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Abstract

In this chapter, the experimental design methodology is applied to optimize the forma-
tion conditions of magnesium chloride cement. A factorial design to model and to opti-
mize the operating parameters that govern the formation was used. The studied factors 
were mass ratio of MgCl

2
.6H

2
O/MgO, mixing time and stirring speed. The considered 

responses were compressive strength and setting time. The optimum operating condi-
tions were quite efficient to have a good compressive strength and suitable setting time. 
The phases’ compositions of the magnesium oxychloride cement were evaluated by X-ray 
diffraction, the morphological properties were examined by scanning electron micros-
copy (SEM) method and their thermal behavior was analyzed by differential thermal 
analysis/thermogravimetric analysis (DTA/TGA). The raw materials used in the study 
were magnesium oxide and magnesium chloride hexahydrate obtained from natural 
brines in the south of Tunisia.

Keywords: magnesium oxychloride cement, experimental design methodology, 
optimization

1. Introduction

Magnesium chloride cement (MOC) has superior properties as compared to ordinary Portland 

cement such as high compressive strength [1], good resistance to abrasion, rapid hardening 
rate, good cohesiveness and high fire resistance [2], and it can be used with all kinds of aggre-

gates [3]. The main used applications are architectural applications such as the construction 

of industrial floors, construction of thermal and acoustical insulating panels [4] and other 

prefabricated building boards [5]. The basic chemical reaction system of the MOC system is 
MgO–MgCl

2
–H

2
O [6, 7]. The main bonding phases found in hardened MOC is 5Mg(OH)

2
.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



MgCl
2
.8H

2
O (phase5) and 3Mg(OH)

2
.MgCl

2
.8H

2
O (phase 3) which are obtained by the follow-

ing chemical reactions [7]:

  5MgO +  MgCl  
2
   + 13 H  

2
  O = 5Mg   (OH)   

2
   .  MgCl  

2
   + 8 H  

2
  O  (1)

  3MgO +  MgCl  
2
   + 11 H  

2
  O = 3Mg   (OH)   

2
   .  MgCl  

2
   + 8 H  

2
  O  (2)

They are the only stable phases in the system MgO-MgCl
2
-H

2
O. Due to the presence of excess 

water, a parallel or competitive reaction, corresponding to magnesium oxide hydration, can 

take place:

  MgO +  H  
2
  O = Mg   (OH)   

2
    (3)

The presence of Mg(OH)
2
 indicates the low quality of magnesium oxychloride cement.

Furthermore, the widespread use of magnesium oxychloride cement has been limited because 
of loss of strength on prolonged excessive exposure to water [8]. Much research has long been 
processed to improve the water resistance of magnesium oxychloride based on the ability to 
it binding to various organic and inorganic aggregates such as high active SiO

2
 [9, 10], active 

aluminates [11] sulfates and phosphoric acid or phosphate [12].

In this chapter, the influence of three factors (mass ratio of MgCl
2
/MgO, mixing time and stir-

ring speed) on compressive strength and setting time of MOC was carried out. The applica-

tion of the experimental design methodology was used in order to maximize synthesis yield 

by searching for optimum experimental conditions in a less number of experiments.

2. Raw materials from natural brines

The Tunisian territory contains a great number of sebkhas and chotts, especially in the South. 
The more important ones are Chott El Jerid, Sebkha El Melah of Zarzis, Sebkha Oum el 
Khialate, Sebkha El Briga and Sebkha El Adhibate (Figure 1) [13]. Previous geological, hydro-

geological and geochemical studies proved that these deposits contain considerable reserves 
of natural brines (Table 1).

The meteorological conditions in the South of Tunisia and particularly at Sebkha El Melah 
of Zarzis (Figure 2) are favorable for the recovery of the existing salts by solar evaporation. 
The raw material is taken from Aïn Serab, located at the Northern border of Sebkha El Melah 
of Zarzis. This choice is justified by the advantages present in this mineral resource and the 
influence on the economic sector for possible industrial exploitation [14].

These salt lakes which are considered as important material resources useful for industry and 
agriculture. They are called sebkha or chott, and they cover a large part of Tunisian land. The 
liquid raw material enclosed in these deposits is named brine and always assimilated to the 
quinary system: Na+, K+, Mg2+/Cl−, SO

4
2−/H

2
O. These solutions are valuable and expected to play 

an important role in the economic sector. To take advantage of this raw material, several works 
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were developed. Besides the study of geological aspects and phase diagrams of the system 
representing the brines, investigations were extended to the modeling of phase diagrams and 
extraction of interesting salts.

Figure 1. Location of Tunisian sebkhas and chotts.
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2.1. Magnesium oxide

Exceptional proprieties of MgO as a catalytic material [15, 16] or as an additive in build-

ing supplies (Sorel cement, lightweight building panels) and superconductor products have 
attracted both fundamental and application studies [17–22].

Magnesium oxide (MgO or periclase) is one among the most industrially important mag-

nesium compounds. Approximately 20% of worldwide production came from seawater, 

brines and desalination reject brine [15]. Magnesium oxide is used as an exceptionally 

important material in catalysis [15, 16], toxic waste remediation [18] or as additives in 

refractories, paints, in the manufacture of fertilizers, animal feedstuffs, building materials 
(Sorel cement, lightweight building panels) and superconductor products [19–21]. A panel 

of fundamental and applied studies is encountered in literature [21–25]. It shows particu-

larly that magnesium hydroxide production from seawater or brine precipitates by adding 
a strong base and after separation is calcined to produce MgO. Furthermore, magnesia 
qualities may differ depending upon the physicochemical conditions of preparation and 
the precursor type.

In the literature, MgO was prepared mainly by calcination of Mg(OH)
2
 obtained either by 

precipitation [21, 22] or by MgO hydration [21, 23–25]. In our case, magnesium oxide was pro-

duced from magnesium sulfate (MgSO
4
.7H

2
O) by precipitation into Mg(OH)

2
 using a strong 

base (NH
4
OH) in the first step and then calcined in a programmable furnace under control-

lable conditions to produce MgO in the second step.

The sensitivity of the present reactions to several parameters was carried out. These considerations 

altogether led to applying the experimental design methodology in order to maximize synthesis 

yield by searching for the optimum experimental conditions in a smaller number of experiments.

2.2. Magnesium chloride

Magnesium chloride is industrially useful in some agricultural applications. It is mainly 

used for magnesium metal production and Sorel cement manufacturing (Büchel et al., 2000). 
Frequently, natural raw material is complex and must be treated to recover solid magnesium 
chloride. Various procedures (Boyum et al., 1973; Burke and Smith, 1949; Fezei et al., 2009; 
Smith, 1970) have been developed in order to produce this salt from natural brines. The 

Table 1. Characteristics of south Tunisian sebkhas and chotts.
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present work is devoted to magnesium chloride hexahydrate recovery from a mixed salt 

solution. 1.4-Dioxan was chosen to achieve this aim. The action of this organic solvent on 

magnesium chloride has been often studied in the case of pure magnesium chloride solu-

tions (Gaska, 1967; Weissenberg, 1969).

Figure 2. Sebkha El Melah of Zarzis [14].
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As shown in Figure 3, the investigated process is mainly composed of six stages. The adopted 

flow sheet is principally supported by the previous works on natural brines (Janecké, 
1907; Berthon, 1962; Cohen-Adad et al., 2002; M’nif and Rokbani, 2004; Hammi, 2004) usu-

ally described using the oceanic quinary diagram Na+, K+, Mg2+/Cl−, SO
4
2−/H

2
O. This useful 

graphic-tool is helpful in natural brines exploitation or valorization. In fact, it defines, during 
the system’s evolution, the number, the nature, the composition and the relative quantity of 
different condensed phases that crystallize or disappear. The first treatment step consists in 
evaporating at 35°C the raw brine to precipitate the maximum of sodium chloride (halite). 

Figure 3. Flow sheet of the process for the bischofite salt recovery from Sebkha El Melah natural brine.
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In the second step, The precipitated salts consist of sodium chloride and small amounts of 

magnesium-potassium double salt. The third stage consists in maintaining the obtained mag-

nesium salts saturated solution under stirring during four hours at 5°C and to recover the 

precipitated salt. The fourth step consists in precipitating the potassium- magnesium double 
salt, carnallite (KCl.MgCl

2
. 6H

2
O) to eliminate potassium ions; in order to avoid interference 

with the production of an end product having good quality. In the two last stages of the pro-

cess the solution is desulphated by reaction with calcium chloride solution. After removing 
the calcium sulfate precipitate, the resulting brine; consisted of magnesium chloride together 
with residual potassium and sodium chloride; is concentrated by evaporation at 35°C to pre-

cipitate the magnesium chloride salt.

3. Results and discussion

3.1. Experimental procedure

Magnesium oxide powder was mixed with magnesium chloride solution mechanically to 

form homogenous MOC pastes. The weight of MgO is fixed and the weight of MgCl
2
.6H

2
O 

has been varied. Mixtures were cast in cylindrical molds (26 mm in diameter, 50 mm high) 
and stored for 24 h, then unmolded and air-cured for 28 days.

The X-ray diffraction (XRD) analysis was carried out on the powdered sample using X-ray 
powder diffractometer (XRD PHILIPS) with Cu K radiation (λ K = 1.54 Å).

Differential thermograms were obtained using the Netzsch 449 STA F1 Jupiter thermal analy-

sis system. The rate of heating was 15°C/min.

The microstructure of the samples was examined using scanning electron microscope, the 

Carl ZEIIS LEICA S430i model.

Measurement of thermal conductivity was performed in dry state using the photothermal 

deflection technique. Setting time was determined by using the Vicat Apparatus.

Porosity accessible to water of MOC is determined according to EN 12390-7 norm. The mea-

surement of porosity in water under a vacuum of 0.1 bar quantifies the volume of open pores 
(accessible to water) using the following protocol:

Cement samples are placed in sealed desiccators and kept under vacuum of 0.1 bar for 12 h.

Previously degassed water is introduced progressively in desiccators to fill all the pores of 
samples, without introducing air bubbles.

Once the samples are saturated, they are kept immersed in water for 24 h, and finally we 
determined hydrostatic mass   m  

sss
  imm   and saturated dry surface mass mss.

The porosity is calculated by Eq. (4):
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  (4)

where

msss: the saturated dry surface mass of the sample;

mdry: the mass of sample before saturation; and.

  m  
sss

  imm  : mass of sample measured in water.

3.2. Studied factors and experimental domains

According to the preparation of MOC, three quantitative factors are chosen: mass ratio of 

MgCl
2
/MgO, stirring speed and mixing time. The corresponding variables and their levels 

(set according to the data of preliminary experiments and the equipment abilities) are given 
in Table 2. The two experimental responses tracked were compressive strength (Y

1
) and the 

setting time (Y
2
).

To test the direct influence of the three studied factors as well as their possible interaction 
effects on the measured experimental responses, we have realized a two-level complete facto-

rial design 23 which is expected to provide excellent information concerning not only the main 

effects but also the double interaction effects.

The experimental design and the measured responses are summarized in Table 2.

Comparing MOC and Portland cement (setting time between 2 and 3 h), it is found that MOC 
has a faster setting. It also has better mechanical strength.

For a very short setting time (6 min), MOC has a high strength (75.48 MPa): in this case the 
cement is recommended for applications that require fast setting (decoration use, restoration 
of monuments, damaged marble, etc.).

For a longer setting time (64 min), it has a good mechanical strength (46.59 MPa): in this case the 
cement is recommended for applications which require a longer setting time (floor covering).

Considering that the interaction effects between three or more factors are negligible, the factor 
effect estimation is computed by Mathieu et al. [26]; according to Goupy [27]:

   b  
i
   =   

 ∑ 
j
  N    ± Y  

j
  
 ______ 

N
    (5)

where bi is the effect estimation of the factor i, Yj is the response j, and N is the number of 
experiences.

The pooled variance estimation used to determine the significant factors is computed as

   S  
a
  2  =   

 ∑ 
i
  

n

     ν  
i
    S  

i
  2 

 _____ n    (6)
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where   S  
a
  2   is the pooled experimental variance,   S  

i
  2   is the experimental variance estimation i,   ν  

i
    is the 

degree of freedom i, and  n = ∑  ν  
i
    is the degree of freedom of the pooled experimental variance.

4. Identification of the influential factors

Based on check student for an error risk  α = 5% , it was found that tabulated = 4.303. Table 3 

summarizes the factor effects estimation for the two responses: compressive strength (Y
1
) and 

setting time (Y
2
).

Coefficient Y
1

Y
2

Value SD t.exp P Value SD t.exp P

b0 47.464 1.279 37.087 0.000726 29.090 0.460 63.1634 0.000251

b1 −0.773 1.500 −0.515 0.657478 14.625 0.540 27.0802 0.001361

b2 −11.513 1.500 7.672 0.016568 −5.875 0.540 −10.878 0.008345

b3 11.493 1.500 7.658 0.016624 −5.625 0.540 −10.415 0.009093

b12 −8.808 1.500 −5.869 0.027819 −3.125 0.540 −5.7864 0.028592

b13 −4.216 1.500 −2.809 0.106780 −1.375 0.540 −2.5460 0.125809

b23 6.063 1.500 4.040 0.056143 1.625 0.540 3.0089 0.094979

b123 −13.691 1.500 −9.123 0.011802 2.875 0.540 5.3235 0.033522

Table 3. Factor signification for the two responses Y
1
 and Y

2
.

No. 

exp.

Mass ratio of MgCl
2
/

MgO

Mixing time 

(min)

Stirring speed 

(rpm)

Compressive strength 

(MPa)

Setting time 
(min)

1 1.42 5 650 49.47 20

2 2.22 5 650 46.59 64

3 1.42 15 650 4.55 17

4 2.22 15 650 21.20 37

5 1.42 5 1600 41.38 14

6 2.22 5 1600 76.40 41

7 1.42 15 1600 75.48 6

8 2.22 15 1600 20.50 32

9 1.82 10 1125 67.00 30

10 1.82 10 1125 60.54 31

11 1.82 10 1125 59.00 28

Table 2. Factorial matrix 23.
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The two models are represented by the equations given below:

Compressive strength:

   Ycal  
1
   = 47.464 − 11.51  3X  

2
   + 11.49  3X  

3
   − 8.808  X  

1
    X  

2
   − 13.6913  X  

1
    X  

2
    X  

3
    (7)

Setting time:

   Ycal  
2
   = 29.090 + 14.62  5X  

1
   − 5.87  5X  

2
   − 5.625  X  

3
   − 3.12  5X  

1
    X  

2
   + 2.875  X  

1
    X  

2
    X  

3
    (8)

4.1. Analysis of residue

Figure 4 reveals the distribution of the calculated values versus experimental values for the 
two responses (Y

1
 and Y

2
). The points are almost randomly distributed about the line repre-

senting exact agreement, providing good agreements between experimental values and those 
calculated using the model.

4.2. Analysis of variance

Table 4 summarizes the variance analysis of the chosen responses Y
1
 and Y

2
.

The main results for Y1 and Y2 are, respectively, 333.601 and 12.539, as lack of fit mean 
squares and 18.017 and 2.333 as the estimation of experimental variance. Thus, the values 

of the ratio between the lack of fit mean square and the estimation of experimental variance 
18.51568 and 5.3739 for the responses Y1 and Y2 are inferior to tabled   F  

4,2
  0.05   and   F  

3,2
  0.05  , respectively. 

Consequently, it is possible to confirm the validity of the two elaborated models. In addition, 
the ratios between the regression mean square and the residual mean square for the three 
responses Y1 and Y2 (4.638 and 5.3739) are superior to the tabled   F  

4,6
  0.05   and   F  

5,5
  0.05  , respectively. 

Thus, the significant variables, applied to elaborate the three models, have a large significance 
on their responses.

Figure 4. Calculated versus experimental values graph (a) for compressive strength (b) for setting time.
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4.2.1. Optimization

For selecting the optimal conditions we try to strike a compromise between the two responses 
to have good compressive strength and a suitable setting time.

By merely regarding values and signs of these significant effects, we conclude that maximiza-

tion of the two responses is reached for experience number 6 (compressive strength = 76.40 MPa 
and setting time = 41 min):

Mass ratio of MgCl
2
.6H

2
O/MgO (X

1
): 2.22

Mixing time (X
2
): 5 min

Stirring speed (X
3
): 1125 rpm

The phase diagram of the ternary MOC system (MgO-MgCl
2
-H

2
O) [5] at an ambient tempera-

ture is illustrated in Figure 5 with the composition point of the optimum which is located near 

phase 5 responsible for good compressive strength of the cement.

4.3. Characterization

Figure 6 shows the XRD pattern of MOC with an optimal condition. It can be found that phase 
5 is present. This phase is the major product responsible for hardening and the strength of 
MOC. We measured porosity accessible to water, we found that the total porosity of MOC is 
4% which is in good accordance with other results in literature [28].

Source of variation SS DF MS Ratio P

Compressive strength

Regression 4237.738 4 1059.4345 4.63837 0.048

Residual 1370.437 6 228.40616

Lack of fit 1334.403 4 333.601 18.51568 0.051897

Pure error 36,034 2 18.017

Total 5608.174 10 1059.4345

Setting time

Regression 2384.625 5 476.925 56.40478 0.0000

Residual 42.277 5 8.4554

Lack of fit 37.610 3 12.539 5.3739 0.160892

Pure error 4.667 2 2.333

Total 2426.909 10 476.925

Table 4. Analysis of variance.
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The thermal conductivity of cement is 0.8 w/mK. The morphology of MOC is shown in Figure 7. 

We can see a rough surface with a dense network of needle-like crystals of 500 nm which has a 
high strength (phase 5). Thermal analysis of MOC is shown in Figure 8. Six endothermic events 

appear on the DTA curves of MOC during heating. Thermal decomposition requires a dehydra-

tion stage of the crystalline phase 5 Mg(OH)
2
MgCl

2
.8H

2
O at 179°C to obtain anhydrous materials. 

Figure 6. XRD patterns of MOC.

Figure 5. Phase diagram of the ternary MOC system [5].
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The other deflections in this curve at 358, 414, 484, and 711°C present the decomposition stage of 
5 Mg(OH)

2
 MgCl

2
 and the loss of MgCl

2
. The last deflection at 1100°C represents the decomposi-

tion to obtain the final solid product MgO.

Figure 7. SEM analysis of MOC.

Figure 8. TG and DTA curves of MOC.
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5. Conclusion

The formation of MOC from natural brines was carried out in this study using experimen-

tal design. The results showed that there is an agreement between the experimental values 
and those calculated from the model developed which confirms its validity. The optimal 
conditions are MgCl

2
.6H

2
O/MgO (X1): 2.22, mixing time (X2): 5 min and stirring speed (X3): 

1125 rpm. The responses are compressive strength = 76.40 MPa and setting time = 41 min. 
The interpretation of results found by DRX, IR, SEM and TG-DTA confirms the presence of 
phase 5 which is responsible for the good compressive strength of magnesium oxychloride 
cement.
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