

indirect interaction, and presents a simple example where the principles are demonstrated.

This work builds on the methodology presented in section 3 which presents a systematic

approach to building Petri net models of multi-agent systems with indirect interaction. In

the examples presented in section 3 only a mutli-agent system consisting of two agents was

studied and liveness and boundedness properties were assessed. The question now is how

could these properties be proved for larger systems or for any multi-agent system in general

that has indirect interaction. One way to do it will be to build the Petri net model for the

entire multi-agent system and apply the structural or behavioral analysis approaches to the

entire model in order to make an assessment. The drawback of this approach is the

complexity involved in a) generating a detailed Petri net model for the complete system, b)

generating reachability graphs for large Petri nets, and c) finding the invariants of a large

incidence matrix since the null space of the matrix must be computed. Structural analysis is

also restrictive since results must apply to every initial marking. An additional drawback

could be the interpretation of such an assessment and its usefulness. Another approach is

the divide and conquer approach where we can leverage Petri net synthesis and reduction

methodologies for analysis to prove liveness and boundedness of the whole system. This is

done either by proving the properties at a subsystem level and then building them up, or by

reducing the complete model while preserving its properties until a model of manageable

size is obtained to assess properties [16].

The synthesis and reduction approaches have been successfully applied to the analysis of
Petri net models of manufacturing systems [17][18][16]. There is no evidence that these
methodologies have been applied in the analysis of Petri net models of multi-agent systems.
In general, the focus has been on obtaining Petri net models of specific multi-agent systems,
but not in the analysis of such models.

www.intechopen.com

 Multiagent Systems

94

4.1 Introduction to synthesis and reduction methods for Petri nets
Petri net synthesis for analysis is the process of adding refinement to Petri net models in a

manner in which certain properties like liveness and boundedness are preserved. The

synthesis methodologies consist of starting with a simple model where certain properties

hold, and then adding detail in the form of more places and transitions following rules that

ensure that such properties will hold in the new more detailed model [17]. The synthesis

and reduction methodologies can be described as: i) top-down, ii) bottom-up and iii) hybrid.

The top-down approach starts with a high level model of the system under consideration

and then adds stepwise refinements until the desired level of detail is achieved in the model

[17][19][20]. The bottom-up approach also referred to as a reduction approach consists of

joining Petri net sub-models that share places or transitions. This approach can also be

described as transforming the detailed Petri net models using macroplaces and

macrotransitions so as to obtain a smaller model where the desired properties can be proved

[17][21][22].

Petri net transformations for analysis: Petri net transformations play a crucial role in the

analysis and assessment of properties. Reduction and synthesis methodologies for analysis

make use of transformations in order to facilitate the analysis. Such transformations are

required to preserve system properties; which might vary depending on the focus of the

analysis, e.g., liveness should be preserved if deadlock is to be assessed for the whole model.

Transformations might involve places, transitions, or even sections of a Petri net. They range

from removal of redundant transitions and places, to the exchange of a place or a transition

by a submodel with higher level of detail. Property preserving transformations are usually

bi-directional. If a type of transformation removes a redundant place preserving liveness,

then the same transformation in reverse order can also be used the other way around to

provide more detail preserving the liveness property.

Petri net model construction and analysis: In general, the differences between model

assessment and model construction processes are well understood, since they are present for

every type of modeling activity in engineering and science. The model analysis process

starts when a model of a natural or man-made system is readily available, then analysis of

key properties and behavior of such a model is performed. It is easy to visualize how

reduction or even synthesis methodologies can be applied for this situation. On the other

hand, model construction has subtle details that must be clarified in order to understand

how the synthesis and reduction techniques can be applied to it.

For a model construction process for existing systems, either man-made or natural, the

purpose is to build a model, often times a mathematical model which mimics the behavior

of the existing system. There could be a multiple number of models ranging from different

levels of detail to different methodologies. An example where different levels of detail are

present is in dynamic systems, which could either be a lumped-parameter model (ordinary

differential equations), a distributed parameter model (partial differential equation) or even

a stochastic model (removing the assumption that some variables are deterministic). An

example of different methodologies for modeling could be that of a manufacturing system;

which can either be modeled as a queuing system, with discrete-event simulation, or even

Petri nets. The selection of the level of detail and methodologies is often guided by the

requirements of the problem at hand.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

95

For the Petri net case, synthesis methodologies can be used in the model construction

process. One can start with a high level of abstraction model which presents certain key

properties, additional levels of detail are then added by following property preserving

transformations. A similar approach is to construct models of different sections of the

system, then use synthesis procedures to join the different submodels in such a way that the

properties of interest are preserved.

For a model construction of a system that does not already exist, like the control logic for an

automated manufacturing facility, the purpose is to build a model that satisfies a series of

conditions and properties. In such cases, models can be constructed taking desired

properties into account during the construction process.

The concepts described above apply to the multi-agent system domain directly. There are

cases where a multi-agent system is used to model an existing system, as in the case studies

presented in previous sections. In other situations, like the control of the national airspace

system, multi-agent system controllers have been proposed to carry out space management

operations in a safe and efficient manner. In both cases, analysis methodologies should be

employed to assess properties of the system. Such multi-agent systems models can be

translated into the Petri net domain to assess deadlock or other properties. For a multi-agent

system construction process, the development can start with a high-level model and then

add more detail to the individual agents. Furthermore, Petri net synthesis concepts could be

used to aid the design of interaction mechanisms among the agents in such a way that

properties of the individual agents are preserved through the interaction.

On synthesis and reduction methodologies: The reduction approach presented in figure

4.1a shows how starting from a high fidelity model with high-level of detail, the model is

reduced to a size manageable to perform behavioral or structural analysis. The model Na1 is

a high-level of detail model used as a starting point, transformation Ta1 reduces the model in

complexity resulting in a new model Na2. Transformation Ta1 should be a property

preserving transformation so that Na2 preserves the properties of interest from Na1. For

example, if liveness and boundedness properties are to be assessed for Na1, then

transformations Ta1 and Ta2 must preserve these properties. The final model Na3 will have

lower complexity than the high fidelity model. Analysis of Na3 is now easier or even possible

if the complexity of Na1 is such that analysis is intractable. The following are situations when

the reduction approach is helpful.

• When a high fidelity model is too large to assess behavioral properties of the complete
model. For this situation, the number of markings in R(M0) is too large and the
construction of the reachability graph is cumbersome even with the aid of
computational tools.

• When there is more interest in the behavior of a section of the model and how it
interacts with the rest of the model. In this situation, the rest of the net could be reduced
as much as possible to facilitate the analysis of the section of interest.

The synthesis approach is also depicted in figure 4.1b. Synthesis methods focus on the

composition of models from submodels. Two submodels can be joined to form a larger one

or a place or transition can be exchanged for a submodel with higher level of detail. Similar

to the reduction approach, these transformations should also be property preserving.

Assuming that transformations Tb1 and Tb2 preserve properties like liveness and

www.intechopen.com

 Multiagent Systems

96

boundedness, then model Nb3 will be live and bounded if model Nb1 is live and bounded.

This allows one to perform the analysis in the model of smaller complexity and then

extrapolate those results for the larger model.

4.2 Literature review
The work by Suzuki in [23] and Suzuki and Murata in [20] presents a methodology for
expanding and reducing Petri nets to a desired level of detail. This methodology consists of
stepwise refinements of transitions and places, as well as abstraction of subnets into a single

 a) Reduction approach b) Synthesis approach

Fig. 12. Synthesis and reduction of Petri net models.

transition. The transformations presented preserve liveness and boundedness. Reduction is
presented as a substitution of a subnet by a single transition, hence generating a new model
with higher level of abstraction.
Synthesis is approached by way of stepwise refinements. Datta and Ghosh in [24] present a

top-down approach to analysis of regular Petri nets. Regular Petri nets are live and bounded

by construction. The properties considered to be preserved by the transformations are

liveness and boundedness. The work by Lee and Favrel in [22] presents a hierarchical

(bottom-up) approach to analysis. This consists of a hierarchical reduction and

decomposition by transforming subnets into macroplaces or macrotransitions. Liveness and

boundedness are preserved by these transformations. The work by Berthelot in [25] presents

a series of transformations to provide reduction and synthesis. The properties considered

include liveness, boundedness, safety, covering of P-invariants, return to home state and

others. Place transformations and fusion of transitions are presented to provide reduction.

Synthesis is considered by addition of submodels. Lee et al. in [21] present a reduction

methodology for generalized Petri nets. In generalized Petri nets, multiple arcs are allowed

between transitions and places, as a result, the weights of the arcs can be larger than one.

The purpose of the methodology is to reduce the state-space of the net to a manageable size

based on the structure of the net. Liveness, boundedness and proper termination properties

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

97

are preserved by reducing subnets into macroplaces or macrotransitions. The work by Jeng

and DiCesare in [26] presents a review of synthesis and reduction methods. Examples of

applications in the manufacturing domain are presented as well. Zhou et al. in [18] present a

hybrid methodology for synthesis of Petri net models of automated manufacturing systems.

In this work, modeling details are included as increments by refining places. Reversibility,

boundedness and liveness are preserved by this methodology. The work by Jeng and

DiCesare [27] presents a review of reduction and synthesis technologies and their

applications to manufacturing. Methodologies for synthesis are presented by considering

merging of places from different subnets, and refinement of transitions. The properties

preserved depend on the transformations applied. Synthesis and analysis of flexible

manufacturing systems is presented in Zhou et al. [16]. In this work, the synthesis process is

used for the model construction process. Petri net design approaches and the modeling

process are considered, as well as the analysis of the system. Refinement is used to design a

system that conforms to certain desired properties like liveness, boundedness and

reversibility. The work by Jeng in [28] presents a methodology for synthesis of flexible

manufacturing systems. A bottom-up approach is used to construct models and interactions

among submodels is investigated. This is an application of reduction and refinement for the

construction of Petri net models of flexible manufacturing systems.

4.3 Analysis of Petri net model N using reduction techniques
The Petri net model N from the example (figure 13) in the previous section is presented here

to illustrate how reduction techniques are used for the assessment of liveness and

boundedness. From the results presented in the previous section we learned that this Petri

net model is live and bounded for the initial marking M0 (which is indicated in figure 13).

The Petri net is also structurally bounded given that the number of places in the model must

be finite in the initial condition. For structural liveness, only the necessary condition is

satisfied. From the individual agent submodels (figure 6 and figure 8) it can be concluded

that only the model for agent B is live and bounded.

The objective here is to prove that the model is live and bounded. In order to do so, it is

assumed that it is not known in advance that the model is live and bounded. By applying

the reduction techniques, the model will be reduced in size until the liveness and

boundedness properties are evident from the reduced model.

Transformations: The transformations considered for this example are presented in [17].

Basically, two transition transformations fusion and pre-fusion will be used to reduce the

model. These transformations preserve liveness and boundedness, and they are intended to

reduce the number of reachable markings of the net; making easier the analysis of the

reduced model.

The fusion transformation combines two transitions ti and tj that are separated by a single
place pk. Place pk must be the only output place of transition ti and it is also an input place of
transition tj . The transformation removes place pk and combines the transitions into a single
transition tij , which will have the same input places as ti and the same output places as tj .
This transformation preserves liveness and boundedness [17].
The pre-fusion is a liveness and boundedness preserving transformation that combines two
transitions ti and tj that are separated by a single place pk. Place pk must be the only output

www.intechopen.com

 Multiagent Systems

98

place of transition ti and it is also an input place of transition tj . In addition, transition tj can
have additional input places besides pk. The transformation removes place pk and combines
the transitions into a single transition tij , which will have the same input places as ti and the
same input and output places as tj [17].

Fig. 13. Petri net model N.

Reduction procedure: The Petri net model N is presented in figure 14. In this figure, a series

of fusion transformations are indicated. Transitions tA1 and tA2 will be fused, as a result,

place pA3 will be removed resulting in the model in figure 15a. Fusion of transitions is

applied twice in the bottom part of the model. First transitions tB1 and tB4 are fused. The

resulting transition is then fused with transition tB3 to form transition tB134 in figure 15a. In

addition, transition tA3 was removed since it does not change the marking when it fires.

Fig. 14. Fusion transformations in Petri net model N.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

99

The final model is presented in figure 15b. It is obtained after applying the pre-fusion
transformation to the model in figure 15a.
The pre-fusion transformation will remove place pB4 and combine transition tB2 with
transition tB134. The resulting model is sufficiently simple to perform the assessment of
liveness and boundedness by inspection. The size of the reachability set is two since there
are only two possible markings in the model. The maximum number of tokens in all the
places is one, as a result the net is 1-bounded (safe). It is also evident that there is always an
enabled transition, as a result the model is live.

Fig. 15. Reduced Petri net model N.

Since all the transformations applied preserve liveness and boundedness, the fact that the
reduced model is live and bounded implies that the original Petri net model (figure 13) is
also live and bounded.

5. Discussion

This chapter presented a methodology for the modeling and analysis of multi-agent systems

using Petri nets. Multi-agent systems with indirect interaction were considered as a starting

point for the development of Petri net based tools for multi-agent systems.

The interaction framework considered was the simplest means of interaction among agents

and referred to in this work as indirect interaction. In the indirect interaction framework

agents can interact with each other by changing each other's environment. At the interaction

level, it is natural to regard a multi-agent system as a discrete-event system, and by focusing

at this level, this work presents a methodology to assess how indirect interactions will work

with respect to the discrete-event system properties of the multiagent system. Petri nets

have been used in several applications of discrete-event dynamic systems. In this work,

multi-agent systems were regarded as a discrete event-system and modeled using the Petri

net methodology. Thus, properties of Petri nets were analyzed and related to multi-agent

www.intechopen.com

 Multiagent Systems

100

systems. The liveness and boundedness properties in the Petri net domain are important for

multi-agent systems as they relate to deadlock avoidance. Furthermore, properties from the

Petri net domain could be related to characteristics of the communication and interaction

mechanism of the multi-agent system. The abstract architecture of intelligent agents is

considered as a preliminary step of the Petri net model construction process. The

methodology proposed in this work consists of describing a multi-agent system with the

abstract architecture for intelligent agents, and then constructing a Petri net model

systematically from the abstract architecture description of the system. Different scenarios

were considered in order to indicate how the Petri net analysis methodologies can be used

to assess key system properties, showing that there is a relationship between multi-agent

systems with indirect interaction and Petri nets. The mapping of multi-agent systems

models with the abstract architecture into Petri net models captured the discrete-event

dynamics of the systems under consideration. This allowed the assessment of properties like

deadlock avoidance in a multi-agent system, which can be assessed systematically from the

Petri net model.

In general, the results presented in this work show the potential for using Petri nets to assess

key properties of multi-agent systems. In addition, they provide the foundation to further

investigate the application of Petri net methodologies for the modeling, analysis and design

of multi-agent systems.

6. References

[1] T. Murata, P. C. Nelson, and J. Yim, “A predicate-transition net model for multiple agent

planning,” Inf. Sci., vol. 57-58, pp. 361-384, 1991.

[2] D. Xu, R. Volz, T. Ioerger, and J. Yen, “Modeling and verifying multi-agent behaviors

using predicate/transition nets,” in SEKE '02: Proceedings of the 14th international

conference on Software engineering and knowledge engineering, (New York, NY, USA),

pp. 193-200, ACM Press, 2002.

[3] H. J. Ahn and S. J. Park, “Modeling of a multi-agent system for coordination of supply

chains with complexity and uncertainty,” in Intelligent Agents and Multi-Agent

Systems (J. Lee and M. Barley, eds.), vol. 2891 of Lecture Notes in Computer Science,

pp. 13-24, 6th Pacific Rim International Workshop on Multi-Agents, PRIMA 2003

Seoul, Korea, Springer-Verlag Berlin Heidelberg, November 2003.

[4] P. Leitão, A. W. Colombo, and F. Restivo, “An approach to the formal specification of

holonic control systems,” in Holonic and Multi-Agent Systems for Manufacturing (V.

Marík, D. McFarlane, and P. Valckenaers, eds.), vol. 2744 of Lecture Notes in

Computer Science, pp. 59-70, First International Conference on Industrial

Applications of Holonic and Multi-Agent Systems, HoloMAS 2003 Prague, Czech

Republic, September 1-3, 2003, Springer Berlin / Heidelberg, 2004.

[5] F.-S. Hsieh, “Model and control holonic manufacturing systems based on fusion of

contract nets and Petri nets,” Automatica, vol. 40, no. 1, pp. 51-57, 2004.

[6] M. R. Lyu, X. Chen, and T. Y. Wong, “Design and evaluation of a fault-tolerant mobile-

agent system,” Intelligent Systems, vol. 19, no. 5, pp. 32-38, 2004.

[7] A. W. Krings, “Agent survivability: An application for strong and weak chain

constrained scheduling,” in HICSS '04: Proceedings of the Proceedings of the 37th

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

101

Annual Hawaii International Conference on System Sciences (HICSS'04) - Track 9,

(Washington, DC, USA), p. 90297.1, IEEE Computer Society, 2004.

[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol.

77, pp. 541-580, April 1989.

[9] T. Agerwala, “Putting Petri nets to work,” Computer, vol. 12, pp. 85- 94, December 1979.

[10]C. G. Cassandras, Discrete Event Systems, Modeling and Performance Analysis. Aksen

Associates Incorporated, 1993.

[11] A. A. Desrochers, “Performance analysis using Petri nets, ”Journal of Intelligent and

Robotic Systems, vol. 6, pp. 65-79, August 1992.

[12] J. L. Peterson, Petri net theory and the modeling of systems. Prentice Hall, 1981.

[13] W. Reisig, Petri nets, An Introduction, vol. 4 of EATCS: Monographs on Theoretical

Computer Science. Springer-Verlag, 1985.

[14] M. J. Wooldridge, Introduction to Multiagent Systems. John Wiley & Sons, Inc., 2001.

[15] K. P. Sycara, “Multiagent systems,” AI Magazine, pp. 79-92, 1998.

[16] M. Zhou, K. McDermott, and P. A. Patel, “Petri net synthesis and analysis of a flexible

manufacturing system cell,” IEEE Transactions on Systems, Man, and Cybernetics, vol.

23, pp. 523-531, March 1993.

[17] A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets in Manufacturing

Systems: Modeling, Control, and Performance Analysis. IEEE Press, 1995.

[18] M. Zhou, F. DiCesare, and A. A. Desrochers, “A hybrid methodology for synthesis of

Petri net models for manufacturing systems,” IEEE Transactions on Robotics and

Automation, vol. 8, no. 3, pp. 350-361, 1992.

[19] R. Valette, “Analysis of Petri nets by stepwise refinements,” Journal of Computer and

System Sciences, vol. 18, no. 1, pp. 35-46, 1979.

[20] I. Suzuki and T. Murata, “A method for stepwise refinement and abstraction of Petri

nets,”Journal of Computer and System Sciences, vol. 27, no. 1, pp. 51-76, 1983.

[21] K. H. Lee, J. Favrel, and P. Baptiste, “Generalized Petri net reduction method.,” IEEE

Transactions on Systems Man and Cybernetics, vol. 17, no. 2, pp. 297-303, 1987.

[22] K. H. Lee and J. Favrel, “Hierarchical reduction method for analysis and decomposition

of Petri nets,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 2, pp.

272-280, 1985.

[23] I. Suzuki and T. Murata, “Stepwise refinements of transitions and places," in Selected

Papers from the First and the Second European Workshop on Application and Theory of

Petri Nets, (London, UK), pp. 136-141, Springer-Verlag, 1982.

[24] A. Datta and S. Gosh, “Synthesis of a class of deadlock-free Petri nets,” Journal of the

Association for Computing Machinery, vol. 31, pp. 486-506, July 1984.

[25] G. Berthelot, “Checking properties of nets using transformations,” in Advances in Petri

Nets 1985, covers the 6th European Workshop on Applications and Theory in Petri

Nets-selected papers, pp. 19-40, Springer-Verlag, 1986.

[26] M. D. Jeng and F. DiCesare, “A review of synthesis techniques for Petri nets,” in

Rensselaer's Second International Conference on Computer Integrated Manufacturing, pp.

348-355, 1990.

www.intechopen.com

 Multiagent Systems

102

[27] M. D. Jeng and F. DiCesare, “A review of synthesis techniques for Petri nets with

applications to automated manufacturing systems,” IEEE Transactions on Systems,

Man and Cybernetics, vol. 23, no. 1, pp. 301-312, 1993.

[28] M. D. Jeng, “A Petri net synthesis theory for modeling flexible manufacturing systems,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 27, pp.

169-183, April 1997.

www.intechopen.com

Multiagent Systems

Edited by Salman Ahmed and Mohd Noh Karsiti

ISBN 978-3-902613-51-6

Hard cover, 426 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents an overview of some of the research issues in the

field of multi agents. It is a presentation of a combination of different research issues which are pursued by

researchers in the domain of multi agent systems as they are one of the best ways to understand and model

human societies and behaviours. In fact, such systems are the systems of the future.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jose R. Celaya and Alan A. Desrochers (2009). Modeling and Analysis Methods for Multi-Agent Systems,

Multiagent Systems, Salman Ahmed and Mohd Noh Karsiti (Ed.), ISBN: 978-3-902613-51-6, InTech, Available

from: http://www.intechopen.com/books/multiagent_systems/modeling_and_analysis_methods_for_multi-

agent_systems

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

