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Abstract

For stabilizing renewable energies and shaving peak power at noon, both the energy con-
sumption and potential renewable energies in Dihua waste water treatment plant (WWTP) 
in Taiwan are analyzed. Under the consideration of environment, cost, and performance, 
automotive reused lithium-ion battery (RLIB) is employed. Two typical automotive lithium-
ion batteries are used in this study after the selection of suitable battery cells. In particular, 
one simple, converterless energy management system (EMS) is developed and integrated 
in new RLIB packs. The control strategy between RLIB and an additional physical battery is 
adjusted by simulation. An online estimation of RLIB’s internal resistance and open-circuit 
voltage monitoring scheme is applied in EMS to ensure the safety of RLIB. The bench test 
and rough economical estimation reveal that EMS shows great potential in elongating life 
cycle and possibly benefits from feed-in tariff and peak shift of electricity charges.

Keywords: reused lithium-ion battery (RLIB), wastewater treatment plant (WWTP), 
energy management system (EMS), peak shift, feed-in tariff (FIT)

1. Introduction

The Dihua wastewater treatment plant (WWTP) is between the Tamsui and Keelung Rivers 
in Taipei. It treats sewage from Taipei City’s household connections and interception stations. 
The plant, which has a capacity of 500,000 m3/day, is the largest secondary treatment plant 

in Taiwan. Water Resources Agency (WRA) in Taiwan recently launched several projects to 
promote energy self-efficient WWTPs. Their action plan is to employ green energy sources 
in WWTP by collocating with efficient new water treatment processes. Green energy sources 
refer to well-known renewable energy sources (e.g., biomass, wind energy, solar energy, 

hydropower, and local waste heat).

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Some projects in the world originated from the concept of the energy–water nexus, which is 

the coupling of energy, water, the environment including climate change, and food supply 

[1–9]. Studies conducted on WWTP and in collaboration with local governments and major 

organizations provide solid evidence of unit electricity for wastewater treatment or neutral 

energy. Electricity from renewable energy resources, such as wind or solar power, may be 

used to partially or completely replace electricity from the grid. Moreover, novel wastewater 

treatment processes have been employed in WWTPs to reduce the energy requirements per 

unit volume of treated wastewater in comparison with cases that depend on electricity only 

from renewable energy resources [10–15]. Some researchers illustrated that energy cannot be 

gained at all from aerobic digestion or organic substances at WWTPs and sludge treatment 

plants. The specific energy demand at these plants is still high, and too much energy is needed 
for far-reaching aerobic degradation of organic substances. However, biogas from anaero-

bic treatment from WWTPs or waste management may become a suitable way of improving 

energy efficiency. For alternative sanitation concepts, sewage and food waste management, 
or other environmental assessments of urban water systems [16, 17], life cycle assessments 

should be conducted to explore plant energy balance. Besides renewable energy, one poten-

tial candidate for compensating the consumption at WWTPs is wastewater heat recovery. 

Case studies show that technologies for heat recovery from wastewater also have been suc-

cessfully implemented. However, heat recovery may harm the wastewater treatment process 

and reduce the performance of WWTPs [18–26].

Lithium-ion batteries contain precious metals such as lithium, cobalt, or manganese; there-

fore, recycling and recuperation of these batteries are highly advantageous. However, these 
processes use high levels of electricity in traditionally chemical methods [27–32]. Lithium-ion 
batteries are suitable as ancillary services or for supporting large-scale solar and wind integra-

tion in existing power systems by providing grid stabilization or frequency regulation [50]. 

Lithium-ion batteries are also classified as dangerous waste. If they are not properly treated, 
then they will damage the environment and cause harm to humans and the environment. By 
contrast, abundant electrical capacity remains in discarded lithium-ion batteries. Following 
an intensive review on advanced smart metering and communication infrastructures, a strat-

egy for integrating electric vehicles (EVs) into the electric grid is presented [51]. Under the 

vehicle-to-grid phenomenon, the deployment of EV batteries in the energy market can com-

pensate for fluctuations of the electric grid. A previous study [52] presented the optimization 

of electrical energy storage systems and improved control strategies based on hybrid power 

source and series.

To achieve energy self-efficient WWTPs, we consider several ways of ensuring positive energy 
balance of wastewater treatment such as renewable energies. In this study, automotive reused 
lithium-ion battery (RLIB) is used to accumulate electricity at night to shave peak power in the 
grid at noon as a prior phase before chemical separation of the RLIB pack. In general, RLIB 
packs might decay rapidly after being discarded, and the energy management system (EMS) 

is developed to address this issue. The performance of depth of discharge (DoD), which indi-

cates the life cycle, is used to determine the effectiveness of EMS in bench test. Besides, an 
online scheme of estimating life cycle sensitized parameters is embedded in EMS for safety 

and performance guarantee.
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2. Analysis of energy consumption and potential renewable energies

After dividing a portion of effluent from the Dihua Sewage Pumping Station in Taipei, sew-

age enters the Dihua WWTP at an average of 434,349 m3/day. It then passes through fine bar 
screens to remove coarse materials. It flows into primary clarifiers to remove the greater part 
of the suspended solids and a small portion of the organic matter in the sewage. Aeration 
basins and secondary clarifiers are used to remove organic matter in the sewage. The effluent 
from the secondary clarifiers is disinfected with sodium hypochlorite to remove pathogens 
before discharge into the Tamsui River. After sand filtration, 10,000 cubic meters per day 
of effluent become reused water for the plant. Night solids, combined with primary sludge 
and secondary sludge, is thickened, anaerobically digested, and dewatered to become sludge 

cake. It is then disposed in a landfill site or used as fertilizer for inedible vegetation by any 
organization that requests it. The energy consumption is listed in Table 1.

In the Dihua plant, the entire water treatment process consumes 120,526 kWh of electricity 
a day. Approximately 0.28kWh/m3 is required for wastewater treatment. This value is much 

lower than UNESCO’s report (2014) of 0.62–0.87 kWh/m3 excluding pumping to the treat-

ment site and equipment efficiency. The average quantity of energy used varies considerably 
depending on the level of treatment, type of treatment, and size of plant, but it approximately 

doubles from primary to secondary and doubles again to tertiary levels of treatment (US EPA 

Office of Water 2013).

In Dihua’s case, the outcome of biomass occupies 55.69% total unstable renewable energy as 
listed in Figures 1 and 2. Twenty percent of total area is assumed to be installed solar panel, 

and the reliable electricity capacity of 943.8 kW is obtained. Hydropower and wind power are 

not dominant energy resources in this plant.

Process (%) Energy consumption 

(kWh/day)

Energy demand unit volume 

(kWh/m3)

Aerobic digestion 25.47 30697.67 0.0706

Sludge treatment 6.15 7416.02 —

Secondary clarifier 5.40 6503.03 0.0149

Wastewater pumping 5.12 6167.67 —

Solid dewatering 3.28 3954.15 —

Lighting and building 3.22 3875.41 —

Disinfection 2.28 2750.31 0.0063

Grit 0.67 807.31 0.0018

Primary clarifier 0.47 571.32 0.0013

Anaerobic digester 1.09 1318.28 —

Aeration 46.85 56465.37 0.13

Total 100 120526.57 —

Table 1. Usage of energy consumption in Dihua WWTP.
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Figure 2. Potential renewable energies in Dihua WWTP.

3. Motivation of using RLIB

Demand for urban vehicles focusing on sustainable transportation has prompted a substantial 

trend towards automotive electrification such as hybrids and EVs. With more than 70% of EVs 
likely to be introduced in 2015 with Li-ion based battery chemistry, the recycling of Li-ion has 

Figure 1. Unsteady renewable energies in Dihua WWTP.
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become a crucial topic in the automotive industry. When the battery packs in a lithium-ion-
powered vehicle are deemed too worn out for driving, they still have up to 80% of their capacity 
left. Before they ever arrive in a recycling center, these batteries are used to prop up the grid, 
especially alongside energy sources that may not be quite as steady, such as wind or solar power 

Figure 3. Reused Lithium-ion battery used in pure electric vehicles (left: LiFePO
4
, right: LiMnNiCoO

2
).

Figure 4. Flowchart of RLIB.

Figure 5. About 8 hectares huge space in the second deck of aeration tank in Dihua plant.
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Table 2. Benefit assessment of 5 WWTPs applying RLIB (NTD; 30NTD = 1USD).

(Figure 2). Furthermore, the cost of RLIB is roughly cheaper than 1/3 of a new battery. This merit 
enhances strong competition compared with other cheap flow batteries or NAS batteries.

For instance, two packs of RLIBs are shown in Figure 3. Both of them are originally applied in 
pure EVs. After working for several years, they are used as experimental targets before cycling 

and recuperation by chemical method. In this study, two different types of packs are selected. 
The flowchart in Figure 4 shows that suitable cells are activated and selected based on log 

file and DC internal resistance, and each new module is assembled with EMS. Subsequently, 
the module is installed in a test bench to update voltage of open circuit (VOC). In addition 
to establishing water, energy, and reusing nexus in urban areas, the Dihua WWTP is chosen 

for its large area of 8 hectares. Thus, an extensive enclosed space is available for placing RLIB 
between the aeration tank and green park in the ground (Figure 5).

4. Benefit of energy management in WWTP

Reducing variability in renewable energy is crucial in managing the peaks in WWTP. As a result, 
this strategy is dispensable for employing energy storage systems charging during off peak 
times and injecting energy into smart grids during peak times. Benefits can be estimated from 
the low price at night, cost of basic contract fee of electricity, and effect of frequency regulation.

Results of the economic benefit assessment are shown in Table 2. We assume that renewable 

energy’s purchase price is 0.143 USD. Renewable energy is assumed to be fully fed back to 
the grid. About 80% of the total RLIB is used as night storage, and the cost of RLIB is 133USD 
unit kWh. In the case of Dihua plant, the calculation of RLIB demand is 32,106 kWh, which 
is roughly equivalent to 3200 pure EV battery pack. This value is also about 1/20 of the total 
number of domestic sales of EVs from 2011 to 2016 in Taiwan. The initial cost of RLIB packs 
is 4.3 million USD. However, only the sales of renewable energy power into the grid based 

on feed-in tariff (FIT) are 1.68 million USD. The annual electricity rate difference at noon 
and night is 140.6 million NTD, and the annual income at noon and night is 4.69 million 
USD. Therefore, the plant can break even in 2 years and continue to profit each year with-

out considering the installation fee. Other plants also show similar profitable results such as 
Dihua plant in Table 2.
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5. Development of EMS

To reduce the peak current in LIB pack, a physical battery is employed in LIB effectively, 
but range extension is still limited in the case study [33]. The effect of life cycle extension is 
discussed [34] by the transient supply of physical battery. Given the traditional large DC/DC 
converter in EMS, a small prototype of DC-DC and simple circuit may be proposed to isolate 
the battery pack and not harvest energy from random peak power [35, 36]. The scenarios of 

usage cover the regenerative power supply and charging/discharging between individual 

and physical batteries. Some studies have focused on the design of levering DC-DC con-

verter [37, 38], but several researchers have introduced a converterless circuit in EVs based 

on a DC inverter [39, 40]. The literature implies the possibility of EMS with high efficiency 
and low cost. Specific control strategies including neutral networks are illustrated in [40–42]. 

Economic analysis shows that the high price of LIB leads to superior benefits in elongating 
life cycle. Real-time simulators are a powerful platform before on-board tests [42]. In [43], a 

simple circuit of elongating life cycle life was reported. Without a complex DC-DC converter, 
only duty control using a suitable physical battery can narrow DoD of LIB and elongate the 
life cycle of batteries [44–48]. Figure 6 shows the relationship between DoD and life cycle. 

None of the lines in Figure 8 are linear, thereby indicating that DoD plays a major role in 

gaining life cycle.

Figure 7 shows a simple, converterless parallel circuit. EMS can achieve active control by 

switching the discharging ratio between LIB and auxiliary physical battery at unit time. The 
architecture of EMS is shown in Figure 8. It is modified from battery management system. 
EMS is disposed as an interface among RLIB, auxiliary physical battery (ultracapacitor, UC), 
and systematic grid. The control strategy aims to keep the switch periodically close and open 

by a predetermined duty cycle, namely, the sharing ratio of RLIB’s loading controlled by 
EMS. In detail, EMS generates a PWM (pulse width modulation) signal to control the on/off 
time of the lower arm of the switch module.

Figure 6. Relationship between DoD and charge/discharge cycles (life cycles) modified from [49].
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Figure 7. RLIB in parallel connection with auxiliary physical battery (ultracapacitor) controlled by EMS.

6. Real-time simulator for optimizing the sharing ratio between 

RLIB and UC

Real-time simulators have been widely used in developing and verifying control strategies 
for power systems. Such devices are a powerful platform before on-board tests. Total ana-

lytical modules including EMS module is employed in the simulator. Detailed topology can 

be found in [41, 42]. In the system level, the control strategy from the vehicle side for the 
powertrain relating to the area electric range is validated [15]. Through the vehicle side, com-

mands of torque and speed are sent out to the demand side of the motor simultaneously. 

Likewise, commands for gear shifting commands, the auxiliary system, and protection sig-

nals are passed from the vehicle side to other control units. It is originally developed in the 
environment of OPAL-RT®. An imaginary vehicle module is linked with the simulator via 
an analog/digital I/O interface, CAN bus, and RS-232. The off-line environment connected 
to real-time simulator provides sufficient capability for the development of EMS to select the 
optimized current sharing ratio between LIB and UC. The environment and interface model 
the dynamic response of load, multi-battery pack, and EMS.

7. Monitoring state of health (SOH)

State of charge and SOH define the most important amounts of charge and rated capacity 
loss of a battery, respectively. To determine these two parameters instantaneously, VOC 

Figure 8. Architecture of EMS (symbol B is a safety device for estimating RLIB pack’s insulation resistance).
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and internal resistance (IR) of the battery are indispensable. To guarantee the safety of RLIB, 
besides the insulation monitoring function shown in Figure 8, a simple, training-free, and 

easily implemented scheme in EMS is applied. This scheme is capable of estimating VOC and 
IR, particularly here for RLIB pack [53]. On the basis of an equivalent circuit model (ECM) 
shown in Figure 9, the electrical performance of the battery can be formulated into state-space 
representation. An underdetermined model’s parameters can be arranged linearly so that an 
adaptive control approach can be applied. An algorithm of adaptive control is developed by 

exploiting the Lyapunov stability criteria as briefly illustrated in Figure 10. VOC and IR can 
be extracted precisely without limitations of input signals in the system, such as persistent 

Figure 9. A generalized ECM for lithium batteries.

Figure 10. A flowchart describes how SoH functions.

Figure 11. Comparison of estimated and measured internal resistances (1st, R
s
; 2nd, R

t
) and VoC (voltage of open circuit) 

in test case.
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excitation (PE). It enhances the application of this method for power systems. Figure 11 shows 

one example for examining the algorithm by using adaptive control observer to estimate VOC 
and IR through the adaptive control approach. Estimation of SOH-sensitized IR can converge 
into a stable measured value in about 600(s).

8. Bench-test set-up and procedure

Two packs of RLIB are shown in Figure 3. Both of them are originally applied in pure EVs. 
After running on board for several years, they are used as experimental targets in this study, 

assembled with EMS, and installed in a test bench to simulate RLIB at WWTP.

Two types of LIB cells with a large difference in IR are employed in this study, and the speci-
fications are listed in Table 3. An automated test bench with rated voltage and current of 

500 V/450 A is utilized for the test. The initial rated voltage of RLIB is 70 V. A power pattern 
converted from the daily usage of electricity in WWTP is programmed into the machine for 

discharge/charge operation. In this study, all components are integrated in the laboratory, and 
the pattern of electricity is chosen for simulating the intermittent charging/discharging cycle 
of renewable energy and power accumulation due to the lack of in-situ energy consumption 

data. The duty cycle, current, and voltage of the RLIB terminal are monitored by the EMS. A 
total of 21 cells of LiFePO4 RLIB and three modules of LiMnNiCoO2 RLIB are modularized 
into two individual packs. A test case of RLIB connected with EMS is shown in Figure 12.

Figure 12. Implementation of RLIB with EMS and auxiliary physical battery (left: EMU; Central: LiFePO
4
 LIB pack; and 

right: auxiliary physical battery).
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9. Verification of RLIB pack with EMS

To consider a real severe case, the current draw of the pattern of electricity is imposed on the 
RLIB pack [41, 42]. As shown in Figure 13, the accuracy of simulation with RLIB analytical 
module is examined by comparing with the measured results. The simulation with assumed 

linear VOC yields the deviation from the measured voltage curve. Otherwise, the simulation 
accurately predicts the response of RLIB.

Simulation results regarding voltage drop of a single RLIB pack in 100(s) under random load 
current is compared with the other case of RLIB pack connected with UC and active con-

trolled by EMS (Figures 14 and 15). Effect of active controlled by EMS represented in DoD is 
not obvious. However, the energy consumption estimated from I2*IR at both cases is shown 
in Figures 16 and 17, and EMS decreases 26% heat loss of RLIB.

In the bench test, the first case of LiMnNiCoO
2
 RLIB pack in Figure 18 shows the comparison 

of DoD with/without EMS under constant c-rate discharging. RLIB in active control of duty 
cycle 60% (solid line) shows the more stable and limit DoD than a single RLIB pack (dash line). 
Through real-time simulation by monitoring DoD, we optimize the best control duty of 60%. 
Here, IR of the RLIB pack plays an essential role in the distribution of DoD. To examine the con-

trol strategy even further, LiFePO4 RLIB is utilized as the DoD results (Figure 19). The effec-

tiveness of EMS (solid line) is realized in comparison with the cases without EMS (point line)  

and single LiFePO
4
 RLIB (dash line). To consider the stable DoD distribution of RLIB by using 

Item Unit Energy density  

(Wh/kg)

IR(mΩ)

Pack Total*

Molicel Module 10.96 V

EME335-I403

(18650AG, 3S35P)

3 modules 100 3.27 × 3

Pishuang Cell 38.4 Ah 3.2 V 400013201 21 cells 60 65.75 84.23

*Total IR is composed of internal resistance + harness resistance + fixture resistance.

Table 3. Specification of RLIB.

Figure 13. Comparison of simulation and measured results (upper: current; down: voltage) [41].
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Figure 14. Voltage drop in simulation of 60 V single RLIB pack.

Figure 15. Voltage drop of 60 V RLIB pack which is in parallel connect with UC and active controlled by EMS.

Figure 16. The energy consumption in the case of Figure 14 (70 J) calculated by simulation.
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Figure 17. The energy consumption in the case of Figure 15 (52 J).

Figure 18. Comparison of DoD in single LiMnNiCoO
2
 RLIB pack and RLIB with/without control.

Figure 19. Comparison of DoD in single LiFePO
4
 RLIB pack and RLIB with different PWM duty (upper: original; down: 

enlargement of dotted line in upper).
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an auxiliary physical battery, individual IR of experimental batteries is listed in Table 3. IR of 
LiFePO

4
 RLIB at 65.75 mΩ is much higher than that at 9.81 mΩ of LiMnNiCoO

2
 RLIB pack and 

3 mΩ of auxiliary physical battery (UC) by excluding harness resistance and fixture resistance. 
The load current provided by the auxiliary physical battery depends on each IR in parallel 
connection relative to RLIB (i.e., the lower the IR of the auxiliary physical battery, the higher 
current it can share) [42]. Consequently, a simple circuit converterless EMS in this study shows 
potential in controlling power flow to avoid the intense loading of RLIB. In particular, EMS 
with auxiliary high-power battery can increase the life cycle of RLIB [42]. Mass production of 

EMS has its potential in large-scale application of WWTPs. As Figure 8 shows, average DoD in 

lifespan is nonlinear, which indicates that LIB can earn useful energy if average DoD is limited 
[44–48]. The distribution of DoD is directly related to life cycle as the formulation [48]. We 

apply this formulation to roughly estimate the benefit of using RLIB with EMS in this study.

10. Conclusion

In this study of applying RLIB in WWTP, a rough estimation by calculating the range of 
DoD by using EMS obtains the elongated range of an RLIB’s life cycle up to 45% from 1100 
to 1600 cycles at effective capacity of 80% based on the formulation in [48]. Under the con-

sideration of environment, cost, and performance, the possibility of using automotive RLIBs 
is studied. One simple and converterless EMS is developed to use in a new RLIB pack. The 
bench test and rough estimation reveal that the EMS shows great potential in elongating 

life cycle and enhancing electricity charges. Furthermore, a simple, training-free, and easily 

implemented scheme based on ECM is applied in EMS. It is capable of online estimation of 
VOC and life cycle-sensitized IR for ensuring the safety of RLIB packs.

Next phase, a pilot run to install small-scale RLIB in Dihua plant is launched. For reflecting 
the best in-situ energy efficiency, remote power monitoring system is used to measure the 
peak and averaged energy consumption of aeration tank. It will function in the decision of 
optimized PWM signals for elongating the life cycle of RLIB.
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