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Abstract

The astounding ability of plants to make smart decisions in response to environment is 
evident. As they have evolved a long list of complex and unique processes that involve 
photosynthesis, totipotency, long-distance signaling, and ability to restore structural and 
metabolic memory, recognition, and communication via emission of the selected class 
of volatiles. In recent years, use of metabolite profiling techniques in detection, unam-
biguous identification, quantification, and rapid analysis of the minute quantity of cel-
lular micromolecules has increased considerably. Metabolomics is key to understand 
the chemical footprints during different phases of growth and development of plants. 
To feed the ever-increasing population with limited inputs and in a rapidly changing 
environment is the biggest challenges that the world agriculture faces today. To achieve 
the project genetic gains, the breeding strategies employing marker-assisted selection for 
high-yielding varieties and identifying germplasm resistant to abiotic and biotic stresses 
are already in vogue. Henceforth, new approaches are needed to discover and deploy 
agronomically important gene/s that can help crops better withstand weather extremes 
and growing pest prevalence worldwide. In this context, metabolic engineering technol-
ogy looks viable option, with immense potential to deliver the future crops.

Keywords: metabolomics, mass spectroscopy, metabolic engineering, crops, breeding

1. Introduction

Metabolomics is one of the fascinating disciplines in ‘– omics’ field involving plants, animals, 
and microorganisms. Since its adoption in the mid-1990s in the field of plant biology, this 
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approach has been successfully used in identifying important gene(s) in plants [1, 2]. The 

model plant Arabidopsis thaliana (henceforth referred to as Arabidopsis) has been extensively 

researched using a plethora of genomic tools and technologies, facilitating functional genom-

ics analyses. In recent years, metabolomics approach has been extended in crop plants to 

ascertain gene functions [3, 4]. The ability of metabolome to serve as an ultimate phenotype 

of a cell renders it immensely promising for advancing crop-breeding gains [5]. For instance, 

delineating metabolite quantitative loci (mQTL) in crop plants offers information about the 
genomic target regions or genes that hold great relevance to breeding [6, 7]. Also, food and 

agronomical traits of crops improved through genetic modification (GM) could be better eval-
uated in terms of the metabolites present [8, 9].

During the last decades, techniques used to analyze metabolites have shown unprecedented 
refinements such as improvements in mass spectrometry (MS) and nuclear magnetic reso-

nance spectroscopy (NMR), in conjunction with the growing ability of bioinformatics. In this 
chapter, we present the application of metabolomics for functional genomics in crops as well 
as its possible integration with crop breeding to deliver future crops.

2. Different platforms to gather metabolomic data

Let us take an example of tomato as a model system that contains different categories of 
chemical compounds contributing to the fruit quality. These include sugars, organic acids, 

amino acids, fatty acids, isoprenoids, and polyphenolic compounds. Variety of separation 
approaches have been used to investigate the tomato metabolome, using both targeted and 

nontargeted metabolomics, leading to a wide range of quality biomarkers. Targeted metabo-

lomics is by far the most common way, as most research programs focused on understanding 
or improving a single target trait. A great deal of information exists that explain the pheno-

typic variation; however, this information may not be easily accessible.

Small molecules can have large effects. For example, the variation in the ratio between sweet-
ness and acidity causes tomatoes to taste sharp, sweet, insipid, or lovely [10]. Accelerating 

improvements through breeding programs demands large-scale and low-cost assays that 
allow analysis of thousands of samples within a short period of time [11]. Phenotypic sur-

veys of diverse germplasm have a very broad scope and help defining the range of accept-
able phenotypic variation, albeit limited in their depth. These kinds of data on organic 

acid and sugar can be leveraged with gene expression analysis for discovering the genetic 
causes underlying fruit quality [12]. The information on carbohydrates and organic acids 

can also be obtained using more sophisticated tools such as nuclear magnetic resonance 

(NMR) spectroscopy, which detects more compounds per assay than enzymatic or colori-
metric methods but at far lower throughput [13]. NMR spectroscopy is used for structural 

determination of a novel metabolite of particular interest. Alternatively, gas chromatogra-

phy (GC) paired with mass spectrometry (MS) (GC–MS) permits broad-scope metabolo-

mic profiling, with increased throughput compared to the NMR [14]. On the flip side, the 
need of GC–MS for chemical derivatization may cause exclusion of some metabolites from 
the analysis, and also may not produce sufficient information for the clear identification  
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of a particular metabolite. However, combining multiple datasets emanating from comple-

mentary analytical platforms offers a powerful strategy to analyze metabolomes.

In tomato, color and aroma are other targets for improvement. A majority of pigments in 

tomato are isoprenoids, such as carotenoids, while others are polyphenolics (e.g., flavonoids) 
[15]. Traditionally, liquid chromatography (LC) with commercial standards is used for carot-
enoid profiling [16]. However, LC–MS is to be used for more complete estimate of metabo-

lomes especially for isoprenoids. The MS analysis is done either inline with the LC or in an 
offline mode [17, 18]. Inline MS simplifies work flow, while offline MS may enhance sensitivity 
due to the greater reduction of sample complexity [18]. NMR spectroscopy could also be for 

isoprenoid profiling, which is effective in distinguishing E and Z isomers; not possible from 

MS analysis [19]. This is important as different carotenoid isomers may have different biologi-
cal activities, hence, nutritive qualities [20]. Carotenoid composition may change during food 
preparation and processing, both in quality (i.e., isomerization) and identity (i.e., degradation 

by heat). Therefore, analysis of both raw and cooked samples is necessary for complete descrip-

tion of the isoprenoids [21, 22]. In addition to color, carotenoids also contribute to fruit aroma, 

as do fatty acid and amino acid derivatives [23]. All three represent volatile compounds, GC 
and GC–MS are used for their separation and identification [23, 24]. A metabolite survey of 

approximately 100 Dutch tomato cultivars was conducted using LC–MS and MS/MS [25].

Need for a highly curated database is one of the challenges routinely faced while analyzing 
MS or NMR data in order to better understand the spectra produced during an experiment. 
Fortunately, recent developments in tomato metabolomics have led to creation of such com-

munity-oriented resources.

In recent past, several software and analyzing tools has been developed for processing and 
analyze the metabolite data but till now none of the platform is self-sufficient to fulfill the 
user expectations. In this context, Department of Biotechnology, Government of India, has 
initiated a project to develop a platform (Computational Core for Plant Metabolomics, CCPM) 
that is a web-based collaborative platform for researchers in the field of metabolomics to store, 
analyze, and share their data [26].

3. Gene identification

Metabolomics study helps identifying particular mQTL which corresponds to gene(s) related to 
that particular trait. The method is increasingly gaining recognition because once mQTL is iden-

tified then it became easier to pin-point gene(s) responsible for that particular metabolite [27].

4. Breeding program

Researchers/breeders are interested in selecting desirable genotypes from a large plant 

population. Initial selection procedures relied solely on the phenotypic appearance of the 

plants but information on the entire breeding cycle is required (a time of nearly 10 years) to 
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release an improved variety. To reduce this time duration, marker-based technologies such as 

enzyme-based markers, marker-assisted selection (MAS), and so on have been employed, that 

shortened the entire process up to 6 years. By using mQTL-based selection, we may further 
reduce time up to 4 years, given the fact that most of the metabolites are directly related to 

particular phenotype; and selection of mQTL remains easier and faster than that of MAS [28].

5. Metabolomic approaches to improve rice quality

Rice is an important staple crop worldwide. The crop has been benefitted considerably from 
the developments in the field of genomics. For example, rice genome has been sequenced 
and is found to encode approximately 32,000 genes [29]. However, the biological functions 
of more than half of these genes are yet to be determined [30]. Novel genes in rice have been 

identified using gain and loss-of-function approaches. Genetic linkage and association analy-

ses with genetic core collections and segregating populations have been employed to investi-
gate the direct relationships between metabolic composition, genotypes, and phenotypes as 
representatives for agronomical traits. These strategies can also be applied for other crops and 

vegetables (Figure 1). In the following section, we shall describe some of these approaches.

5.1. Approaches to collate metabolite, phenotypic, and genotypic data: some 
examples in rice are as follows

5.1.1. Gain-of-function approach

Construction of the rice full-length (FL) cDNA collection (Oryza sativa L. ssp. japonica 

“Nipponbare”) was possible due to the development of the FOX hunting system (FL-cDNA 

Figure 1. An overview of gene discovery and markers for crop improvement based on genetic and genomic strategies 
[31].
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overexpressor gene hunting system) [32]. The FOX hunting system is unique, as it permits 
ectopic expression of any plant FL-cDNA library even in heterologous plant systems, there-

fore, allowing the functional analysis of genes. More than 30,000 transgenic Arabidopsis lines 

overexpressing rice FL-cDNAs, called “rice FOX Arabidopsis lines,” have been generated [33]. 

Metabolic fingerprinting [34] and metabolic profiling [35] have been used with these FOX 
lines to identify functional genes in rice.

To screen a large number of rice FOX Arabidopsis lines, a nondestructive analytical method 

was developed using Fourier transform-near-infrared (FT-NIR) spectroscopy [34]. Unlike MS 

techniques, FT-NIR analysis circumvents destructive preparation, and allows data acquisi-
tion within a very short span of time (<1 min). The authors analyzed approximately 3000 
FOX seeds with FT-NIR to obtain their metabolite fingerprints. Assessment of the changes 
in the metabolite fingerprints of the re-transformants led the discovery of seven lines with 
altered metabolite fingerprints in seeds. Five of these seven lines have annotations for inserted 
FL-cDNAs. The association of the genes with biological processes highlighted the role of com-

plex networks underlying metabolomic responses in plants.

A detailed metabolite composition can be obtained in non-targeted manner by using metab-

olite profiling based on gas chromatography-time-of-flight-MS (GC-TOF-MS), particu-

larly for primary metabolites and intermediates of secondary metabolites [36]. A set of 26 

candidate lines for gene characterization were identified through surveying 350 rice FOX 
Arabidopsis lines with GC-TOF-MS. These candidate lines included a rice FOX Arabidopsis 

line that overexpressed the FL-cDNA of the rice Lateral Organ Boundaries (LOB) Domain 

(LBD)/Asymmetric Leaves2-like (ASL)LBD37/ASL39 (Os-LBD37/ASL39) gene, which showed 
significant changes in nitrogen metabolism in the mutants [35]. The aerial parts of the rice 

FOX Arabidopsis plants exhibited hyponastic leaves and early flowering. The Arabidopsis 

At-LBD37/ASL39-overexpressor plants showed similar morphological leaf changes (i.e., 
hyponastic leaves), and had increased levels of amino acids and metabolites related to 

nitrogen metabolism. Subsequent profiling of metabolites and transcriptomes of the rice 
Os-LBD37/ASL39-overexpressing lines ascertained the same function of Os-LBD37/ASL39 

in rice and Arabidopsis. The analysis revealed notable features in rice overexpressor plants 

including early heading, metabolite alterations (related to nitrogen metabolism), and 

advanced leaf senescence. These findings established a close association between Os-LBD37/

ASL39 and nitrogen metabolism in rice.

Above studies suggest that the FOX hunting system can quickly and efficiently identify and 
characterize the genes from available cDNA libraries; the alterations that exert influence on 
metabolite profiles in crops and vegetables.

5.1.2. Loss-of-function approach

The Tos17 retrotransposon- and Ds-transposon-inserted mutant lines have served as loss-of-

function resources for characterization of the novel genes in rice [37, 38]. Tos17-knockout lines 

characterized glutamine synthetase (GS), catalyzes the key step of ammonium assimilation. 
Tabuchi et al. (2005) used the Tos17-retrotransposon inserted lines to show that the three genes 
(OsGS1;1, OsGS1;2, and OsGS1;3) encoding cytosolic GS (GS1) in rice. The OsGS1;1 gene was 
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critical for normal growth and grain filling [39]. They further investigated the metabolomic 

changes and metabolite-to-metabolite correlations of the mutants by a GC-TOF-MS-based 
assay [40]. In comparison to the wild-type rice, the mutants showed dramatic increase in the 
levels of sugars and sugar phosphates and reduced levels of amino acids and rice leaf TCA 
cycle intermediates. Changes in the metabolite profiles differed in root and leaf parts in the 
presence of ammonium. Interestingly, an overabundance was noted for nitrogen-containing 
secondary metabolites. The study uncovered new correlations between the over-accumulated 
metabolites and some primary metabolites in the mutant roots. These findings demonstrated 
OsGS1;1 playing crucial role in regulating the global metabolic network in rice plants grown 
using ammonium as the nitrogen source.

5.2. Association analysis between trait and metabolites

Modern crop-breeding practices have been highly successful in improving some important 

traits, for example, field performance and yield. However, genetic bottlenecks develop due 
to slow selection processes and narrow genetic base. Strategies to determine relationships 
between metabolic composition and genotypes and phenotypes in rice are discussed later.

5.2.1. Untargeted high-coverage metabolomic characterization of the rice diversity research set 

(RDRS)

The vast reservoir of rice seed banks provides a rich opportunity to identify genotypes pos-

sessing useful agronomical traits. However, large-scale characterization of this vast germplasm 
demands considerable time and resources. As a result, genetic core collections have been devel-

oped as a manageable representation of the genetic diversity. Examples include, the rice diver-

sity research set (RDRS) comprising 67 varieties, created with the analysis of 332 varieties of O. 

sativa using restriction fragment length polymorphism (RFLP) marker [41]. To investigate the 

direct relationship between metabolite [5] and phenotype in RDRS, untargeted high-coverage 

metabolomic characterization and constructed was performed, leading to the development 
of predictive metabolome-trait models using multivariate regression analysis [42]. Combined 
datasets of rice kernels were obtained from four types of MS platforms: GC-TOF-MS for small 
compounds, including primary metabolites; ultra-pressure liquid chromatography-quadruple-

TOF-MS (UPLC-Q-TOF-MS) for hydrophilic compounds; capillary electrophoresis-TOF-MS 
(CE-TOF-MS) for ionic compounds; and liquid chromatography-ion trap-TOF-MS (LC-IT-
TOF-MS) for polar lipids. The study precisely defined a correlation between genetic diversity 
and metabolite abundance [43]. After the removal of covariance between the trait data and the 
population membership, a multi-block-orthogonal projection was conducted for latent struc-

tures (MB-OPLS) regression analysis. Traits such as amylose/total starch ratio and ear emer-

gence day can be predicted from the metabolic composition by using the MB-OPLS model. The 

model for the amylose/total starch ratio showed a tight and negative correlation with fatty acids 
and lysophosphatidylcholines (Figure 2). Evaluation of the model using an external set of RDRS 

samples, other rice varieties, and the two mutants, showed high-, middle-, and low-amylose/
total starch ratios, respectively. The amylose/total starch ratio was found to be associated with 
metabolites in rice kernels of the cultivars. However, this association was not observed in the 
mutants. The two loss-of-function mutants-e1, a starch synthase IIIa (SSIIIa)-deficient mutant and 
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the SSIIIa/starch branching enzyme (BE) double-knockout mutant 4019—showed a high amylose/
total starch ratio [42, 44]. Examination of starch granules with scanning electron microscopy 
(SEM) showed that the starch granules of the mutants were loosely packed in rice kernels [45]. 

Thus, fatty acids and lysophosphatidylcholines most likely play a role in packing normal starch 
granules into rice kernels.

5.2.2. mQTL analysis using back-cross inbred (BIL) lines

Matsuda et al. (2012) investigated 85 BILs generated by backcrossing O. sativa L. ssp. japonica 

“Sasanishiki” and O. sativa L. ssp. indica “Habataki” to find an association between genotype 
and metabolic composition [6]. The genotypic data recorded on such mapping populations 

are useful for QTL mapping of various agronomical traits. The genotypic data of the BIL lines 

cover 12 rice chromosomes, and the genotype of each BIL line was analyzed with 236 RFLPs 
[46]. A metabolite profiling using multi-MS-based pipelines yielded a metabolite profile dataset 
comprising 759 metabolite signals. Of these, 131 metabolites were identified or annotated. The 
lower heritability of the mQTL in yeast, mice, humans, and Arabidopsis than that of the expres-

sion QTL (eQTL) [47, 48] could be attributable to greater susceptibility of metabolite accumula-

tion to environmental factors [4]. Therefore, they evaluated the effects of heritable factors on 
the 759 metabolic traits. Although more than half of the metabolic traits showed relatively low 

Figure 2. Correlation network of trait-associated metabolites. The node color indicates the associated trait. Red lines 
(edges) represent positive correlations, while purple edges show negative correlations. The thickness of the edges 
indicates the strength of the correlation [31].
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broad-sense heritability (H2), high H2 values were observed for some of the secondary metabo-

lites, such as lysophosphatidylcholines, oryzanols, and flavone glycosides. Notably, heritabil-
ity profiles obtained in rice were not similar to those of tomato fruits and Arabidopsis leaves  

[49, 50]. The QTL mapping results identified 802 mQTL from 759 metabolic traits and sug-

gested for a coordinated control of some metabolites, such as amino acids and triacylglycerols, 

through a mQTL hotspot on chromosome three. The extent of genetic control was determined 
for the annotated flavone glycoside level. The authors determined the structure of the flavone 
glycoside by using multi-step chromatography, MS, and NMR. The mQTL analysis provides 

faster and efficient breeding technique to dissect useful metabolic traits of both primary and 
secondary metabolites in rice.

6. Metabolomic approach to improve legume crops

Forage and grain legumes contribute 27% of the world gross primary crop. The grain 
legumes alone cater 33% of required human dietary protein, thus contributing to the global 

food security and environmental sustainability [51, 52]. Barring a few extensively investi-
gated model legumes, metabolomics studies in other legumes remain limited. The studies in 

model legumes demonstrate a decrease in oxylipins as effect of rhizobial node factor (Nod) 
in Medicago [53] and metabolic adjustments of shoot constituent in salt tolerant Lotus species 

for its survival [54].

Stress conditions such as salinity and anoxia cause an accumulation of alanine, and its 

biosynthesis co-substrates such as glutamate and GABA, and succinate in soybean [55]. 

Differential expression was also obtained for genes involved in nitrogen fixation and fer-

mentation in root. Interestingly, a negative correlation was observed for amino acid derived 
from glycolysis and the TCA cycle during water logging; several TCA cycle enzymes were 
induced upon exposure to water logging [56]. Likewise, a study on metabolic changes 
associated with flooding stress in soybean revealed a set of 81 mitochondria-associated 
metabolites, suggesting a boost in concentrations of metabolites involved in respiration 

and glycolysis such as, amino acids, NAD, and NADH coupled with the depletion of free 
adenosine triphosphate (ATP) [57]. Under drought and salinity conditions, metabolite phe-

notyping of four different Mediterranean accessions of lentil suggested a decrease in inter-

mediates of the TCA cycle and glycolytic pathway [58]. Importantly, the study yielded 

metabolite markers for specific stress; such as threonate, asparagine/ornithine, and alanine/
homoserine for NaCl, drought, and salinity, respectively. Another study aimed to assess 
the impact of water deficiency on Lupinus albus demonstrated that the plant stem served 

as a storage organ for sugars and amino acids [59]. Importantly, tolerant plant accumu-

lated high level of metabolites such as asparagine, proline, sucrose, and glucose in the 

stem stelar region [59]. This suggests for reorganization of nitrogen and carbon metabolism  

pathways in plants in order to tolerate salinity stress. In soybean, consistent increase in 
pinitol (sugar alcohol, osmoprotectant) was reported in the tolerant plant at both normal 
and drought-stressed conditions [60]. Similarly, accumulation of sucrose, free amino acids, 

and soluble proteins was observed in tolerant soybean in response to water stress [61].
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7. Metabolomic approaches to evaluate GM crops

GM crops are now widely used worldwide [62]. The International Service for the Acquisition 

of Agri-Biotech Applications (ISAAA) reported that in 2011, 160 million hectares of arable 

land was used to grow biotech crops, including GM crops (http://www.isaaa.org/).

Metabolism refers to the processes involved in maintaining life, such as the synthesis and 

breakdown of proteins, nucleic acids, and carbohydrates. Metabolomics offers a snapshot of 
the current biochemical status, including important nutritional and toxicological characteris-

tics. Furthermore, the metabolite composition is reported to have close association with the 
organism’s phenotype. Hence, metabolomics is a useful tool for investigating the metabolic 

composition of GM crops. The application of metabolomic technology could generate a data-

base of metabolites in both GM crops and traditional varieties. For instance, metabolomics 
approach was employed to assess the chemical composition of GM tomatoes in order to com-

pare the modified crops with the traditional varieties [63]. The authors used GM tomatoes 
overexpressing a foreign gene encoding miraculin, a glycoprotein found in tropical plants 

but normally absent in tomatoes [64]. The MS-based multiple platforms detected 86% of the 

total chemical diversity in the tomato cultivars used in the study. Subsequently, statistical 

approach for “proof-of-safety” rather than “proof-of hazard” approach was used to evaluate 
“similarities” and “differences” between GM tomatoes and six traditional cultivars, includ-

ing the control line Moneymaker. Results suggested that the GM tomatoes had a reproduc-

ible metabolic signature; moreover, more than 92% of the compounds showed an acceptable 
variation in both green and red stages of the tomato, highlighting striking similarity of the 

GM tomatoes with that of the control line Moneymaker in terms of their metabolite profiles.

Furthermore, a comparison was drawn for the metabolite profiles obtained from two indepen-

dent experiments. The study determined the levels of the most commonly altered metabolites 

in the GM tomatoes, such as proline, 4-hydroxy-proline, spermidine, asparagine, arginine, 
serine, and inositol-1-phosphate, across all growth conditions. The expression of these metab-

olites was unaltered by genetic modification, not associated with the expression of foreign 
genes. This approach could be useful for evaluating GM crops for assessing their metabolo-

mic equivalence with traditional crops.

8. Conclusions and future perspective

The growing attention that metabolomics is receiving in the field of plant research could be 
ascribed to plant’s ability to produce a vast array of metabolites, far greater than that pro-

duced by animals and microorganisms. Achieving a comprehensive coverage of metabolome 

analysis calls for multiparallel complementary technologies instead of relying on a single ana-

lytical technology. Increasing the annotation rate of unknown signals still poses a big chal-
lenge. The cooccurrence principle of transcripts and metabolites, particularly transcriptome 

co-expression network analysis, is powerful for decoding functions of genes not only in a 
model plants but also in crops and medicinal plants. The mQTL analysis along with scoring 
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of gene expression and agronomical traits emerges as a promising technique to support crop 

breeding [65]. In addition to expedite the development of improved cultivars, metabolomics 

plays a key role in the evaluation of GM crops.

Combining de novo transcriptome assembly [66] and metabolomic techniques enables us to 

adopt a systems biology approach to investigate genetic populations as both techniques do 

not require a reference genome sequence. These post-genomics tools and techniques can con-

siderably shorten the time required for selection in plant breeding and accelerate the discov-

ery of novel genes in crops, vegetables, and medicinal plants [67, 68]. In summary, systems 

biology, metabolomics, and other omics will play a key role in understanding plant systems 
and developing novel biotechnology applications for crop improvement.
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