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Abstract

This chapter develops a two-level fault diagnosis (FD) and root cause analysis (RCA)
scheme for a class of interconnected invertible dynamic systems and aims at detecting and
identifying actuator fault and the causes. By considering actuator as an individual dynamic
subsystem connected with process dynamic subsystem in cascade, an interconnected system
is then constituted. Invertibility of the interconnected system in faulty model is studied. An
interconnected observer is introduced and aims at monitoring the performance of the
interconnected system and providing information of actuator fault occurrence. A local fault
filter algorithm is then triggered to identify the root causes of the detected actuator faults.
According to real plant, outputs of the actuator subsystem are assumed inaccessible and are
reconstructed by measurements of the global system, thus providing a means for monitor-
ing and diagnosing the plant at both local and global level.

Keywords: actuator fault, invertibility, interconnected system, input estimation

1. Introduction

Actuators are fundamental components in process industry. However, as they are installed in

outdoor environment, continuous exposure to harsh environmental conditions (sun beam,

rainfall, etc.) may reduce the optimal performance of system. Among all classes of possible

faults, actuator fault has been considered to be one of the most critical challenges to be solved,

since an actuator fault may cause significant disturbances on the final product. In addition,

with the development of technological advances, actuators are increasingly integrated, intelli-

gent and complex; therefore, each actuator itself is a dynamic system and exhibits complicated

dynamics of system. For example, a valve actuator is an assembly of positioner, pneumatic

servo-motor and control valve, as given in [1]; mathematical models presented in, like [2, 3],
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have shown that control valve can be seen as a nonlinear dynamic system. Therefore, modern

control system can be viewed as composed of dynamic subsystems connected in series. In all

situations, the global plant and/or each subsystem can be analyzed at different levels down to

the component level in estimating the reliability of the whole plant. A typical control system,

for example, has at least three cascade subsystems: sensor, process and actuator subsystems.

As a result of the increasingly complexities, the probability of occurrence of an actuator fault is

also increased. In real industrial system, the actuator faults may related to, for example, pressure

drop out in hydraulic components, short circuiting or overheating of electrical components,

breakage in bearings due to mechanical stresses, leakages in pipes, sticking of valves, cracks in

tanks, and so on. Actuator fault may cause a malfunction of the installation; resulting in a serious

impact in equipment, such as production quality, security, economy, levels of contamination, in

the worst of cases a fault may even cause severe accidents. According to Zhang [4], about 42% of

the potential waste in annual energy consumption is estimated due to leaks of compressed air in

a pneumatic system, leaks can degrade machine performance since actuators produce less force,

run slower, and less responsive. Faults may even lead to catastrophic incidents. A lesson is from

the well-known TMI-II accident in 1979, and it has been proved that this accident was initiated

by the valve position failure of feed water pump of the main reactor [5].

Consequently, in order to maintain high-efficiency of the operation and ensure stability of the

product quality, real-time actuator fault detection, identification and accurate fault location are

quite desired.

2. Status and challenges of current actuator FDD methodologies

The last few decades have witnessed significant improvements in actuator FDD techniques, as

illustrated in Figure 1. One main approach is system level-based diagnosis approach aims at

detecting and identifying actuator fault existence and location from view point of global

system. Another common kind of methodologies focuses on the field device level and aims at

analyzing internal dynamics of a specific actuator.

2.1. System level-based diagnosis

Traditionally, for most engineers, system level-based methods act as basic tools to design and

carry out some monitoring activities where intelligence is at the system level of the process

plant, rather than at the field device level. In these methods, dynamics of filed devices (actua-

tor) is ignored, instead, they are treated as a component which is viewed as constants in the

input or output coefficient matrix (function) of the process system model. The malfunctions

can be treated separately, and they enter the process model as actuator where faults are

considered as changes of the input or output coefficient matrix elements. An actuator fault is

normally considered as additive effects, as internal dynamics of the field device may be lost.

Many different approaches to system level model-based fault detection and diagnosis have

been introduced. Works in [6] reviewed process fault detection and diagnosis based on the

principle of analytical redundancy. A key approach is based on residuals generation.
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In [7], a nonlinear FDI filter is designed to solve a fundamental problem of residual generation

using a geometric approach. The objective is to build a dynamic system for the generation of

residuals that are affected by a particular actuator fault and not affected by disturbances and

the rest of faults. The problem of actuator fault isolation is also studied by exploiting the

system structure to generate dedicated residuals (see, e.g. [8]). In addition, adaptive estimation

techniques are used to explicitly account for unstructured modeling uncertainties for a class of

Lipschitz nonlinear systems (see, e.g. [9]). Another approach different to residual generation is

fault estimation or fault reconstruction which can determine the size, location and dynamics

behavior of the actuator fault, like in [10, 11]. There are several methods typically used for fault

reconstruction: sliding mode observers [12, 13], unknown input observers [14, 15], input

reconstruction [16, 17]. For instance, a sliding mode observer is designed to reconstruct or

estimate faults by decoupling the input in [18]. Veluvolu et al. [19] develop a high gain

observer with multiple sliding modes for simultaneous state and fault estimations for MIMO

nonlinear systems.

As a result of incomplete identification of internal variables of the actuator, the applications of

system level-based FDD methodologies are mainly limited to the existence and isolation of a

fault from view point of the global level, while root causes of this fault cannot be obtained. For

example, Di Miceli Raimondi et al. [20] have shown that decrease of output temperature may

due to decrease of fluid flowrate, and the causes of this decrease of fluid flowrate may be

caused by valve clogging, stop of utility fluid pump or leakage. Nevertheless, with respect to

the abovementioned system level-based FDD methodologies, fault symptoms can be detected

and isolated without having the capability to pinpoint the real root cause of the fault.

Figure 1. Typical usages of different categories of actuator FDD methods.
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However, root causes of a fault in a component can cause significant process disturbances and

influence the quality of the final product. On the one hand, in each component system, there

can be fault types specific for that system; therefore it is not capable of analyzing all the

actuator faults at the process level. However, recognizing the root cause of a fault correctly is

essential in order to be able to allocate resources effectively to repair the problem and perform

maintenance actions. Another major problem related to system level-based FDD approaches is

the delay of detection. Since lack of internal dynamics of a component, an abnormal deviation

of an internal variable inside the field device may not be observable until some internal

variable saturates and field device performance are affected [21]. After field device perfor-

mance is affected by the internal faults, these faults can then be detected through process

variables. But the detection may occur too late to keep process performance at an optimal level

and to have time to prepare repair work.

2.2. Actuator level-based diagnosis

For the purpose of bettering understanding potential relationship from cause to effect of an

actuator fault, component-level diagnosis can be a solution whereby capability of locating

subcomponent faults for root cause analysis is available. The development of actuator FDD

can be categorized as intelligent self-validation approaches and FDD-dependent methods.

Intelligent self-validation approaches make use of Instrumentation and Control (I&C) technol-

ogies, as so called intelligent devices, or smart sensing [22]. It is an instrument that is designed

to compensate for its own undesirable inherent characteristics to correct from fault conditions,

for example, smart positioner in [1], self-validating actuator in [23, 24]. However, existed

intelligent instrument is restricted to self-diagnosis from a low level, and they lack capability

of supervising performance of the overall plant.

The most active research area in actuator diagnostics are FDD involved methods, catego-

rized as: signal-based methods and model-based methods. The signal-based methods con-

sider input and output of the device measurement signals and their key characteristics. For

example, Sarosi et al. [25] propose an algorithm to detect valve stiction for diagnosis oscilla-

tion of control valve by signal processing. Wavelet analysis is a major aspect of signal

processing method for fault detection. As in [26], it developed automatic feature extraction

of waveform signals for process diagnostic performance improvement. In [27], wavelet

transform is applied to detect abrupt changes in the vibration signals obtained from operat-

ing bearings being monitored, whereas the model-based methods use first-principle models

or system identification techniques to diagnose fault resource. They rely mainly on model-

based identification procedures to estimate related parameters. Like in [28, 29], a set of

nonlinear differential equations representing the system dynamics based on physics are

derived. In [30], derivations of similar nonlinear models have been presented in many recent

publications, in which a detailed mathematical model of dual action pneumatic actuators

controlled with proportional spool valves and two nonlinear force controllers based on the

sliding mode control theory were developed. Puig et al. [2] develop an interval observers-

based passive fault detection method and apply to a control valve in the DAMADICS

benchmark problem. The authors in [31] introduce a state space sliding-stem control valve
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model in order to utilize an advanced nonlinear model predictive control strategy to com-

pensate for the effects of friction. Other nonlinear modeling approaches involve using neural

networks or fuzzy logic, such as in [32, 33].

A major difficulty of actuator level-based diagnosis methodology is lack of dynamics informa-

tion of global system. Another challenge is getting data from the subsystem since direct access

to actuators is often not possible or difficult via physical measurements due to distances or

rough environment. Sensors have to be installed to all the primary variables of the field devices

to make faults of these field devices observable. However, installing additional sensors into the

field devices leads to very complicated and expensive systems. Moreover, even if the output of

the field device (e.g., actuator) is available for measurement, considering the noisy output of

the sensor of the field device, the numerical differentiation would be too noisy. The noisy

control input made from these signals, not only could damage the field device, but also would

make less accuracy in tracking and then instability in the control scheme. Furthermore, some

parameters are not available for directly measurement, for instance, as a common actuating

signal, concentration in chemical process cannot be measured through physical sensors.

Therefore, although many different fault diagnosis methods have been developed from vari-

ous industries, neither of the aforementioned system level based or actuator level-based FDD

methods are however sufficient alone to achieve effective diagnosis to handle all the require-

ments for an engineering problem. In summary, there is a need for a FDD algorithm which is

capable of root cause diagnosing at local actuator level as well as system supervising at global

plant level.

3. Problem formulations

Motivated by the above considerations, this chapter is concerned with the challenges of applying

system inverse and model-based FDD techniques theory to handle the joint problem of actuator

fault diagnosis both locally and globally. We try to develop a hybrid approach that combines

different methods, thus, the weaknesses of individual methods can be compensated and more

accurate diagnosis results are obtained. For that, the overall system is decomposed into several

subsystems and develops the FDD algorithm from the view point of both local and global

system, as shown in Figure 2.

Figure 2. System decomposition and interconnections.

Root Cause Analysis of Actuator Fault
http://dx.doi.org/10.5772/intechopen.76211

135



As shown in Figure 2, according to real engineering plant, the information that can be

obtained from the developed system will include only the performance of critical parameter,

such as temperature of continuous chemical reactor, and manipulated variables of the compo-

nent such as the input of the reactor main control valve. The attempt is to explain how the

behavior of overall output can be interpreted to identify subcomponent faults in component

subsystem, so as to carry out advanced FDD algorithm for recognizing root causes of detected

faults. Like this, this will enable individual actuator to monitor internal dynamics locally to

improve plant efficiency and diagnose potential fault resources to locate malfunction when

operation performance of global system degrades or has measurement faults. This reduces the

complexity of the centralized or distributed monitoring system because the dimensionality

problem, the number of sensors, wires, and diagnosis loops connected to the monitoring

system is reduced. On the other hand, the obtained information is assumed to be only global

output, this can be more realistic and technical availability because field devices are normally

remote from the control room and additional sensors may cause reliability and economy

problem.

In order to achieve the objectives, there are several tasks the new nonlinear FDD schemes need

to study. The first intention is to develop a reasonable system structure for the FDD algorithm,

by which local faults can be distinguished globally. The second intention is to establish a

complete observer-based FDD framework for local nonlinear subsystems.

4. Invertible interconnected system structure

As mentioned above, a modern control system can be analyzed at different levels down to the

component level in estimating the reliability of the whole plant. Therefore, the first consider-

ation is to answer the question of how to decompose the given control problem into manage-

able subproblems, thus forming a dynamic system structure. We develop an interconnected

dynamic system by considering that actuator is viewed as subsystem connected with the

process subsystem in series. Through the overall system, the only available measurement is

the output of the terminal process subsystem. We then consider the problem that arises when

the output from the low-level nonlinear subsystem is not available directly, but instead avail-

able via a second nonlinear subsystem. That is, the output from the low-level nonlinear

subsystem acts as the input to a high-level subsystem, from which output measurement is in

turn available. This situation results in a cascade interconnection that is illustrated in Figure 3.

As shown in Figure 3, it is considering an interconnected system
P

which consists of two

subsystems: actuator
P

a and process
P

p subsystems. The vector u represents the input vector

of the actuators subsystem, which is also the input of the series system, v is the fault vector

related to parameter variations of actuator subcomponent or external disturbance, ua is the

actuators output vector, also the input of process subsystem and y is the output vector of the

process subsystem, also the output of the overall series system. The basic idea is to identify the

fault v at the local level, while monitoring dynamics of the overall plant at the global level.
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A key feature, opportunity and technical challenge of the scheme is to obtain the conditions by

which the information (useful input u or faults v) issued by actuator subsystem can completely

be transmitted to the final terminal and have distinguishable effects on the output of the

process system y. In this way, we can realize actuator faults in local subcomponent while

utilizing the measurable output y of the process system. With respect to this consideration, if

view v as unknown input in the system, this can be seen as problem of input observability.

Input or fault observability is equivalent with left invertibility of system. In [35], input can be

uniquely recovered from output and the initial state if dynamical system is left invertible.

We then consider a left invertible interconnected nonlinear system structure by which actuator

is viewed as a subsystem connected with the process subsystem in cascade manners, thus

identifying component faults with advancing FDD algorithm in the subsystem. The left

invertibility of the interconnected system is required for ensuring faults occurred in actuator

subsystem can be distinguished globally. In this case, the performance of the overall

interconnected system and fault occurrence are recognized by a system level-based diagnosis

algorithm while several independent local diagnosis subsystems are responsible for potential

fault candidates of internal component.

4.1. Process subsystem modeling

Assuming the MIMO process subsystem is input affine nonlinear system which is a common

consideration involving system inverse, and is described by Eq. (1):

X

p
:

_x ¼ f xð Þ þ
X

m

i¼1

gi xð Þua

y ¼ h x;uað Þ

8

>

>

<

>

>

:

(1)

where the state of the process subsystem vector x∈Μ, an n-dimensional real connected

smooth manifold, e.g. Rn, f, gi are smooth vector field on Μ, ua ∈R
m is the input of process

subsystem, which is also the output of the actuator and which we assume to be inaccessible

and want to estimate on the basis of measures taken on the evolution of the system, y∈Rp is

overall system output. If initial conditions are specified, the relevant equation x t0ð Þ ¼ x0 is

added to the system.

Figure 3. An interconnected system structure.
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4.2. Actuator subsystem modeling

Normally, an actuator subsystem can be described by Eq. (2):

X
a

:

_xa ¼ fa xa;u;θfað Þ

ua ¼ ha xa;u;θfsð Þ

(

(2)

where xa ∈R
n is the state, u∈R

l is the input, ua ∈Rp is the output of the actuator subsystem,

which is also the input of the process subsystem, θfa ∈R
q represents the actual parameters

(i.e., when no faults are present in the system), θfa ¼ θfa0 where θfa0 is the nominal parameter

vector (understanding “fault” as an unpermitted parameter deviation in the system), θfs ∈R
q,

represents the parameters in the output equation (if a sensor fault occurs θfs 6¼ θfs0, where

θfs0 represent the nominal parameters in the output equation). If initial conditions are speci-

fied, the relevant equation xa t0ð Þ ¼ xa0 is added to the system.

Thus, an interconnected system
P

is then constructed by these two subsystems
P

a and
P

p

subsystems whereby the input is vector of u while output vector is y.

Assumption 1: The input vector of both subsystem ua and u are locally essentially bounded

function: ua :ð Þ∈ t;∞½ Þ ! R
m, u :ð Þ∈ t;∞½ Þ ! R

l; if two inputs differ on a set of measure zero,

i.e. almost everywhere (a.e), then they are considered to be equal.

If fault v is as integration of either parameters fault θfa,θfs or other disturbance signals, a fault

mode of Eq. (2) is then obtained:

Γa≔

_bxa ¼ f xa;uð Þ þ
Xm

i

gai xa;uð Þvi

ua ¼ ha xa;uð Þ þ
Xm

i

lai xa;uð Þvi

8
>>>><

>>>>:

(3)

where g, l are analytic functions of the system subject to multiple, possible simultaneously

faults. The v (t) is the fault signal v1,
…; vmð Þ whose element vi : 0;þ∞½ Þ ! R are arbitrary

functions of time.

Remark 1: The fault
Pm

i

gai xa;uð Þvi represents the parameters fault in θfa or external distur-

bance while
Pm

i

lai xa;uð Þvi represents the parameters faults in θfs or external disturbance. Effect

of faults on outputs is independent.

The detectability of one fault in nonlinear system Eq. (3) can be defined as:

Definition 1: The fault vi, i ¼ 1,…,m, is said to be non-detectable if for vi 6¼ 0 the relation

ua xa0,
xa;u; 0ð Þ ¼ ua xa0,

xa;u; 0;…;vi;…; 0ð Þ (4)

is satisfied; if not, the fault vi is detectable.
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Definition 2: The fault vi, i ¼ 1,…,m, is said to be detectable and has independent effect on

the system output y if the series system is invertible.

Definition 3: Fix an output set Y and consider an arbitrary interval t0;T½ Þ, the interconnected

system described by Eqs. (1) and (2) is invertible at a point xa0,
x0ð Þ≔x t0ð Þ∈X over

Y, xa t0ð Þ∈X a t0ð Þ over Ua, if for every y t0;T½ Þ ∈Y, the equality Ha ∘Hp

� �

xa0, x0ð Þ u1 t0;T½ Þ

� �

¼

Ha ∘Hp

� �

xa0, x0ð Þ u2 t0;T½ Þ

� �

¼ y t0 ;T½ Þ implies that ∃ε > 0, such that u1 t0;t0þε½ Þ ¼ u2 t0 ;t0þε½ Þ. The sys-

tem is strongly invertible at a point xa0,
x0ð Þ if it is invertible for each xa ∈ N a xa0ð Þ, x∈N x0ð Þ,

where N a,Nð ) is some open neighborhood of xa0,
x0ð Þ. The system is strongly invertible if

there exists an open and dense sub-manifoldMaof X a,Mof X , such that ∀ xa0; x0ð Þ∈ Ma;Mð Þ,

the system is strongly invertible at xa0,
x0ð Þ.

Theorem 1: Consider the interconnected system
P

which consists of two subsystems: actua-

tor
P

a and process
P

p subsystems depicted by Eqs. (1) and (2), and an output set Y. The

interconnected system is invertible at x0; xa0ð Þ over Y, if and only if each subsystem actuator
P

a and process
P

p is invertible at xa0 over Ua, and x0 over Y, respectively.

Proof: Considered Ha as the input output mapping of actuator
P

asubsystem, while Hp is the

input output mapping of process
P

p subsystem. Then, the input output mapping of the

interconnected system is the composition Ha ∘Hp.

a. (Sufficiency): invertibility of a dynamic system refers to bijective of the input output

mapping. Since both subsystems are invertible, the corresponding mapping Ha and map-

ping Hp are bijective mapping. Moreover, composition of two bijective mappings is a

bijective mapping, so input output mapping Ha ∘Hpof the cascade system is bijective.

Thus, the cascade interconnected system is invertible.

b. (Necessity): We now show that if any of the subsystems is not invertible at x0; xa0ð Þ, then

the interconnected system
P

is not invertible.

On the one hand, supposed that the process subsystem
P

p is not invertible, while the actuator

subsystem
P

a is invertible. Then for the actuator subsystem, fix an output set Ua and consider

an arbitrary interval t0;T½ Þ, there exist two distinct inputs for ∃ε > 0 u1 6¼ u2 on t0; t0 þ ε½ Þ, that

may yield two distinct outputs Haðxa0Þ u1 t0;T½ Þ

� �

¼ ua1 t0;T½ Þ,Ha xa0ð Þ u2 t0;T½ Þ

� �

¼ ua2 t0;T½ Þ, ua1 t0 ;T½ Þ 6¼

ua2 t0 ;T½ Þ. However, for the process subsystem, fix an output set Y, these two distinct inputs

ua1 6¼ ua2 on t0; t0 þ ε½ Þmay produce two equal outputs Hp x0ð Þ ua1 t0 ;T½ Þ

� �

¼ Hp x0ð Þ ua2 t0;T½ Þ

� �

¼

y t0;T½ Þ. Therefore, for the series system, these two distinct inputs u1 6¼ u2 on t0; t0 þ ε½ Þmay

result in two equal outputs:

Ha ∘Hp

� �

xa0, x0ð Þ u1 t0;T½ Þ

� �

¼ Ha ∘Hp

� �

xa0, x0ð Þ u2 t0;T½ Þ

� �

¼ y t0;T½ Þ (5)

Thus, it implies that the interconnected system
P

is not invertible at x0; xa0ð Þ over Ua;Yð Þ.

On the other hand, supposed that the process subsystem
P

p is invertible, while the actuator

subsystem
P

a is not invertible. Then for the actuator subsystem
P

a in (4.2), fix an output
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set Ua and consider an arbitrary interval t0;T½ Þ, there exist two distinct inputs for ∃ε > 0

u1 6¼ u2 on t0; t0 þ ε½ Þ, that may yield two equal outputs Haðxa0Þ u1 t0;T½ Þ

� �

¼ ua1 t0 ;T½ Þ, Ha xa0ð Þ

u2 t0;T½ Þ

� �

¼ ua2 t0 ;T½ Þ, ua1 t0;T½ Þ ¼ ua2 t0;T½ Þ. Even if, the process subsystem
P

a in (4.1) is invertible,

these two distinct inputs ua1 ¼ ua2 on t0; t0 þ ε½ Þ can only precede one output Hp x0ð Þ ua1 t0;T½ Þ

� �

¼ Hp x0ð Þ ua2 t0;T½ Þ

� �

¼ y t0;T½ Þ. However, for the series interconnected system, these two distinct

inputs u1 6¼ u2 on t0; t0 þ ε½ Þ result in two equal outputs:

Ha ∘Hp

� �

xa0, x0ð Þ u1 t0;T½ Þ

� �

¼ Ha ∘Hp

� �

xa0, x0ð Þ u2 t0;T½ Þ

� �

¼ y t0;T½ Þ (6)

Thus, it implies that the interconnected system
P

is not invertible at x0; xa0ð Þ over Ua;Yð Þ. ∎

5. Multilevel fault diagnosis and root cause analysis

The major objective of the chapter focuses on the problem of model-based FDD and root cause

analysis (RCA) for multivariable interconnected dynamic system. The attempt is to explain

how the behavior of overall output can be interpreted to identify subcomponent faults in

actuator subsystem, so as to carry out advanced FDD algorithm for recognizing root causes

analysis of faults. As shown in Figure 4, the overall objective is to identify the occurrence of the

fault vi in Eq. (3) independently from each other while monitoring the overall plant at both

local and global level, as required for reliable operation of complex and high interconnected

process system. Fault vi refers to the parameter variations which are related with special

physical meaning, for example, vi represents fault caused by leakage or valve clogging of an

actuator. To realize these causes of an actuator fault is defined as root cause analysis (RCA) in

Figure 4. FDD algorithm for component FDD and RCA.
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this work. We assume to feed the FDD strategy with input u and output ua of actuator

subsystem at local level, so as to achieve root cause analysis. However, online diagnosis of

actuator component is often achieved by a remote supervisory diagnostic system; therefore, to

a large extent, it is impractical to measure ua in realistic industrial condition, so ua is supposed

to be inaccessible in this work. Besides, in order to monitor the plant at a global level,

information of global level should be included when FDD function is performed at local

subsystem. It became apparent that the FDD algorithm design of an interconnected system

with multilevel-based consideration requires that the interconnection be treated as special

signals. If ua can be estimated from the global level measurement y uniquely, then the

abovementioned two problems can be solved. In that way, the residual generator of advanced

FDD strategy performs some kind of validation of the nominal relationships of the system,

using the actual input u, and output ~ua reconstructed frommeasured output y. Hence, a means

of monitoring and diagnosis of the overall plant at both local and global level is provided,

which result in improved fault localization and provide better predictive maintenance aids.

As mentioned above, invertibility of the interconnected system can be a solution for guarantee-

ing that the information of actuators subsystem has distinguishable effects on system output.

Moreover, an essential requirement of the combination of individual actuator with an

advanced diagnostic capability to perform FDD functions is the availability and reliability of

the output of the actuator subsystem ua, which is also the input of the process system. This

problem is considered as input reconstruction problem, which can also be viewed as problem

of system inversion, as shown in Figure 4. Some issues of inversion concepts for input recon-

struction were discussed, e.g. [34–36].

In summary, if the overall cascade system is invertible, fault vector v has distinguishable effect

on system output vector y. While if process subsystem is invertible, ua can be uniquely

reconstructed by output vector y, in that case, reconstructed ~ua and fault vector v also has

one-to-one relationship. Then, one can utilize advanced FDD strategy in actuator subsystem

while use the output vector y of the interconnected system to identify v, thus achieving FDD at

local level while monitoring the whole system at the global level. Above all, the key problem is

to provide condition for guaranteeing invertibility of the overall cascade system and individ-

ual subsystems.

5.1. Input estimation

According to the input estimation procedure introduced [37], if the process subsystem Eq. (1) is

differentially left invertible, the input can be recovered from the output by means of a finite

number of ordinary differential equations. Indeed, to derive an expression for ua tð Þ as a function

of states and output in Eq. (1), following the inversion algorithm given by [37], we have:

y
r1ð Þ
1

⋮

y rmð Þ
m

2

6

4

3

7

5
¼

Lr1
f h1 xð Þ

⋮

Lrm
f hm xð Þ

2

6

4

3

7

5

Lg1
Lr1�1
f h1 xð Þ … Lgm

Lr1�1
f h1 xð Þ

… … …

Lg1
Lrm�1
f hm xð Þ … Lgm

Lrm�1
f hm xð Þ

2

6

4

3

7

5
ua (7)

the Eq. (7) can be solved for u to obtain:
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~ua ¼ A xð Þ�1
:

y
r1ð Þ
1

⋮

y rmð Þ
m

2

6664

3

7775 �

Lr1
f h1 xð Þ

⋮

Lrm
f hm xð Þ

2

6664

3

7775

0

BBB@

1

CCCA (8)

5.2. Local fault filter design for RCA

Considering the actuator subsystem model Eq. (3), by utilizing the reconstructed ~ua, as well as

analyzing the fault resources vi, i ¼ 1, ::, k, we can recognize the root cause of the detected

fault. To achieve this purpose, through adaptive diagnostic techniques proposed in [8], m

banks of k observers corresponding for all possible faulty models are constructed and

extended as below:

1 ≤ j ≤m, 1 ≤ i ≤k, t ≥ tf

_bx
ij

a ¼ fja bxij
a;uj

� �
þ
X

l6¼i

g
j
al bx ij

a;uj

� �
θ
j
l þ g

j
ai bx ij

a;uj

� �
bv j
i þHij ~u j

a � buij
a

� �

bv j
i ¼ 2γij

~u j
a � buij

a

� �T
Pijg

j
ai

buij
a ¼ hj

a bxij
a;uj

� �

8
>>>>>>>><

>>>>>>>>:

(9)

where j denotes jth actuator, i is ith observer corresponding to the ith fault resource candidate vi.

bx ij
a ∈R

n is the estimated state vector of ith observer for jth actuator, bv j
i is the fault estimation of vi

of jth actuator, and buij
a is the estimated output vector of the ith observer for jth actuator. ~u

j
a is

reconstructed output of jth actuator from y, uj is the input of jth actuator. θ
j
l is the nominal value

of parameters in jth actuator, subscript l 6¼ i. fja,hj
a, g

j
a are analytic functions of jth actuator. Hij is

a Hurwitz matrix that can be chosen freely with a goal to increase as much as possible the

dynamic of the observer, γij
is a design constant and Pij is a positive definite matrix.

6. Application to a heat exchanger-control valve interconnected system

6.1. System modeling

Consider a counter heat exchanger subsystem can be written in a state-space form:

_x1 ¼ G1 x1ð Þx2 þ g1 x1;uð Þ

_x2 ¼ ε u; _u; xað Þ

y ¼ x1

8
>><

>>:
(10)
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where, G1 x1ð Þ ¼

Tpi � x11
� �

Vp
0

0
Tui � x12ð Þ

Vu

0

B

B

B

B

@

1

C

C

C

C

A

, and f1 xð Þ ¼

hpA

rpCpp
Vp

x11 � x12ð Þ

huA

ruCpu
Vu

x12 � x11ð Þ

0

B

B

B

B

@

1

C

C

C

C

A

.

where the state vector as x1
T ¼ x11; x12½ �T ¼ Tp;Tu

� �T
, the control input x2

T ¼ ua
T ¼ ua1;ua2½ �T

¼ Fp; Fu
� �T

, the output vector of measurable variables yT ¼ x11; x12½ �T ¼ Tp;Tu

� �T
, rp, ru are

density of the process fluid and utility fluid (in kg:m�3), Vp,Vu are volume of the process fluid

and utility fluid (in m3), Cpp
,Cpu

are specific heat of the process fluid and utility fluid (in

J:kg�1
:K�1), U is the overall heat transfer coefficient (in J:m�2

:K�1
:s�1). A is the reaction area

(in m2). Fp, Fu are mass flowrate of process fluid and utility fluid (in kg:s�1). Tp is the process

fluid temperature of previous, the inlet temperature is Tpi. Tu is the utility fluid temperature,

the inlet temperature of utility fluid Tui.

Consider actuator subsystem is described by four states, two inputs and two outputs, as:

_xa ¼

0 1 0 0

�
k1
m

�
μ1

m
0 0

0 0 0 1

0 0 �
k2
m

�
μ2

m

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

xa þ

Aa

m
0

0 0

0
Aa

m

0 0

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

u

ua¼ Cv

ffiffiffiffiffiffiffiffiffi

∆P1

sg

s

0 Cv

ffiffiffiffiffiffiffiffiffi

∆P2

sg

s

0

" #

xa

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(11)

where xa
T ¼ xa1 xa2 xa3 xa4½ � ¼ X1

dX1

dt
X2

dX2

dt

	 


, uT ¼ u1 u2½ � ¼ pc1 pc2

� �

,

ua
T ¼ F1 F2½ � ¼ Cv

ffiffiffiffiffiffiffiffiffi

∆P1

sg

s

X1 Cv

ffiffiffiffiffiffiffiffiffi

∆P2

sg

s

X2

" #

, C¼ c1 c2 c3 c4½ � ¼ Cv

ffiffiffiffiffiffiffiffiffi

∆P1

sg

s

0 Cv

ffiffiffiffiffiffiffiffiffi

∆P2

sg

s

0

" #

,

F is flow rate (m3s�1), ∆P is the fluid pressure drop across the valve (Pa), sg is specific gravity

of fluid and equals 1 for pure water, X is the valve opening or valve “lift” (X = 1 for max flow),

Cv is valve coefficient (given by manufacturer), f(X) is flow characteristic which is defined

as the relationship between valve capacity and fluid travel through the valve. There are

three flow characteristics to choose from: linear valve control; quick opening valve control;

equal percentage valve control. For linear valve, f Xð Þ ¼ X, the valve opening is related to

stem displacement, Aa is the diaphragm area on which the pneumatic pressure acts, pc is

the pneumatic pressure, m is the mass of the control valve stem, μ is the friction of the valve

stem, k is the spring compliance, and X is the stem displacement or percentage opening of the

valve.

Root Cause Analysis of Actuator Fault
http://dx.doi.org/10.5772/intechopen.76211

143



Thus, ε u; _u; xað Þ can be obtained by a function for the derivatives for ua :

_ua ¼ ε u; _u; xað Þ ¼
∂ha

∂u
u; xað Þ _u þ

∂ha

∂xa
u; xað Þfa u; xað Þ (12)

¼ Cv

ffiffiffiffiffiffiffiffiffi

∆P1

sg

s

0 Cv

ffiffiffiffiffiffiffiffiffi

∆P2

sg

s

0

 !

xa þ
Aa

m
Cv

ffiffiffiffiffiffiffiffiffi

∆P1

sg

s

Aa

m
Cv

ffiffiffiffiffiffiffiffiffi

∆P2

sg

s !

u

Four kinds of fault influencing dynamics of the valve are considered in this work: (1) fault f1:

valve clogging, occurs when the servomotor stem is blocked by an external event of a mechan-

ical nature. It results in limitation of the piston movement in both direction, and therefore the

flow cannot drop below a certain value; (2) fault f2: change of pressure drop across valve,

results in ∆Pþ ∆P0; (3) fault f3: bellow-seal leakage due to leak, resulting in pcAa þ P changed;

valve internal leakage is a common malfunction with industrial control valves. The causes of

such leakage are numerous, including damaged plug or seat, insufficient seat load or reduced

spring rate; (4) fault f4: control valve diaphragm perforation due to pinhole cracks in the

periphery, resulting in k changed.

As above description shown, actuator fault may be caused by parameters μ, k,u,∆p, then there

are eight related parameters in two actuators: k1 μ1 k2 μ2 pc1 pc2 ∆P1 ∆P2

� �

. The

process of RCA is to identify abnormal variations of these eight parameters. Two banks of RCA

observers are generated, aim at generating two banks of four residuals for those

abovementioned fault causes. One bank of residuals are s11, s12, s13, s14, aim at identifying fault

causes f1, f2, f3, and f4 in actuator of process fluid, the other bank are s21, s22, s23, s24, aim at

identifying fault causes f1, f2, f3, and f4 in actuator of utility fluid respectively. If any of these

residuals exceeds its threshold, the fault is caused by the corresponding fault causes.

6.2. Numerical simulation results

The simulation results validate the proposed strategy. We first give the operating conditions of

the simulation. The input of the inlet flow rate of the utility fluid Fu is 4:22e�5m3s�1, and inlet

flow rate of the process fluid Fp is 4:17e�6m3s�1. Initial condition for observers supposed to be

0. Parameters in actuator subsystem are: m ¼ 2 kg, Aa ¼ 0:029 m2, μ ¼ 1500 Nsm�1 and

k ¼ 6089 Nm�1, Pc for utility fluid is 1 MPa, 1:2 Mpa for process fluid, pressure drop ∆P in

utility fluid is 0.6 MPa and 60 KPa in process fluid.

As above mentioned, for most part in practical situation, single fault is observed while multi-

ple faults rarely occur on each actuator. Therefore, we consider each actuator is subject to only

one fault, and then two faults may occur simultaneously in the actuator subsystem. Suppose

the output measurement y is corrupted by a colored noise. The colored noise is generated with

a second-order AR filter excited by a Gaussian white noise with zero mean and unitary

variance. The standard deviation of the colored noise is about 3.5.

For actuator of process fluid, it is supposed to suffer leakage fault, and reasons that can lead to

the leakage are as follows: valve tightness, leaky bushing, and terminals. Valve clogging fault
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is supposed in actuator of utility fluid, it is a commonly encountered fault. If not properly

repaired, this kind of fault may cause severe impacts on system performance. Simulation

results are demonstrated in Figures 5–8.

Figure 5. Reconstructed input ~Fu, ~Fp from output Tp, Tu.

Figure 6. Detection residual.

Figure 7. Residuals for identifying fault cause in process fluid.
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It can be seen from Figure 5 that although noise exists, the developed input reconstruction

techniques can provide reconstructed inputs with a good accuracy. At actuator of process

fluid, sudden decrease occurs at 60 s which indicates occurrence of a fault, and it takes 4 s to

steady at new value. For actuator of utility fluid, the reconstructed value increases from 40 s,

and is stable after about 3 s. A fault is detected due to the unexpected increase.

As illustrated in Figure 6, detection residual r1 indicates a fault in actuator of process fluid at

60 s, it takes 1.2 s to determine the occurrence of the fault. Detection residual r2 refers to a fault

in actuator of utility fluid at 40 s, and it takes 1.5 s to detect it. We can shorten the detection

time and detect smaller fault by employing larger gain for the detection observers or adopt a

smaller threshold. However, larger gain or larger threshold may fail to detect the fault cor-

rectly, since observer with larger gain is too sensitive to noise and smaller threshold may lead

to be undistinguished from noise. Therefore, a trade between detectability and sensitivity

should be made in order to detect the fault correctly. In summary, a small magnitude fault

may not be detected within the existence of the noise. Again, after detection of the faults, we

have to identify their root causes.

We can see from Figure 7 that only RCA residual s12 breaks through its threshold and remains

beyond it; the rest three RCA residuals are below their thresholds, and then the fault resource

f2 of actuator of process fluid is identified. When comes to RCA residuals for actuator of utility

fluid in Figure 8, only s23 is beyond its threshold which verifies the occurrence of fault cause f3.

From the above simulation results, we can see that the proposed strategy is available to detect

and locate a fault correctly, and root cause analysis for each detected fault is achieved with a

good accuracy. Encouraging simulation results are obtained thanks to the robustness.

Figure 8. Residuals for identifying fault cause in utility fluid.
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7. Conclusions

We propose a left invertible interconnected nonlinear system structure with a dynamic

inversion-based input estimation laws, forming a novel model-based multilevel-based actua-

tor FDD algorithm. This algorithm provides a systematic solution to performance monitoring

and actuator fault diagnosis for nonlinear dynamic system. The new system structure, together

with the fault diagnosis algorithm design, is the first to emphasize the importance of root cause

analysis of field devices fault, as well as the influences of local internal dynamic on the global

dynamics. The developed multilevel model-based fault diagnosis algorithm is then a first

effort to combine the strength of the system level and the component level model-based fault

diagnosis.

Acknowledgements

This work was supported by Science and Technology Foundation of Guizhou Province, China

([2016]1053).

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Author details

Mei Zhang1,2,4*, Ze-tao Li1, Boutaib Dahhou3,4 and Michel Cabassud2,4

*Address all correspondence to: gzulzt@163.com

1 Electrical Engineering College, Guizhou University, Guiyang, China

2 CNRS, LGC, Toulouse, France

3 CNRS, LAAS, Toulouse, France

4 Univ de Toulouse, UPS, Toulouse, France

References

[1] Bartyś M, Patton R, Syfert M, de las Heras S, Quevedo J. Introduction to the DAMADICS

actuator FDI benchmark study. Control Engineering Practice. 2006;14:577-596

Root Cause Analysis of Actuator Fault
http://dx.doi.org/10.5772/intechopen.76211

147



[2] Puig V, Stancu a, Escobet T, Nejjari F, Quevedo J, Patton RJ. Passive robust fault detection

using interval observers: Application to the DAMADICS benchmark problem. Control

Engineering Practice. 2006;14:621-633

[3] Roy K, Banavar RN, Thangasamy S. Application of fault detection and identification (FDI)

techniquesin power regulating systems of nuclear reactors. IEEE Transactions on Nuclear

Science. 1998;45(6):3184-3201

[4] Zhang K. Fault Detection and Diagnosis for a Multi-actuator Pneumatic System. Stony

Brook University; 2011

[5] Zhao K. An Integrated Approach to Performance Monitoring and Fault Diagnosis of

Nuclear Power Systems. Knoxville: University of Tennessee; 2005

[6] Venkatasubramanian V, Rengaswamy R, Yin K. A review of process fault detection and

diagnosis Part I: Quantitative Model-Based Methods. Computer and Chemical Engineer-

ing. 2003;27:293-311

[7] Zhang Q. A new residual generation and evaluation method for detection and isolation of

faults in non-linear systems. International Journal of Adaptive Control Signal Processing.

2000;14:759-773

[8] Fragkoulis D, Roux G, Dahhou B. Detection, isolation and identification of multiple

actuator and sensor faults in nonlinear dynamic systems: Application to a waste water

treatment process. Applied Mathematical Modelling. 2011;35(1):522-543

[9] Jiang B, Chowdhury FN. Parameter fault detection and estimation of a class of nonlinear

systems using observers. Journal of the Franklin Institute. 2005;342:725-736

[10] Yan X-G, Edwards C. Nonlinear robust fault reconstruction and estimation using a sliding

mode observer. Automatica. 2007;43:1605-1614

[11] Vijay P, Tade MO, Ahmed K, Utikar R, Pareek V. Simultaneous estimation of states and

inputs in a planar solid oxide fuel cell using nonlinear adaptive observer design. Journal of

Power Sources. 2014;248:1218-1233

[12] Zhou Y, Liu J, Dexter AL. Estimation of an incipient fault using an adaptive neurofuzzy

sliding-mode observer. Energy and Buildings. 2014;77:256-269

[13] Mekki H, Benzineb O, Boukhetala D, Tadjine M, Benbouzid M. Sliding mode based fault

detection, reconstruction and fault tolerant control scheme for motor systems. ISA Trans-

actions. 2015;2:1-12

[14] Bokor J, Szabó Z. Fault detection and isolation in nonlinear systems. Annual Reviews in

Control. 2009;33:113-123

[15] Blesa J, Rotondo D, Puig V, Nejjari F. FDI and FTC of wind turbines using the interval

observer approach and virtual actuators/sensors. Control Engineering Practice. 2014;24:

138-155

Actuators148



[16] Schubert U, Kruger U, Wozny G, Arellano-Garcia H. Input reconstruction for statistical-

based fault detection and isolation. AICHE Journal. 2012;58:1513-1523

[17] Szigeti F, Bokor J, Edelmayer A. Input reconstruction by means of system inversion: Appli-

cation to fault detection and isolation. In: 15th Triennial World Congress; 2002

[18] Edwards C, Spurgeon SK, Patton RJ. Sliding mode observers for fault detection and

isolation. Automatica. 2000;36:541-553

[19] Veluvolu KC, Defoort M, Soh YC. High-gain observer with sliding mode for nonlinear

state estimation and fault reconstruction. Journal of the Franklin Institute. 2014;351(4):

1995-2014

[20] Di Miceli Raimondi N, Olivier-Maget N, Gabas N, Cabassud M, Gourdon C. Safety

enhancement by transposition of the nitration of toluene from semi-batch reactor to contin-

uous intensified heat exchanger reactor. Chemical Engineering Research and Design. 2015;

94:182-193

[21] Manninen T. Fault Simulator andDetection for a Process Control Valve. AaltoUniversity; 2012

[22] Rahmat MF, Sunar NH, Salim SNS, Abidin MSZ, Fauzi a a M, Ismail ZH. Review on

Modeling and controller design. International Journal of Smart Sensing and Intelligent

Systems. 2011;4(4):630-661

[23] Yang JC, Clarke DW. The self-validating actuator. Control Engineering Practice. 1999;7:

249-260

[24] Shen Z, Wang Q. A novel health evaluation strategy for multifunctional self-validating

sensors. Sensors (Switzerland). 2013;13(January 2013):587-610

[25] Sarosi J, Biro I, Nemeth J, Cveticanin L. Dynamic modeling of a pneumatic muscle actua-

tor with two-direction motion. Mechanism and Machine Theory. 2015;85:25-34

[26] Jin J, Shi J. Automatic feature extraction of waveform signals for in-process diagnostic

performance improvement. Journal of Intelligent Manufacturing. 2001;12:257-268

[27] Sun Q. Singularityanalysis using continuous wavelet transform for bearing fault diagno-

sis. Mechanical Systems and Signal Processing. 2002;16:1025-1041

[28] Naseradinmousavi P, Nataraj C. Nonlinear mathematical modeling of butterfly valves

driven by solenoid actuators. Applied Mathematical Modelling. 2011;35(5):2324-2335

[29] Mehmood A, Laghrouche S, El Bagdouri M. Modeling identification and simulation of

pneumatic actuator for VGTsystem. Sensors and Actuators A: Physical. 2011;165(2):367-378

[30] Richer E, Hurmuzulu Y. A high performance pneumatic force actuator system part 1—

Nonlinear mathematical model. ASME Journal of Dynamic Systems, Measurement, and

Control. 2001;122(3):416-425

[31] Kayihan A. Friction compensation for a process control valve. Control Engineering Prac-

tice. 2000;8:799-812

Root Cause Analysis of Actuator Fault
http://dx.doi.org/10.5772/intechopen.76211

149



[32] Hafaifa A, Djeddi AZ. Fault detection and isolation in industrial control valve based on

artificial neural networks diagnosis. Control Engineering and Applied Informatics. 2013;

15(3):61-69

[33] Subbaraj P, Kannapiran B. Fault detection and diagnosis of pneumatic valve using adap-

tive Neuro-fuzzy inference system approach. Applied Soft Computing Journal. 2014;19:

362-371

[34] Maksimov V, Pandolfi L. Dynamical reconstruction of unknown inputs in nonlinear

differential equations. Applied Mathematics Letters. 2001;14:725-730

[35] Edelmayer A, Bokor J, Szabo Z, Szigeti F. Input reconstruction by means of system

inversion: A geometric approach to fault detection and isolation in nonlinear systems.

International Journal of Applied Mathematics and Computer Science. 2004;14(2):189-199

[36] Tanwani A, Liberzon D. Invertibility of switched nonlinear systems. Automatica. 2010;

46(12):1962-1973

[37] Isidori A. Nonlinear Control Systems. 3rd ed. Berlin: Springer; 1995

Actuators150


