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1. Introduction 

There is a growing interest on cyclic scheduling problems both in the scheduling literature 
and among practitioners in the industrial world. There are numerous examples of 
applications of cyclic scheduling problems in different industries (see, e.g., Hall (1999), 
Pinedo (2001)), automatic control (Romanovskii (1967), Cohen et al. (1985)), multi-processor 
computations (Hanen and Munier (1995), Kats and Levner (2003)), robotics (Livshits et al. 
(1974), Kats and Mikhailetskii (1980), Kats (1982), Sethi et al. (1992), Lei (1993), Kats and 
Levner (1997a, 1997b), Hall (1999), Crama et al. (2000), Agnetis and Pacciarelli (2000), 
Dawande et al. (2005, 2007)), and in communications and transport (Dauscha et al. (1985), 
Sharma and Paradkar (1995), Kubiak (2005)). It is, perhaps, a surprising thing that many 
facts in scheduling theory obtained as early as in the 1960s, are re-discovered and re-
rediscovered by the next generations of researchers. About two decades ago, this fact was 
noticed by Serafini and Ukovich (1989).   
The present survey uniformly addresses cyclic scheduling problems through the prism of 
the classical machine scheduling theory focusing on their features that are common for all 
aforementioned applications. Historically, the scheduling literature considered periodic 
machine scheduling problems in two major classes – called flowshop and jobshop - in which 
setup and transportation times were assumed insignificant. Indeed, many machining centers 
can quickly switch tools, so the setup times for these situations may be small or negligible. 
There are a lot of results about cyclic flowshop and jobshop problems with negligible 
setup/transportation times. Advantages of cyclic scheduling policies over conventional 
(non-cyclic) scheduling in flexible manufacturing are widely discussed in the literature, we 
refer the interested reader to Karabati and Kouvelis (1996), Lee and Posner (1997), Hall et al. 
(2002), Seo and Lee (2002), Timkovsky (2004), Dawande et al. (2007), and numerous 
references therein.  
At the same time, modern flexible manufacturing systems are supplied by computer-
controlled hoists, robots and other material handling devices such that the transportation 
and setup operation times are significant and should not be ignored. Robots have become a 
standard tool to serve cyclic transportation and assembling/disassembling processes in 
manufacturing of airplanes, automobiles, semiconductors, printed circuit boards, food 
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products, pharmaceutics and cosmetics. Robots have expanded production capabilities in 
the manufacturing world making the assembly process faster, more efficient and precise 
than ever before. Robots save workers from tedious and dull assembly line jobs, and 
increase production and savings in the processes. As larger and more complex robotic cells 
are implemented, more sophisticated planning and scheduling models and algorithms are 
required to perform and optimize these processes. 
The cyclic scheduling problems, in which setup operations are performed by automatic 
transporting devices, constitute a vast subclass of cyclic problems. Robots or other automatic 
devices are explicitly introduced into the models and treated as special purpose machines. 
In this chapter, we will focus on three major classes of cyclic scheduling problems – 
flowshop, jobshop, and parallel machine shop.
The chapter is structured as follows. Section 2 is a historical overview, with the main 
attention being paid to the early works of the 1960s. Section 3 recalls three orthodox classes 
of scheduling theory: flowshop, jobshop, and PERT-shop. Each of these classes can be 
extended in two directions: (a) for describing periodic processes with negligible setups, and 
(b) for describing periodic processes in robotic cells where setups and transportation times 
are non-negligible. In Section 4 we consider an extension of the cyclic PERT-shop, called the 
cyclic FMS-shop and demonstrate that its important special case can be solved efficiently by 
using a graph approach. Section 5 concludes the chapter. 

2. Brief Historical Overview  

Cyclic scheduling problems have been introduced in the scheduling literature in the early 
1960s, some of them assuming setup/transportation times negligible while other explicitly 
treating material handling devices with non-negligible operation times.  
Cyclic Flowshop. Cuninghame-Greene (1960, 1962) has described periodic industrial 
processes, which in today’s terminology might be classified as a cyclic flowshop (without 
setups and robots), and suggested an algebraic method for finding minimum cycle time 
using matrix multiplication in which one writes “addition” in place of multiplication and 
operation “max” instead of addition. This (max, +)–algebra has become popular in the 1980s 
(see, e.g. Cuninghame-Greene (1979), Cohen et al. (1985), Baccelli et al. (1992)) and is 
presently used for solving the cyclic flowshop without robots, see, e.g., Hanen (1994), Hanen 
and Munier (1995),  Lee (2000), and Seo and Lee (2002).  
Independently of the latter research, Degtyarev and Timkovsky (1976) and Timkovsky 
(1977) have studied so-called spyral cyclograms widely used in the Soviet electronic industry; 
they introduced a generalized shop structure which they called a “cycle shop”. Using a more 
standard terminology, we might say that these authors have been the first to study a
flowshop with reentrant machines which includes, as special cases, many variants of the basic 
flowshop, for instance, the reentrant flowshop of Graves et al. (1983), V-shop of Lev and 
Adiri (1984), cyclic robotic flowshop of Kats and Levner (1997, 1998, 2002). The interested 
reader is referred to Middendorf and Timkovsky (2002) and Timkovsky (2004) for more 
details.                      
Cyclic Robotic Flowshop. In the beginning of 1960s, a group of Byelorussian mathematicians 
(Suprunenko et al. (1962), Aizenshtat (1963), Tanaev (1964), and others) investigated cyclic 
processes in manufacturing lines served by transporting devices. The latters differ from 
other machines in their physical characteristics and functioning. These authors have 
introduced a cyclic robotic flowshop problem and suggested, in particular, a combinatorial 
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method called the method of forbidden intervals which today is being developed further by 
different authors for various cyclic robotic scheduling problems (see, for example, Livshits 
et al. (1974), Levner et al. (1997), Kats et al. (1999), Che and Chu (2005a, 2005b), Chu (2006), 
Che et al. (2002, 2003)). A thorough review in this area can be found in the surveys by Hall 
(1999), Crama et al. (2000), Manier and Bloch (2003), and Dawande et al. (2005, 2007).                
Cyclic PERT-shop. The following cyclic PERT-shop problem has originated in the work by 
Romanovskii (1967). There is a set S of n partially ordered operations, called generic 
operations, to be processed on machines. As in the classic (non-cyclic) PERT/CPM problem, 
each operation is done by a dedicated machine and there is sufficiently many machines to 
perform all operations; so the question of scheduling operations on machines vanishes. Each 
operation i has processing time pi > 0 and must be performed periodically with the same 
period T, infinitely many times. 
For each operation i, let  <i, k> denote the kth execution (or, repetition) of operation i in a 
schedule (here k is any positive integer).  Precedence relations are defined as follows (here we 
use a slightly different notation than that given by Romanovskii). If a generic operation i
precedes a generic operation j, the corresponding edge (i, j) is introduced. Any edge (i,j) is 
supplied by two given values, Lij called the length, or delay, and Hij called the height of the 
corresponding edge (i, j). The former value is any rational number of any sign while the 
latter is integer. Then, for a pair of operations i and j, and the given length Lij and height Hij,

the following relations are given: for all k 1, t(i,k) + Lij t(j, k + Hij), where t(i,k) is the 
starting time of operation <i, k>. An edge is called interior if its end-nodes belong to the same 
iteration (or, one can say “to the same block, or pattern”) and backward (or, recycling) if its 
end-nodes belong to two consecutive blocks.  
A schedule is called  periodic (or cyclic) with cycle time T if  t(i, k) = t(i,1) + (k-1)T, for all 

integer k 1, and for all i S (see Fig. 1). The problem is to find a periodic schedule (i.e., the 
starting time t(i,1) of operations) providing a minimum cycle time T, in a graph with the 
infinite number of edges representing an infinitely repeating process. 

Figure 1. The cyclic PERT graph (from Romanovskii, (1967)) 

In the above seminal paper of 1967, Romanovskii proved the following claims which have 
been rediscovered later by numerous authors. 

Claim 1.  Let the heights of interior edges be 0 and the heights of backward edges 1. The 
minimum cycle time in a periodic PERT graph with the infinite number of edges is 
equal to the maximum circuit ratio in a corresponding double-weighted finite graph in 
which the first weight of the arc is its length and the second is its height: Tmin = maxC

Lij/ Hij, where maximum is taken over all circuits C; Lij denotes the total circuit 

length, and Hij  the total circuit height. 
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Claim 2.  The max circuit ratio problem and its version, called the max mean cycle 
problem, can be reformulated as linear programming problems. The dual to these 
problems is the parametric critical path problem. 

Claim 3. The above problems, namely, the max circuit ratio problem and the max mean 
cycle problem, can be solved by using the iterative Howard-type dynamic 
programming algorithm more efficiently than by linear programming. (The basic 
Howard algorithm is published in Howard (1960)). 

Claim 4. Mean cycle time counted for n repetitions of the first block in an optimal 
schedule differs from the optimal mean cycle time by O(1/n).

The interested reader can find these or similar claims discovered independently, for 
example, in Reiter (1968), Ramchandani (1973), Karp (1978), Gondran and Minoux (1985), 
Cohen et al. (1985), Hillion and Proth (1989), McCormick et al. (1989), Chretienne (1991), Lei 
and Liu (2001), Roundy (1992), Ioachim and Soumis (1995), Lee and Posner (1997), Hanen 
(1994), Hanen and Munier (1995), Levner and Kats (1998), Dasdan et al. (1999), Hall et al. 
(2002). In recent years, the cyclic PERT-shop has been studied for more sophisticated 
modifications, with the number of machines limited and resource constraints added (Lei 
(1993), Hanen (1994), Hanen and Munier (1995), Kats and Levner (2002), Brucker et al. 
(2002), Kampmeyer (2006)).

3. Basic Definitions and Illustrations  

In this section, we recall several basic definitions from the scheduling theory. Machine 
scheduling is the allocation of a set of machines and other well-defined resources to a set of 
given jobs, consisting of operations, subject to some pre-determined constraints, in order to 
satisfy a specific objective. A problem instance consists of a set of m machines, a set of n jobs 
is to be processed sequentially on all machines, where each operation is performed on 
exactly one machine; thus, each job is a set of operations each associated with a machine. 
Depending on how the jobs are executed at the shop (i.e. what is the routing in which jobs 
visit machines), the manufacturing systems are classified as: 

flow shops, where all jobs are performed sequentially, and have the same processing 
sequence (routing ) on all machines, or 

job shops, where the jobs are performed sequentially but each job has its own 
processing sequence through the machines, 

parallel machine shop, where sequence of operations is partially ordered and several 
operations of any individual job can be performed simultaneously on several parallel 
machines. 

Formal descriptions of these problems can be found in Levner (1991, 1992), Tanaev et al. 
(1994a, 1994b), Pinedo (2001), Leung (2004), Shtub et al. (1994), Gupta and Stafford (2006), 
Brucker (2007), Blazewicz et al. (2007). We will consider their cyclic versions.  
The cyclic shop problems are an extension of the classical shop problems. A problem 
instance again consists of a set of m machines and a set of n jobs (usually called products, or
part types) which is to be processed sequentially on all machines. The machines are 
requested to process repetitively a minimal part set, or MPS, where the MPS is defined as the 
smallest integer multiple of the periodic production requirements for every product. In 
other words, let r = (r1, r2,… ,  rn) be the production requirements vector defining how many 
units of each product (j=1,…,n) are to be produced over the planning horizon. Then the MPS 
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is the vector rMPS = (r1/q, r2/q, … ,  rn/q) where q is the greatest common divisor of integers 
r1, r2,… ,  rn. Identical products of different, periodically repeated, replicas of the MPS have 
the same processing sequences and processing times, whereas different products within an 
MPS may require different processing sequences of machines and the processing times. The 
replicas of the MPS are processed through equal time intervals T called cycle time and in 
each cycle, exactly one MPS’s replica is introduced into the process and exactly one MPS’s 
replica is completed. 
An important subclass of cyclic shop problems are the robotic scheduling problems, in 
which one or several robots perform transportation operations in the production process. 
The robot can be considered as an additional machine in the shop whose transportation 
operations are added to the set of processing operations. However, this “machine” has 
several specific properties: (i) it is re-entrant (that is, any product requires the utilization of 
the same robot several times during each cycle) and (ii) its setup operations, that is, the 
times of empty robots between the processing machines, are non-negligible.

3.1. Cyclic Robotic Flowshop  

In the cyclic robotic flowshop problem it is assumed that a technological processing 
sequence (route) for n products in an MPS is the same for all products and is repeated 
infinitely many times. The transportation and feeding operations are done by robots, and 
the sequences of the robotic operations and technological operations are repeated cyclically. 
The objective is to find the cyclic schedule with the maximum productivity, that is, the 
minimum cycle time. In the general case, the robot's route is not given and is to be found as 
a decision variable.
A possible layout of the cyclic robotic flowshop is presented in Fig. 2.   

Figure 2. Cyclic Robotic Flowshop 

A corresponding Gantt chart depicting coordinated movement of parts and robot is given in 
Fig. 3. Machines 0 and 6 stand for the loading and unloading stations, correspondingly. 
Three identical parts are introduced into the system at time 0, 47 and 94, respectively. The 
bold horizontal lines depict processing operations on the machines while a thin line depicts 
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the route of a single robot between the processing machines. More details can be found in 
Kats and Levner (1998). 

Figure 3. The Gantt chart for cyclic robotic flowshop (from Kats and Levner (1998)) 

3.2 Cyclic Robotic Jobshop 

The cyclic robotic jobshop differs from cyclic robotic flowshop only in that each of n
products in MPS has its own route as depicted in Fig. 4. 

5

4

3

2

1

Unloading
station ul

Loading 
station

Fig. 4. An example of a simple technological network with two linear product routes and 
five processing machines, depicted by the squares, where            denotes the route for 
product a, and                denotes the route for product b (from Kats et al. (2007)) 

The corresponding graphs depicting the sequence of technological operations and robot 
moves in a jobshop frame are presented in Fig. 5 and 6 . 
The corresponding Gantt chart depicting coordinated movement of parts and robots in time 
is in Fig. 7, where stations 1 to 5 stand for the processing machines and stations 0 and 6 are, 
correspondingly, the loading and unloading ones. In what follows, we refer to the machines 
and loading/unloading stations simply as the stations.
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Figure 5. The sequence of robot operations in two consecutive cycles (from Kats et al. (2007)) 
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o2,b

o2,b

0,b
25,b-

b3,a-

b3,a-

0,,b

1,b-

1,b-

b5,a-

b5,a-

0 1,a

0 0,a 0 1,a

b4,b-

b4,b-

0 0,a

25,b-

Figure 6. Graph depicting the sequence of processing operations and robot moves for two 
successive cycles (Kats et al. (2007)).  The variables are presented as nodes and the constraints 
as arcs, where          denotes the robot operation sequence,             the processing time window 

constraints,   setup time constraints, and                  the cut-off line between two cycles 
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Figure 7. The Gantt chart of coordinated movement of parts and a robot in time (Kats et al. 
(2007))
Figure 7. The Gantt chart of coordinated movement of parts and a robot in time (Kats et al. 
(2007))
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3.3 Cyclic Robotic PERT Shop 

This major class of cyclic scheduling problems which we will focus on in this sub-section, 
has several other names in the literature, for example, ‘the basic cyclic scheduling problem’, 
‘the multiprocessor cyclic scheduling problem’, ‘the general cyclic machine scheduling 
problem’. We will call this class the cyclic PERT shop due to its evident closeness to project 
scheduling, or PERT/CPM problems: when precedence relations between operations are 
given, and there is a sufficient number of machines, the parallel machine scheduling 
problem becomes the well-known PERT-time problem. 
We define the cyclic PERT shop as follows: A set of n products in an MPS is given and the 
technological process for each product is described by its own PERT graph. A product may be 
considered as assembly consisting of several parts. There are three types of technological 
operations: a) operations which can be done in parallel on several machines, i.e. the parts 
consisting the assembly are processed separately; b) assembling operations; c) disassembling 
operations. There are infinitely many replicas of the MPS and a new MPS’s replica is introduced 
in each cycle. In the cyclic robotic PERT shop, one or several robots are introduced for performing 
the transportation and feeding operations. The objective is to find the cyclic schedule and the 
robot route providing the maximum productivity, that is, the minimum cycle time. 

Classes of scheduling 
problems 

Subclasses of cyclic 
scheduling problems 

Representative references 

Models with negligible 
setups and no-robot 

Cuninghame-Greene (1960, 1962), 
Timkovsky (1977), Karabati and 
Kouvelis (1996), Lee and Posner 
(1997)

Cyclic Flowshop 

Models

Robotic models 

Suprunenko et al. (1962), Tanaev 
(1964),  Livshits et al. (1974),  
Phillips and Unger (1976), Kats 
and Mikhailetskii (1980), Kats 
(1982), Kats and Levner (1997a, 
1997b), Crama et al. (2000), 
Dawande et al. (2005, 2007). 

Models with negligible 
setups and no-robot 

Roundy (1992), Hanen and 
Munier (1995), Hall et al. (2002)

Cyclic Jobshop Models 

Robotic models Kampmeyer (2006), Kats et al. 
(2007)

Models with setups 
negligible, no-robot 

Romanovskii (1967), Chretienne 
(1991), Hanen and Munier (1995) 

PERT-shop Models 

Robotic models 
Lei (1993), Chen et al. (1998), 
Levner and Kats (1998), Alcaide 
et al. (2007), Kats et al. (2007) 

Remark. For completeness, we might mention three more groups of robotic (non-cyclic) scheduling 
problems which might be looked at as “atomic elements” of the cyclic problems: Robotic Non-cyclic 
Flowshop (Kise (1991), Levner et al. (1995a,1995b), Kogan and Levner 1998), Robotic Non-cyclic Jobshop 
(Hurink and Knust (2002)), and Robotic Non-cyclic PERT-shop (Levner et al. (1995c)). However, these 
problems lie out of the scope of the present survey. 

Table 1. Classification of major cyclic scheduling problems 
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The cyclic robotic PERT shop problems differs from the cyclic robotic jobshop in two main 
aspects: a) the operations are partially ordered, in contrast to the jobshop where operations are 
linearly ordered; b) there are sufficiently many processing machines, due to which the 
sequencing of operations on machines vanishes. This type of problems is overviewed in 
more detail in surveys by Hall (1999) and Crama et al. (2000).  
We conclude this section by the classification scheme for cyclic problems and the 
representative references (see Table 1). 

4. The Cyclic Robotic FMS-shop   

4.1. An Informal Description of the Cyclic Robotic FMS Shop 

The cyclic robotic FMS-shop can be looked at as an extension of the cyclic robotic jobshop in 
which there given PERT-type (not-only-chain) precedence relations between 
assembly/disassembly operations for each product. In other view, the robotic FMS-shop can 
be looked at as a generalized cyclic robotic PERT-shop in which a finite set of machines 
performing the operations are given. In what follows, we assume that K PERT projects 
representing the technological processes for K products in an MPS are given and to be 
repeated infinitely many times on m machines.  
Example. (Levner et al. (2007)). MPS consists of two products MPS ={a, b} with sequence of 
processing operations for products a and b given in the form of PERT graphs as shown in 
Fig. 8.  

      Product b    Product a

2
 6 

6

0

5

3

4

15
3

4

210

Figure 8. Two fragments of a technological network in which partially ordered (PERT-type) 
networks are given for two individual products in an FMS-shop 

There are five processing machines and loading and unloading stations (stations 0 and 6 
correspondingly). Infinite number of MPS replicas are waiting for processing and arrive 
periodically in process as shown in Fig. 9. 
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Figure 9. The Gantt chart of several MPS replicas arriving in the technological process 
through equal time intervals 
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We give the problem description basing on the model developed in Kats et al. (2007). The 
product (part type) processing time at any machine is not fixed, but defined by a pair of 
minimum and maximum time limits, called the time window constraints. The movements of 
parts between the machines and loading/unloading stations are performed by a robot, 
which travels in a non-negligible time. To move a part, the robot first travels to the station 
where the part is located, wait if the part is still in process, unload the part and then travels 
to the next station specified by a given sequence of material handling operations for the 
robot. The robot is supplied by multiple grippers in order to transport several parts 
simultaneously to an assembling machine or from an disassembling machine. There is no 
buffer available between the machines and each machine can process only one product at 
time. If different types of products are processed at the same machine, then a non-negligible 
setup time between the processing of these products may be required. The general problem 
is to determine the product sequence at each machine, the robot route and the exact 
processing time of each product at each machine so that the cycle time is minimized while 
the time windows, the setup times, and the robot traveling time constraints are satisfied.  
Scheduling of the material handling operations of robots to minimize the cycle time, even 
with a single part per MPS and a single one-gripper robot, has been known to be NP-hard in 
strong sense (Livshits et al. (1974); Lei and Wang (1989)).  
In this chapter, we are interested in a special case of the cyclic scheduling problem 
encountered in such a processing network. In particular, we solve the multiple-product 
problem of minimizing the cycle time for a processing network with a single multi-gripper 
robot, a fixed and known in advance sequence of material handling operations for the robot 
to be performed in each cycle and the known product sequence at each machine. 
Throughout the remaining analysis of this chapter, we shall denote this problem as Q.
Problem Q is a further extension of the scheduling problem P introduced and solved in Kats 
et al. (2007). The problem P is the jobshop scheduling problem where technological 
operations for each product are linked by simple chain-like precedence relations (see Fig. 5 
above). Like in P, in problem Q the sequence of robot moves is assumed to be fixed and 
known. With this special case, the sequencing issue for the robot moves vanishes, and the 
problem reduces to finding the exact processing times from the given intervals. This case 
has been shown to be polynomial solvable by several researchers independently via 
different approaches. Representative work on this can be found in the work by Livshits et al. 
(1974), Matsuo et al. (1991), Lei (1993), Ioachim and Soumis (1995), Chen et al. (1998), Van de 
Klundert (1996), Levner et al. (1996, 1997), Levner and Kats (1998), Crama et al. (2000), Lee 
(2000), Lei and Liu (2001), Alcaide at al. (2007), Kats et al. (2007).  
In this section, we analyze the properties of Q and show that it can be solved by the 
polynomial algorithm, originating from the parametric critical path method by Levner and Kats 
(1998) for the single-product version of the problem. Our main observation is that the 
technological processes for products presented by PERT-type graphs (see Fig. 8) can be 
treated by the same mathematical tools as more primitive processes presented by linear 
chains considered in Kats et al. (2007).  

4.2. A formal analysis of problem Q   

Each given instance of Q has a fixed sequence of material handling operations , and an 
associated MPS with K products and PERT-type precedence relations. The set of processing 
operations of a product in the MPS is not in the form of a simple chain like in problem P, but 
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rather linked into a technological graph, containing assembling and disassembling operations. 
Let G denote the associated integrated technological network which integrates K technological
graphs of all products in the MPS with the given sequence of processing operations on 
machines. In network G, each node specifies a machine or the loading station 0/unloading 
station ul, each arc specifies a particular precedence relationship between two consecutive 
processing operations of a product, and each technological graph to be performed for each 
product corresponds to a subgraph in network G.

Now, let  be the set of distinct stations/nodes in a given technological network G, j be the 

index to enumerate stations, ,j  and k be the index for product, .1 Kk  Each 

product k requires a total of nk partially ordered processing operations with each operation 
taking place at a respective workstation. In each material handling operation the robot 
removes a product (or a ”semi-product”) from a station. Therefore, 

is the total number of all operations to be performed by the robot 

in a cycle, including a total of K operations at station 0 (i.e., one for each product in the MPS 
to be introduced into the process in a cycle). The processing time for product k at station j,

 is a deterministic decision variable that must be confined within a given interval 

, for 1  k  K,  j=1,2,…,nk, and

Kk knKn ,...,2,1

,,kjp

],[ ,, kjkj ba ,0j where parameters aj,k and bj,k  are the 

given constants and define the time window constraints on the part processing time at 
workstation j. That is, after arriving at workstation j, a part of type k must immediately start 
processing and be processed there for a time interval no less than aj,k and no more than bj,k.
In the practices of assembling shops, the violating of the time window constraints, 

 may deteriorate the product quality and cause a defect product. ,,,, kjkjkj bpa

For any given instance of Q sequence ,  = <([i], r[i],  f(i)), i=1,2, …,n> specifies a total of n

(material handling) operations to be performed by the robot in each cycle. The ith operation 

in , ([i], r[i], f(i)) where },{\][,1 ulini },,...,2,1{][ Kir  f(i) {keep, load}

consists of the following sequential motions: 

Unload  product ][ir from station [i]; 

If  f(i) = load, then transport product ][ir to the next station on its technological route, s[i],

,][is  and load product ][ir to station s[i] which include the loading of all parts of the 

product kept by grippers.  

If  f(i) = keep, then keep the unloaded product in gripper.  

Travel to station [i+1], where },{\]1[ uli  and wait if necessary. When i=n, [n+1] =

0.

In each cycle, the given sequence of operations, , is performed exactly once, so that exactly 
one MPS is introduced into the process and exactly one MPS is completed and sent to 
station ul.  In this infinite cyclic process, parts being moved and processed within a cycle 
could belong to different MPS’s replicas introduced in different cycles and full processing 
time (life cycle) of one MPS could be much longer than cycle time T.
Network G introduces two types of precedence relationships. The first type of relationships 
ensures the processing time window constraints, and the second type refers to the setup time 
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constraints on sharing stations. The latter incorporates the corresponding setup times into the 
model when two or more part types are to be processed at the same station. 
Let time moment 0 be a reference time point in the infinite cyclic process and assume, 
without loss of generality, that the current cycle starts at time 0. Let MPS(q) be the qth replica 

of the MPS such that its first operation starts at time ,Tq  where q= 0, ±1, ±2,…     

Let be the moment when part ][],[ iriz )0(][ MPSir is removed from station [i]. Then  

ThzTzt iriiriiriiri ][],[][],[][],[][],[ )(mod  (2) 

is the moment within interval [0, T) when part r[i] MPS(-h[i],r[I] ) is removed from station [i]
To make a formal definition for problem Q, let’s introduce the following additional notation: 

][iL     The part loading time at station [i], };{\][ uli

][iU      The part unloading time at station [i], };0{\][i

]'[],[ iid    The robot traveling time from stations [i] to [i’];

ba
ig
,
][   The pre-specified setup time at shared station [i] between the processing  

  of part  a and the processing of part b, where a, b {1,…, K};  

  The given set of paired technological operations; 

Y[i]         Sequence ( -dependent binary constants: Y[i] =1 if (s[i], r[i]) and ([i], r[i])
are in the same cycle, and Y[i] = 0 otherwise (see Kats et al. (2007)).   

Problem Q can be described in the same terms as P in Kats et al. (2007): 

Q: TMinimize

subject to 
The multigripper robot traveling time constraints  

For all i, 1  i  n, such  that f(i) = load 

 t[i],r[i] + U[i] + d[i],s[i] + Ls[i] + ds[i], [i+1] t[i+1],r[i+1]  (3a) 

For all i, 1  i  n, such that f(i) = keep 

 t[i],r[i] + U[i] + d [i], [i+1] t[i+1],r[i+1],  (3b) 

where t[n+1],r[n+1] = t[1],r[1] + T.
The processing time window constraints  

For all i, 1  i  n,  such that f(i) = load 
if Y[i] = 0

.

,

][],[][][],[][][],[][],[

][],[][][],[][][],[][],[

irisisisiiiriiris

irisisisiiiriiris

bLdUtt

aLdUtt
 (4a) 
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if Y[i] = 1

T + ts[i],r[i]  - t[i],r[i]  U[i] + d[i],s[i] + Ls[i] + as[i],r[i],   (4b)

T + ts[i],r[i]  - t[i],r[i]  U[i] + d[i],s[i] + Ls[i] + bs[i],r[i].

The setup time constraints on sharing stations  

For all ])[],'[],([],[]'[,,'1,' iririandiiniiii

(5a),][],'[][]'[],'[][],[
irir

iiriiri gtt

 (5b) 
]'[],[

]'[]'[],'[][],[ )( irir
iiriiri gttT

The non-negativity condition 

All variables T, ,1,][],[ nit iri  are non-negative. 

Constraints (3) ensure the robot to have enough time to operate and to travel between the 

starting times of two consecutive operations in sequence . Constraints (4) enforce the part 
processing time at a station to be in given windows. Constraints (5) ensure the required 
setup time at the shared stations to be guaranteed.  

The processing time window constraints (4a)-(4b) ensure aj,k  pj,,k bj,k, where 

stands for the actual processing time of part r[i] in station s[i] and is determined by the 
optimal solution to Q. The “no-wait” requirement means that a part, once introduced into 
the process, must be in the status of either being processed at a station or being transported 
by a material handling robot.   

][],[ irisp

One can easily observe that the relationships (3) - (6) are of the same form as those in the 
model P, and thus an extension of simple chains to the PERT-graphs for each product does 
not change the inherent mathematical structure of the model suggested by Kats et al. (2007), 
and the complexity of the algorithm proposed for solving P.    

4.3. A Polynomial Algorithm for Scheduling the FMS Shop 

In this section, we develop results contained in Alcaide et al. (2007) and Kats et al. (2007). 
Our considerations are based on the strongly polynomial algorithm for solving problem P
suggested by Kats et al. (2007). However, for reader’s convenience, we present the algorithm 
for problem Q in a simplified form, following the scheme and notation developed in Levner 
and Kats (1998).  To do so, let’s start with the following result. 
PROPOSITION 1. Problem Q is a parametric critical path (PCP) problem defined upon a directed 
network GP = (V, A) with parameter-dependent arc lengths. 
The proof is along the same line as for problem P in Kats et al. (2007). 
The algorithm below for solving Q is called the Parametric Critical Path (PCP) algorithm. As 
that for problem P, it consists of three steps (Table 2 below). The first step assigns initial 
labels to nodes in a given network GP, the second step corrects the labels, and the third step, 

based on the labels obtained, finds the set  of all feasible cycle times or discovers if this 
set is empty.  
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PARAMETRIC CRITICAL PATH (PCP) ALGORITHM  

Step 1 . // Initialization.

         Enumerate all the nodes of V {f} in an arbitrary order. 

        Assign labels p0(s)= p10= 0, pj0 =  w(s  j) if  j s;   

                 Pred(s) = , and p0(v) = –   to all other nodes v of V f.

Step 2. // Label correction.

For i := 1 to n -1 do

      For each arc e = (t(e), h(e)) A compute max{pi-1(h(e)), p i-1(t(e)) + w(e)}.
      Calculate 

    pi(h(e)):= ehuwu,pehp i-i-

ed(h(e))u

11

Pr

maxmax .                              (6) 

//Notice that for u  Pred(h(e)), u  h(e) denotes the existing arc from u to h(e)).

Step 3. //Finding all feasible T  values or displaying ‘no solution’.

For each arc e = (t(e), h(e)) A solve the following system of functional 
inequalities  

pn-1(t(e)) + w(e) pn-1(h(e)),                                                  (7) 

           with respect to T.

Let be the set of values of T satisfying (7) for all e A.

          If , then return  and stop. Otherwise return ‘no solution’. 

At termination, the algorithm either produces the set  of all feasible T, or it 

reveals that  = . In the case , then = [Tmin, Tmax] is an interval. 

Let be the set of values of feasible T satisfying (6)-(7) for all e A.

  If , then return  and stop. Otherwise return ‘No solution’ and stop. 

   

Table 2. The Parametric Critical Path (PCP) Algorithm 

The algorithm terminates with a non-empty set, ,  if there exists at least one feasible cycle 

time on GP.  By the definition of ,  the optimal cycle time 
*T is the minimal value in 

Once the value of T* is known, the optimal values of all the t-variables in model Q (i.e., the 

optimal starting times of robot operations in sequence ) are known as well, and the optimal 

processing time,  where 

.

,][],[ irisp ,][],[][],[][],[ irisirisiris bpa for each part 
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Kkir ,...,2,1][  in each respective station along its route,][is ,1 ni can be 

found.

For each arc e A(Gp),  let t(e), h(e), and w(e) denote the tail, the head, and the length of arc e,

respectively. Let j denote node ,12]),[],([ njjrj ,])[],([ Vjrj pji denote 

the distance label of node j found at the i-th iteration of the PCP algorithm, and (k  j) denote 
the arc from node k to j. Let N= n+1 be the total number of nodes of GP (counting for all the 
nodes in V plus the added dummy node f), and M the total number of iterations. 
It is worth noticing that  labels pi(u) in (6)–(7) are not numbers but the piecewise-linear 
functions of T.
PROPOSITION 2. The Parametric Critical Path algorithm finds the optimal solution to  problem Q
correctly. The complexity of the parametric critical path algorithm is O(n4), in the worst case. 
The proof is identical to that for problem P in Kats et al. (2007). 
The following example illustrates how an optimal schedule is obtained by the use of the 
proposed PCP algorithm. 

Example (Continued). The sequence   of robot moves is fixed and given: 

 = <(0,b0,U), (2,b0,L), (4,a-1,U), (1,b-1,U), (4,b-1,L), (3,a-1,U), (5,a-1,L),

(3,b-1,L), (0,a0,U), (1,a0,L), (5,a-1,U), (6,a-1,L), (3,b-1,U), (1,a0,U), (3,a0,L),  

(4,b-1,U), (5,b-1,L), (2,b0,U), (1,b0,L), (2,a0,L), (5,b-1,U), (6,b-1,L), (4,a0,L), 

(2,a0,U)>. 

Here we use a more detailed description of robot operations given in the form of triplets (*, 
*, *). A number in the first position determines the processing machine or 
loading/unloading station, numbered 0 and 6, respectively. A symbol in the second position 
determines the product type (a or b); a corresponding subscript determines to which MPS 
replica the product belongs. A symbol in the last position determines that a product is either 
loaded (symbol L) or unloaded (symbol U).  

Then the life cycle of the MPS is completed within two consecutive cycles || , and is 
shown in Fig. 6. The Gantt chart of the movements of  products and the robot under the 
optimal schedule are presented graphically in Fig.10. The minimum cycle time T* = 88. 
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Figure 10. The Gantt chart of product processing operations and robot movements 

We have studied a variation of the single multi-gripper robot cyclic scheduling problem 
with a fixed robot operation sequence and the time window constraints on the processing 
times.  It generalizes the known single-robot single-product problems into the one involving 
a processing network, multiple products, and general precedence relations between the 



Multiprocessor Scheduling: Theory and Applications 16

processing steps for different products in the form of PERT graphs. We reduced the problem 
to the parametric critical path problem and solved it in polynomial time by an extension to 
the Bellman-Ford algorithm. In particular, we simplified the description of the labeling 
procedure suggested by Kats et al. (2007) needed to solve the parametric version of the 
critical path problem in strongly polynomial time.  

5. Concluding Remarks 

Since Johnson’s (1954) and Bellman’s (1956) seminal papers, the machine scheduling theory 
have received considerable development and enhancement over the last fifty years. As a 
result, a variety of scheduling problems and optimization techniques have been developed. 
This chapter provides a brief survey of the evolution of basic cyclic scheduling problems 
and possible approaches for their solution started with a discussion of early works appeared 
in the 1960s. Although the cyclic scheduling problems are, in general, NP-hard, a graph 
approach described in the final sections of this chapter permits to reduce some special case 
to the parametric critical path problem in a graph and solve it in polynomial time. The 
proposed parametric critical path algorithm can be used to design new heuristic search 
algorithms for more general problems involving multiple multi-gripper robots, parallel 
machines/tanks at each workstation and more general scenarios of cyclic processes in the 
cells, like, for example, multi-degree periodic processes. These are the topics for future 
research.
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