
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 5

Mode Transition and Hysteresis in Inductively Coupled
Plasma Sources

Shu-Xia Zhao

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76654

Abstract

In this chapter, the characteristics of low-temperature inductively coupled plasma sources,
that is, non-equilibrium, weakly ionized and bounded plasma, are described. The phe-
nomenon of mode transition and hysteresis is one of the main physics aspects that hap-
pens in this source. Via a hybrid model, the behaviors of plasma parameters, electron
kinetics and neutral species during mode transition are presented. Still, the role of meta-
stables and multistep ionization on triggering the hysteresis is investigated. Using a fluid
model that couples the equivalent circuit module, the discontinuity of mode transition
and hysteresis are observed by tuning the matching network impedance. The work indi-
cates the mutual interaction between the plasma and the circuit excites hysteresis. Besides
these findings, the other important aspects of this phenomenon are briefly discussed. To
the author, the exploration on the precursors that trigger hysteresis is the most attractive
topic. The investigations advance the improvement of analytical theory, numerical model-
ing and experimental diagnostics of low-temperature plasma physics.

Keywords: low-temperature plasma, inductively coupled plasma, mode transition and
hysteresis, hybrid model, fluid model, equivalent circuit, multistep ionizations

1. Introduction

The inductively coupled plasma (ICP) source is one of the most important low-temperature

plasma sources that find widespread applications in many fields [1], such as plasma photonic

crystals, synthesis of nanomaterials and nanostructured materials, atomic layer processing,

agriculture and innovative food cycles, medicines, environments, plasma-assisted combustion

and chemical conversion and aerospace application (propulsion and flow control) and so on.

Driven within the domains of radio frequency electromagnetic and rather low-pressure

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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(�mTorrs) ranges, the ICP sources present several advantages, such as high-plasma density,

high anisotropy in the sheath, independent control of incident flux density and energy and

simple low-cost reactor configuration (unwanted for the static magnetic devices) over some

other plasma sources, such as capacitively coupled plasma and electron cyclotron resonance

reactor [2]. As compared to the atmospheric discharges, this sort of low-pressure radio fre-

quency plasma sources are known for their non-equilibrium properties, that is, Te ≫Ti > Tn,

where Te, Ti and Tn are temperatures of electrons, ions and neutrals, respectively [3], due to the

low-temperature peculiarity of this type of plasma source. Another essential feature is its weak

ionization degree that ensures the abundance of collisions and reactions between charged

species and neutrals, which is quite different with the high-temperature fully ionized plasmas

where only the Coulomb interactions between charged species are important [4]. Of great

importance is the diversity in the mutual interactions among charged and neutral species,

which are classified into elastic and inelastic collisions with respect to the principle of kinetic

energy balance. Regarding species specialty and colliding outcomes, the inelastic collisions can

be described as type (1) ionization, dissociation, electronic, rotational, vibrational excitation,

attachment, detachment and de–excitation, which mainly occur between electrons and neu-

trals; type (2) recombination, associations, charge exchange, excitation transfer and penning

ionizations, which mainly happen among heavy species (meant to all species except for

electrons); and type (3) the spontaneous radiation from excited state species (without a trigger)

[5]. The elastic scattering to some extent determines plasma transport process and hence

spatial characteristics of plasma via the parameter of momentum transfer collision frequency,

while the inelastic collisions that sustain the weakly ionized plasma mainly determine the

energy loss mechanism and give steady-state plasma components optical emission. Finally, all

low-temperature plasma sources are generated in chambers with their respective fixed config-

urations and more importantly with limit space dimension. This means that all the plasmas are

bounded plasmas, as compared with the space plasma; therefore, the sheath, produced on all

bound surfaces, forms one important constituent of low-temperature plasma physics [6]. In a

word, non-equilibrium, weak ionization and plasma bounds characterize the low-pressure

radio frequency plasma source as complicated and multi-disciplinary.

Even with the above complexity, rich and fruitful interesting physics phenomena and mecha-

nisms are already revealed in these low-pressure and radio frequency plasma sources via

present efforts. In particular, in the ICP sources, pulsed radio frequency power source [7],

standing wave effects [8], nonlinear harmonics [9], double coil discharges [10], anomalous skin

effects [11], nonlocal electron kinetics [12], mode transition and hysteresis [13] and so on are

still or have been hot research frontiers that draw attention. In this chapter, the mode transi-

tions and hysteresis topic is focused upon. This topic has been historically studied well and

continually occupies people’s attention due to its complexity of the multi-factor interactions

and potential application in achieving stable plasma sources for the processing technique. The

ICP source is famous for its capacity of operating at two different modes, that is, capacitive and

inductive modes. The capacitive mode is sustained by radial and axial electromagnetic fields,

analogous to conventional capacitively coupled plasma source that is excited by the electrostatic

field and hence is abbreviated as the E mode. The inductive mode is sustained by the azimuthal

electromagnetic field caused by coil current and is abbreviated as H mode. Remember that the
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power source applied to the coil is temporally varied in the range of radio frequency. At low-coil

power, the ICP source is maintained at E mode, where the plasma density and optical emissions

are weak, and the glow area of discharge is more localized under the coil. As we increase the coil

power, the discharge transfers abruptly or smoothly toward H mode, where the plasma density

and current are significantly increased and the optical emission is strengthened. Moreover, the

discharge is more uniform. Interestingly, at certain circumstances, when cycling the power

source, the trajectories of plasma parameters versus upward and downward powers don’t

coincide; hence, hysteresis is formed and the ICP source is therefore famous for its other feature,

that is, the existence of two stable states at one fixed power value. In labs of academia or

enterprise, the ICP sources are triggered from the E mode at the beginning and then transferred

to H mode. Most of the plasma processing techniques prefer to be conducted in the H mode due

to its better plasma properties. Therefore, understanding the E–Hmode transition and hysteresis

is very meaningful to the related industry.

This chapter is outlined as follows. In Section 2, the major achievements of the author on this

topic are presented. Three subtopics and the used methodology are discussed and described,

aimed at demonstrating to readers the characteristics of plasma parameters, electron kinetics

and neutral species during mode transition and excitation of discontinuous mode transition

and hysteresis by the external circuit. Finally, the conclusion and further remarks are given in

Section 3.

2. Theoretical and experimental investigations of mode transitions and

hysteresis: An overview

2.1. Characteristics of basic plasma parameters

In this part, the characteristics of electron parameters, density, temperature and energy distri-

bution function and plasma potential at two modes are presented via the two-dimensional

hybrid model [14]. The hybrid model consists of three parts, that is, fluid module, electron

Monte Carlo module and electromagnetic module. Species density and momentum, together

with the electrostatic field generated by net charge density (analogous to ambipolar diffusion

field), are given by the fluid module. Electron transport and collision coefficients, and the

effective electron temperature, are calculated through the Monte Carlo method and then

transferred to the fluid module. The electromagnetic module calculates the electromagnetic

field generated via the coil current and voltage through the Maxwellian’s equations, based on

the electron conductivity from the fluid module. Both the electrostatic and electromagnetic

fields are sent to the Monte Carlo module to push the electrons via Newton’s law. The

interactions of three modules are illustrated by the model flowchart in Figure 1. The three

modules are iterated with each other until a final steady state is achieved. In this chapter, a

cylindrical inductively coupled plasma reactor with planar coil is used, as shown in Figure 2.

In Figures 3 and 4, the calculated electron density and temperature profiles versus coil current

at the pressure of 20 mTorr are presented. In Figure 3, at low-coil current, 10 A, the density
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magnitude is low and the profile is smooth. At high coil current, 40 A, the density magnitude is

high, more or less four factors higher than the 10 A case. Meanwhile, the density is peaked

under the coil, as referred to the reactor in Figure 2. The E–H mode transition happened along

with increase in the coil current. In Figure 4, at E mode, that is, 10 A, the electron temperature

is high around the plasma chamber bound but sinks at the discharge center region. This is

because the ambipolar diffusion potential barrier suppresses the electrons from entering the

sheath for heating due to the lack of elastic collisions at low pressure. As known, this is a

representative feature for the capacitive discharges [15]. At the H mode, that is, 40 A, the

temperature profile is substantially changed. It peaks under the coil and more or less decreases

toward the center, bottom and sidewall. Besides, the sink area of the temperature profile is

significantly shrunk and moves toward the coil, as compared to the E mode. The appearance of

temperature sink at different coil currents and its alteration with coil current is related to the

Figure 1. Flowchart of the hybrid model.

Figure 2. Schematic of the cylindrical inductively coupled discharge configuration.
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spatial potential distribution in Figure 5, where the potential barrier is shifted from the

discharge center to the coil with the coil current and meanwhile the area of potential barrier is

decreased.

Figure 3. Electron density ne profile versus coil current at the pressure of 20 mTorr.
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In Figure 6, the electron energy distribution functions (EEDFs) of E and H modes, sampled at

the discharge center, are compared at different pressures. At low pressure, that is, 20 mTorr, a

prominent low-energy peak is found in the EEDF of the E mode due to the suppression of

Figure 4. Electron temperature Te profile versus coil current at the pressure of 20 mTorr.

Plasma Science and Technology - Basic Fundamentals and Modern Applications94



potential barrier, and it disappears at H mode because the barrier shifts toward the coil. At

high pressures, that is, 50 and 100 mTorr, the EEDFs evolve to an opposite way, that is, low-

energy electrons’ amount of the H mode is higher than the E mode. This is because at high

pressures the suppression of the potential barrier is not important anymore due to the frequent

elastic collisions between electrons and neutrals at high electron densities. Hence in the electron

Figure 5. Plasma potential profile versus coil current at the pressure of 20 mTorr.
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temperature profile (see Figure 7), the sink region disappears. The temperature profiles of E and

H mode are representative of the capacitive and inductive discharges, and, as is well known, the

temperature value in the E mode is higher than in the H mode [16]. To demonstrate the electron

kinetics better, in Figure 8, the electron energy probability function (EEPF) variation with coil

Figure 6. Comparisons of electron energy distribution function (EEDF) of E and H modes at different pressures. The

EEDFs are sampled at the discharge center.
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current at low pressure of 20 mTorr is shown. Clearly, at the E mode, that is, with the coil current

less than and equal to 20 A, the obvious three-temperature Maxwellian distribution is observed.

The low-energy electron peak, as mentioned before, is formed by the suppression of the potential

Figure 7. Electron temperature Te profile versus coil current at the pressure of 100 mTorr.
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barrier, while the depletion of high-energy electrons tail is caused by the inelastic electron-

neutral collisions, such as excitations and ionizations. At H mode, that is, with coil current equal

to and larger than 25 A, the two-temperature Maxwellian EEDF in the elastic collision energy

range, that is, less than 11.56 eV (the excitation threshold), now disappears due to high electron

density and frequent collisions, and the high-energy electrons’ depletion via inelastic collisions

still exists because the electron density is not high enough for the e–e Coulomb collisions

thermalizing these two electron swarms [17, 18].

In a word, the hybrid model successfully captures the main characteristics of plasma parame-

ters during the mode transition, including both the macroscopic plasma properties and micro-

scopic electron kinetics, and all these predictions presented here agree well with the

experimental measurements.

2.2. Behavior of metastable neutrals

The behavior of metastable neutrals during the mode transition is investigated by the above

hybrid model, with the advanced reaction set that includes the metastables and all relevant

reactions [19]. In Figure 9, the metastable densities, sampled at the discharge center, versus

applied power at different pressures are presented. The densities at low and high pressures,

that is, 30 and 300 mTorr, both first increase and then decrease with the power, and the

decreasing trend at high pressure is more obvious. Hence, the metastables density increases

with power at E mode while decreases with power at H mode, which is different with the

electron density trend in Section 2.1. In Figure 10, the metastables density profiles at different

Figure 8. Evolution of electron energy probability (EEPF) against coil current at the pressure of 20 mTorr.
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coil currents are presented. It is shown that the peak density keeps increasing with coil current,

however, the peak location basically shifts from the discharge center at E mode toward the coil

at H mode, thus leading to the non-monotonic varying trends of metastables’ densities at the

discharge center in Figure 9. The localizing trend of metastables density to the coil with coil

current is caused by the fact that multistep ionization becomes more and more important as

the plasma density is increased, to an extent when the negative source, that is, multistep

ionization rate larger than the excitation rate, is formed. The stationary metastables continuity

equation with a negative source can be characterized as Bessel’s equation with imaginary

argument that shows spatial characteristics analogous to the localized profile. This localizing

effect is more important at high pressure due to the prevalence of multistep ionizations; hence,

the decreasing trend of metastables density with power is more obvious at high pressures.

Last, the model predicted a non-monotonic variation of metastables density during mode

transition which agrees well with the experiment [20].

Besides the exploration of metastables evolution along with mode transition, the role of meta-

stables in determining the hysteresis is still investigated through the hybrid model. The behind

mechanisms that generate hysteresis are difficultly identified since it is a process that is

interplayed by so many elements. In the literature, many papers ascribed the hysteresis to the

multistep ionizations [13, 21]. To assess this argument, in Figure 11, the influence of meta-

stables on electron density and temperature variations versus power is presented. Inclusion of

metastables and multistep ionization overall elevates electron densities and meanwhile

reduces electron temperatures against the power; however, it does not trigger hysteresis.

Besides, the metastables change the trend of electron temperature with power at the H mode.

Figure 9. Metastables densities, sampled at the discharge center, versus power at different pressures.
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The decrease of temperature with power when including metastables is caused by the fact that

ionizations consume electron kinetic energy more effectively than excitations, as revealed by a

novel electron mean energy Equation [22].

2.3. Discontinuous mode transition and hysteresis excited by matching network

The discontinuity feature of mode transition and interesting hysteresis phenomena have

attracted people’s attention for years. They are easily observed in the experiments [16, 23] and

can be analytically predicted by stationary zero-dimensional global model [24, 25]. However, it

is difficult for the self-consistent multidimensional models to capture the discontinuity and

hysteresis unless the external circuit module is taken into account. In this chapter, the conven-

tional fluid model that describes the pure inductive mode is extended by including the capac-

itive mode and advanced by introducing an equivalent circuit module [26, 27]. The diagram of

equivalent circuit is illustrated in Figure 12. It consists of radio frequency (RF) power source,

matching network that consists of parallel and series capacitors and capacitive and inductive

coupling branches. The capacitive coupling components include dielectric window capacitor,

sheath transferred capacitor and bulk plasma-transferred resistance. The inductive coupling

branch is actually based on a transformer model [13], where the coil itself and plasma-transferred

inductor and resistor are included and the relations between the coil and plasma-transferred

Figure 10. Metastables density profiles at different coil currents at the pressure of 100 mTorr.
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impedances are illustrated in the square of Figure 12. The plasma resistances in the capacitive

and inductive branches are both transferred through the Ohm’s heating mechanism but the

capacitive resistance is based on radial and axial plasma current components [3] and the induc-

tive resistance on the azimuthal current component [28].

Via the circuit module, the coil current and voltage, boundary conditions for the electromag-

netic module to calculate fields can be given through Kirchhoff’s law. More importantly, after

considering the circuit module the discontinuity of mode transition and hysteresis can be

captured by a fluid model since the mutual interacting details between the circuit and plasma,

probably nonlinear, are contained. Of more significance is that two excitation means of mode

transitions that have widely been seen in experiments, that is, by means of varying power

Figure 11. Electron densities (a) and temperatures (b) versus power at two cases, i.e., (1) no metastables and (2) with

metastables in the model.
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[16, 23] and matching network [29], can be both captured by this advanced fluid model that

couples an external circuit module.

In Figure 13, the discontinuous mode transition at a low pressure of 20 mTorr and hysteresis at

high pressure of 100 mTorr is perfectly generated by the fluid model, via the alteration of

electron density versus series capacitance of matching network. This prediction agrees well

with the experimental observations that hysteresis mostly appears at relatively high pressures

[21, 23]. Accordingly, the electron temperature just displays mode transition at low pressure,

but hysteresis at high pressure, as shown in Figure 14. The variations of electron density and

temperature with E–Hmode transition predicted by the fluid model are in agreement with the

hybrid model in Section 2.1.

Figure 12. Components of equivalent circuit module.

Figure 13. Discontinuous electron density variation versus the series capacitance of matching network at low pressure of

20 mTorr (a) and hysteresis loop of electron density against the series capacitance at high pressure of 100 mTorr.
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Interestingly, the plasma-transferred impedance evolves similarly to the plasma parameters,

that is, discontinuously jumping at low pressure and displaying hysteresis at high pressure. In

Figures 15 and 16, the plasma resistance and inductance of inductive branch and sheath width

and capacitance of capacitive branch are plotted against the series capacitance, respectively,

at the high pressure of 100 mTorr. In Figure 15, at the E–H mode transition, the plasma

resistance and inductance both increase because of high-plasma density and strong azimuthal

current density. The high-plasma inductance at the H mode weakens the system inductance

according to the formula in Figure 12, as determined by the law of electromagnetic induction.

In Figure 16, the sheath width significantly decreases with E–H mode transition due to the

scaling law [6] and the sheath transferred capacitance, inversely proportional to mean sheath

width, increases substantially. At the H–E mode transition of the hysteresis loop, the opposite

cases happen.

Figure 14. Discontinuous electron temperature variation versus the series capacitance of matching network at low

pressure of 20 mTorr (a) and hysteresis loop of electron temperature against the series capacitance at high pressure of

100 mTorr.

Figure 15. Variations of plasma-transferred resistance (a) and inductance (b) of the inductive branch of equivalent circuit

in the hysteresis loop at high pressure of 100 mTorr.
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3. Conclusion and further remarks

The low-pressure radio frequency ICP source is characterized as non-equilibrium, weakly ion-

ized and bounded plasma and finds wide applications in many fields. It holds many interesting

physical phenomena and mechanisms. One is the mode transition and hysteresis that happen at

two operating modes, that is, inductive and capacitive modes. In this chapter, the characteristics

of plasma parameters and neutrals during mode transition are presented by a hybrid model.

Moreover, the discontinuity feature of mode transition and hysteresis excited by adjusting the

matching network are predicted by a fluid model that couples an external equivalent circuit

module. Still, the role of metastables on triggering hysteresis is discussed and the interesting

hysteresis loop formed by plasma-transferred impedance is analyzed. The present chapter indi-

cates that the mutual interaction of plasma with circuit is the reason which excites the hysteresis.

Note that the mode transitions and hysteresis of ICP sources are very complicated. Besides the

above representative features, it still exhibits research values in the topics of reactive gas

mixtures, such as O2 [30], CF4/Ar [31], SO2 [32], ammonia [33] and so on and double hysteresis

loop [29], inverse hysteresis [34], spatial characteristics [35], optical emission [36], electrical

diagnostics [37], instability of electronegative plasma source [38] and so on. To the author, the

exploration of precursors that triggers hysteresis, for instance, metastables and multistep

ionizations [13, 21], electron energy distribution function [39], power coupling efficiency [40],

sheath [24, 41], external circuit [26, 27] and nonlinear mechanisms [13] and so on, is the most

attractive topic. The investigations greatly advance the improvements of analytical theory,

numerical modeling, and experimental diagnostics of low-temperature plasma physics.
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