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Abstract

Hamiltonian functional and relevant Lagrange’s equations are popular tools in the inves-
tigation of dynamic systems. Various generalizations enable to extend the class of prob-
lems concerned slightly beyond conventional limits of Hamiltonian system. This strategy
is very effective, particularly concerning two-dimensional (2D) and simpler three-
dimensional (3D) systems. However, the governing differential systems of most non-
holonomic 3D systems suffer from inadequate complexity, when deduced using this way.
Any analytical investigation of such a governing system is rather impossible and its
physical interpretation can be multivalent. For easier analysis, particularly of systems with
non-holonomic constraints, the Appell-Gibbs approach seems to be more effective provid-
ing more transparent governing systems. In general, the Appell-Gibbs approach follows
from the Gaussian fifth form of the basic principle of dynamics. In this chapter, both
Lagrangian and Appell-Gibbs procedures are shortly characterized and later their effec-
tiveness compared on a particular dynamic system of a ball moving inside a spherical
cavity under external excitation. Strengths and shortcomings of both procedures are
evaluated with respect to applications.

Keywords: Appell-Gibbs function, Lagrangian approach, non-holonomic systems,
engineering applications

1. Introduction

The energy contained in a dynamic system is given by a scalar potential E tð Þ. It is a function of

time and system response components (displacement, velocity, and acceleration vectors).

Moreover, E tð Þ is a function of system parameters, position in a field of forces (potential or

not), internal sources of energy and of the system evolution including a residual energy. The
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total energy of the system increases or decreases accordingly with external excitation and

dissipation of energy. The form of energy contained within the system can have a deterministic

or stochastic character and similarly also excitation and dissipation.

Considering the mechanical energy only, the total energy increase/decrease of the system with

respect to time should be in equilibrium with the energy supplies and energy losses due to

dissipation. This relation can be outlined by the following equilibrium:

d

dt
E tð Þf g ¼ P tð Þ þ S tð Þ, (1)

where P tð Þ is power supply (excitation energy per unity time) and S tð Þ the specific dissipation

of energy also per unity time (supposed to be independent on accelerations €x). Functions

P tð Þ,S tð Þ can dispose in special cases with a superior potential, which, however, cannot be

incorporated into the potential part of total energy. Eq. (1) has a scalar character.

The energy is a primary value characterizing the system state and its evolution in time. The

function E tð Þ and external influences are a background for the derivation of a governing

differential system characterizing the system response with respect to initial and boundary

conditions. The governing differential system is then deduced from the equivalence of Eq. (1)

type using an adequate variational principle. It claims that the form of the system response

corresponds with the minimum of energy spent among all admissible shapes of the system

reaction. Take a note that many important settings of external forces and dissipation mecha-

nisms do not admit the formulation by means of potentials. In such cases, they should be

incorporated separately into the governing differential system using complementary princi-

ples and theorems, for example, virtual works, and so on.

We can find in monographs, for example, [1–4, 5] and many others, various formulations of

potentials E tð Þ and functions P tð Þ,S tð Þ combining the system parameters (physical and geo-

metric) and the system response vectors x-displacements, _x-velocities, and €x-accelerations.

They can be selected in individual cases with respect to physical or geometric complexity of

the system, components of the response, which are to be found, deterministic or stochastic

character of the system and its excitation, and so on.

2. Basic considerations

Approaches commonly applied to construct mathematical models of dynamic systems with

multiple degrees of freedoms (MDOF) follow mostly from principles symbolically outlined by

Eq. (1). The equation of this type can be deduced using, for instance, a procedure of virtual

displacements. They balance the energy flow in every step and subsequently applied minimi-

zation steps try to select such response trajectories, which represent a minimum of energy

consumption among all admissible shapes. Let us get briefly through Lagrangian and Appell-

Gibbs procedures in order to compare their basic properties. Later, we recognize that most of

these properties can be regarded as positive or negative in dependence on a particular problem.

Therefore, the solution method should be selected in every particular case very sensitively.

Nonlinear Systems - Modeling, Estimation, and Stability4



Let us remember that the aim of this chapter is a comparison of Lagrangian and Appell-Gibbs

approaches effectiveness to process dynamic systems in holonomic and non-holonomic set-

tings and to help estimate which one is more suitable to be employed in a particular case.

Despite that the most important features of non-holonomic systems themselves are briefly

treated as well, but for thorough evaluation of their properties, special literature should be

addressed. Except five monographs cited in introductory section containing a large number of

additional relevant references, a vast number of papers have been published concerning the

investigation of various properties of non-holonomic systems.

Motion of an MDOF system with n degrees of freedom can be described by a system of n

differential equations and l constraints:

ms€xs ¼ Xs þ
Xl

r¼1

λrArs, s ¼ 1, ::, n, x ¼ xs½ �, X ¼ ∣Xs∣, x,X∈Rn, að Þ

Xn

s¼1

Ars _xs þ Br ¼ 0, r ¼ 1, ::, l, λ ¼ λr½ �, B ¼ Br½ �, λ,B∈Rl, bð Þ

A ¼ Ars½ �, A∈Rl�n
:

(2)

Vector X represents external forces, while λ are unknown multipliers. The summation in

Eq. (2a) characterizes influence of constraints (holonomic and non-holonomic) related with

constraints (Eq. (2b)). These constraints reduce the number of the original degrees of freedom

from n to k ¼ n� l. The system (Eq. (2)) includes nþ l differential equations for x and λ

unknown functions t, which can be determined, provided x, _x are given in an initial point t0.

If the system (Eq. (2b)) is fully integrable, it provides l functions f r ¼ f r x; tð Þ, r ¼ 1, ::, l and

constraints can be formulated as f r ¼ f r x; tð Þ ¼ cr. They are exclusively of a geometric character

and the system is holonomic. Corresponding constraints are formulated in displacements only.

In principle, l components of x can be eliminated and then remains to analyze the system with

n� l unknowns. Then, it can be considered λ � 0, and the second part on the right side of

Eq. (2a) vanishes. The system with holonomic constraints takes the form:

ms€xs ¼ Xs, f r ¼ f r x; tð Þ ¼ cr, s ¼ 1, ::, k, r ¼ 1, ::, l, k ¼ n� l: (3)

However, frankly speaking, such an operation is possible rather exceptionally. In general, the

full form of Eq. (2) should be treated, despite the system is holonomic. If some (or all) of

constraints (Eq. (2b)) are not integrable, then the system is non-holonomic. In practice, we

encounter these cases when the formulation of constraints includes velocities (more often

velocities only).

We should remember that the non-holonomic constraints introduced in Eq. (2b) represent the

most simple version of such constraints, as they are linear and in velocity. Many applications,

for example, robotics, wind engineering, automotive systems, plasma physics, and so on,

present more complicated types of non-holonomic constraints. Notifications to nonlinear

non-holonomic constraints in velocity are given in elderly monographs [2, 3]. Later, many

papers have appeared presenting results of systematic research at this field originating from
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particular physical or engineering problems, for example, [6–8], where higher derivatives of

velocities in non-holonomic constraints are discussed. These attributes have been reflecting

also in pure mathematical studies with respect to control theory and systems with a delayed

feedback, see, for example, series [9–11] dealing with generalized Lagrange-d’Alembert-

Poincaré equations or other studies devoted to non-holonomic reduction and related prob-

lems, see, for example, [12] and many others.

Let us realize now that the virtual work of every constraint force should vanish in the meaning

as follows:

λr

X

n

s¼1

Arsδxs ¼ 0, r ¼ 1, ::, l: (4)

Therefore, we have with respect to Eq. (2a):

X

n

s¼1

ms€xs � Xrð Þδxs ¼ 0: (5)

This equation holds for any arbitrary virtual displacements and represents a generalization of

the principle of virtual works in statics and of the d’Alembert principle. The important issue is

that it does not include any reactions of constraints. It has been well investigated in the study.

For many details, see monographs, for example, [1, 3] and many others.

Let us consider that velocities in constraints Eq. (2b) are increased by virtual increments δ _x, so

that they read

X

n

s¼1

Ars _xs þ δ _xsð Þ þ Br ¼ 0, r ¼ 1, 2, ::, l, (6)

Deducting from Eq. (6), the initial state (Eq. (2b)) holds

X

n

s¼1

Arsδ _xs ¼ 0, r ¼ 1, 2, ::, l: (7)

Virtual increments of velocities δ _x fit into constraints requested for constraints (Eq. (4)) and,

consequently, in Eq. (5) the δxs can be replaced by δ _xs:

X

n

s¼1

ms€xs � Xsð Þδ _xs ¼ 0: (8)

We revisit Eq. (2b) and perform differentiation with respect to t:

X

n

s¼1

Ars€xs þ
dArs

dt
_xs

� �

þ
dBr

dt
¼ 0, r ¼ 1, ::, l, (9)

Nonlinear Systems - Modeling, Estimation, and Stability6



where d=dt represents the operator ∂=∂tþ
Pn

i¼1

_xi∂=∂xi. Considering two possible movements of

the system in identical initial state and velocities in time t, but with different accelerations €x

and €x þ δ€x, then we obtain with respect to Eq. (9):

Xn

s¼1

Arsδ€xr ¼ 0, r ¼ 1, ::, l: (10)

It means that virtual accelerations δ€x satisfy constraints requested similarly like virtual dis-

placements or velocities following Eqs. (4) or (7). Therefore, we can write:

Xn

s¼1

mr€xs � Xsð Þδ€xs ¼ 0: (11)

Some authors call relations (Eqs. (5), (8), and (11)) as the first, second, and third form of the

system equation, see, for example, [3] and others.

Let us multiply each equation in the system (Eq. (2a)) by velocities _xs. Summing them together,

one obtains

Xn

s¼1

ms€xs _xs ¼
Xn

s¼1

Xs _xs þ
Xl

r¼1

Xn

s¼1

λrArs _xs, (12)

which can be rewritten in the form

dT

dt
þ
dV

dt
¼

Xn

s¼1

~Xs _xs, (13)

where T ,V are kinetic and potential energy, respectively, and ~Xs are forces, which cannot be

included into the potential energy V. In other words, relation Eq. (13) indicates that the change

of the full energy (kinetic and potential) is equivalent to power (work on velocities) of all forces
~Xs, which do not contribute to the potential energy V. Relation Eq. (13) corresponds to equilib-

rium condition Eq. (1), where functions of excitation and dissipation P tð Þ,S tð Þ correspond with

the influence of non-potential forces ~Xs.

3. Lagrange’s equations

The original coordinates x should be replaced with respect to Lagrangian coordinates q. The

reason is that they represent the most inherent coordinates respecting the real movement of the

system and configuration of external forces. Let us write basic coordinates as functions of

Lagrangian ones:

Appell-Gibbs Approach in Dynamics of Non-Holonomic Systems
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xr ¼ xr q1; ::; qn; t
� �

, r ¼ 1, ::, n: (14)

It can be easily shown

∂ _xr
∂ _qs

¼
∂xr
∂qs

,
∂ _xr
∂qs

¼
d

dt

∂xr
∂qs

� �

: (15)

We reconsider Eq. (5) where the virtual displacement δx is replaced by

δxr ¼
X

n

s¼1

∂xr
∂qs

δqs, r ¼ 1, ::, n )
X

n

s¼1

X

n

r¼1

mr€xr � Xrð Þ
∂xr
∂qs

( )

δqs ¼ 0: (16)

The last Eq. (16) can be modified using Eqs. (15), which implies

X

n

s¼1

X

n

r¼1

mr
d

dt
_xr
∂ _xr
∂ _qs

� �

� _xr
∂ _xr
∂qs

� �

�
X

n

r¼1

Xr
∂xr
∂qs

( )

δqs ¼ 0, (17)

This equation can be rewritten now in the form:

X

n

s¼1

d

dt

∂L

∂ _qs

� �

�
∂L

∂qs
�Qs

� 	

δqs ¼ 0, (18)

where it has been denoted:

L ¼
X

n

r¼1

_xr
∂ _xr
∂qs

, Qs ¼
X

n

r¼1

Xr
∂xr
∂qs

: (19)

Inspecting the polynomial L, we recognize that it consists of the polynomial of the second and

first degrees of components _q (coefficients are still functions of displacements q and time t)

and the absolute part without any velocity components _q. We can now assign the first part to

the kinetic energy T , while the part without velocities to the potential energy V. So that L can

be understood as the Lagrange function as usually defined

L ¼ T � V, (20)

provided the dynamic system studied is holonomic and no constraints are applied. In such a

case, all variations δqs are independent and Eq. (18) can be fulfilled only if every coefficient in

curly brackets vanishes individually. Consequently, we obtain Lagrange’s equations in the

form:

d

dt

∂T

∂ _qs

� �

�
∂T

∂qs
þ

∂V

∂qs
¼ Qs, s1, ::, n, (21)

where Qs are generalized external forces as functions of q and t. These forces are basically

linear transforms of original forces Xr, see Eq. (19). If holonomic constraints are inserted, then

Nonlinear Systems - Modeling, Estimation, and Stability8



the number of remaining degrees of freedom is lower k ¼ n� lð Þ. Nevertheless, if there is

possibility to define the system after elimination of inactive DOFs, then we can consider

formally k ¼ n again and Eq. (21) remains in force.

Let us suppose now that the system includes l non-holonomic constraints and those

holonomic, which cannot be eliminated. Whatever is the reason for that, it still holds

kþ l ¼ n. These constraints are described by constraints in Lagrange’s coordinates (analogous

with Eq. (2b)) as follows:

X

n

s¼1

Crs _qs þDr ¼ 0, r ¼ 1, ::, l, D ¼ Dr½ �,D∈R
l , C ¼ Crs½ �,C∈R

l�n, (22)

This time, the variations δqs are not fully independent and only those components, which

satisfy conditions:

X

n

s¼1

Crsδqs ¼ 0 r ¼ 1, 2, ::, l, (23)

can be regarded as independent.

In such a case, the right side of Eq. (21) should be completed:

d

dt

∂T

∂ _qs

� �

�
∂T

∂qs
þ

∂V

∂qs
¼ Qs þ

X

l

r¼1

λrCrs, s ¼ 1, ::, n: (24)

To the system, Eq. (24) should be attached l constraints Eq. (22). So that, finally we have the

system of nþ l equations with unknowns q and λ. Multipliers λ are linearly related with forces

in constraints. In particular cases, multipliers λ can be physically interpreted, for instance, they

can have a meaning of reactions of a body moving along a given trajectory. Very knowledge-

able explanation about manipulation and interpretation of Lagrange’s multipliers from the

viewpoint of a general theory as well as of employment in particular cases can be found in the

monograph concerning non-holonomic systems, see [2]. For additional information and a large

overview of additional literature resources, see [5].

The real dynamic system is always influenced by energy dissipation. Some simple models can

be introduced using Rayleigh function R, see, for example, [3]. This way is typically applica-

ble, if linear viscous damping is considered and the Rayleigh function has a quadratic form in

velocities _qs. We can include this factor symbolically into Eq. (24), which reads now:

d

dt

∂T

∂ _qs

� �

�
∂T

∂qs
þ

∂V

∂qs
¼ Qs þ

∂ℛ

∂ _qs
þ
X

l

r¼1

λrCrs, s1, ::, n: (25)

Hence, the completed system Eqs. (22) and (25) with nþ l unknowns can be considered.

However, we should be aware that this supplement is rather intuitive and does not follow from

any rigorous derivation, although in practice it is widely and successfully used. Nevertheless,

Appell-Gibbs Approach in Dynamics of Non-Holonomic Systems
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comparison of this system with the general relation Eq. (1) introduced in Section 1 is obvious.

Take a note that more sophisticated versions of Lagrange’s equations have been developed

inspired by physical problems; see, for instance, generalized Lagrange-d’Alembert-Poincaré

equations discussed in [11].

Let us add that many details (internal mechanisms and inclusion into governing system)

concerning more sophisticated models of damping can be found in monographs of the rational

dynamics, for example, [1, 4]. See also papers oriented to practical aspects of the damping

either of natural, for example, rheological, aeroelastic origin, or intentionally included in order

to achieve the highest damping effectiveness, for instance [13].

4. Appell-Gibbs function and equation system

Although the Appell-Gibbs approach is not referred so often in the study as the Lagrangian

procedure, there are some monographs treating the analytical dynamics, for example, [1, 3],

where detailed features of this method are explained. Moreover, journal papers can be found

where special aspects of the Appell-Gibbs approach are discussed. A close relation of the fifth

Gaussian form and the Gibbs equations from the viewpoint of Dynamics is studied, for

example, [14, 15], important remarks for application are concerned in [16, 17], as well as

possibilities of extension for systems with time-dependent masses [18] are indicated.

Let us briefly outline principal steps leading to the Appell-Gibbs differential system with

respect to essentials ascertained and introduced in Section 2. We should be aware that gener-

alized external forces Qs, introduced in Eq. (19), follow in principle only k degrees of freedom,

which remained free; thereafter, l constraints have been applied and the original number n of

DOFs has been reduced to k ¼ n� l, 0 < l ≤n. However, due to complicated relations inside the

dynamic system, this fact is rather impossible to be employed in basic coordinates xs, s ¼ 1, ::, n

and Lagrange’s coordinates qs, s ¼ 1, ::, n should be addressed, as we have also seen in previ-

ous Section 3. Nevertheless, it is worthy to involve only such coordinates qs, which correspond

to k remained DOFs. It can be easily expressed in Lagrange’s coordinates, unlike basic coordi-

nates xs. So that, as the first step, we reformulate some expressions of Section 2 concerning the

transform from basic to Lagrange’s coordinates.

Velocities _xr, r ¼ 1, ::, n should be evaluated with respect to the fact that coordinates xr are

functions of all Lagrange’s coordinates qs, s ¼ 1, ::, k and time t, see Eq. (14):

_xr ¼
Xk

s¼1

αrs _qs þ αr, r ¼ 1, ::, n, where : αrs ¼
∂xr
∂qs

, αr ¼
∂xr
∂t

, (26)

which also implies

δ _xr ¼
Xk

s¼1

αrsδ _qs, r ¼ 1, ::, n, (27)

Nonlinear Systems - Modeling, Estimation, and Stability10



Differentiation of Eq. (26) with respect to time gives

€xr ¼
X

k

s¼1

αrs€qs þ
X

k

s¼1

dαrs

dt
_qs þ

dαr

dt
,

d

dt
¼

∂

∂t
þ

X

k

m¼1

_qm
∂

dt
, r ¼ 1, ::, n: (28)

The incremented acceleration vector, when keeping velocities and displacements, can be for-

mulated as follows:

€xr þ δ€xr ¼
X

k

s¼1

αrs €qs þ δ€qs
� �

þ

X

k

s¼1

dαrs

dt
_qs þ

dαr

dt
, r ¼ 1, ::, n: (29)

Deducting Eq. (28) from Eq. (29), one obtains

δ€xr ¼
X

k

s¼1

αrsδ€qs, r ¼ 1, ::, n: (30)

Hence, it can be written

X

n

r¼1

Xrδ€xr ¼
X

k

s¼1

X

n

r¼1

Xrαrs

 !

δ€qs ¼
X

k

s¼1

Qsδ€qs, (31)

where Qs are identical generalized forces, as they have been defined in Eq. (19). With reference

to Eq. (11), we can reformulate this equation as follows:

X

n

r¼1

mr€xrδ€xr �

X

k

s¼1

Qsδ€qs ¼ 0: (32)

This relation will be used later, see Eq. (36).

As a principal step of this section, we define now the Gibbs function G concentrating “acceler-

ation energy” included in all n DOFs as follows:

G ¼
1

2

X

n

r¼1

mr€x
2
r , (33)

When we pass from basic to Lagrange’s coordinates, only k active coordinates remain in force

and so the expression Eq. (33) can be rewritten:

G ¼
1

2

X

k

r¼1

mr€q
2
r , (34)

Expressions Eqs. (33) and (34) differ only in terms independent from accelerations.

Let us introduce the function H:

Appell-Gibbs Approach in Dynamics of Non-Holonomic Systems
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H ¼ G �
X

k

s¼1

Qs€qs, (35)

and evaluate its virtual increment:

δH ¼ δ G �
X

k

s¼1

Qs€qs

 !

¼
1

2

X

n

r¼1

mr €xr þ δ€xrð Þ2 �
1

2

X

n

r¼1

mr€x
2
r �

X

k

s¼1

Qsδ€qs

¼
1

2

X

n

r¼1

mr δ€xrð Þ2 þ
X

n

r¼1

mr€xrδ€xr �
X

k

s¼1

Qsδ€qs

 !

:

(36)

The last parenthesis vanishes due to the relation Eq. (32). Therefore, if δ€x 6¼ 0, then the function

δH is always positive:

δH ¼ δ G �
X

k

s¼1

Qs€qs

 !

> 0, (37)

which implies that accelerations €qs, s ¼ 1, ::, k should lead to a minimum of the function H,

which means:

∂G

∂€qr
¼ Qr, r ¼ 1, ::, k: (38)

The energy dissipation terms Rx, Ry, Rz should be added to the right side of Eq. (38). At this

moment, the conformity of Eq. (38) with the equivalence Eq. (1) is well pronounced, similar

like in the previous section. The system Eq. (38) should be completed by geometric constraints:

_qr ¼
X

k

s¼1

βrs _qs þ βr r ¼ kþ 1, ::, n: (39)

Equations (38) and (39) are the Gibbs-Appell differential system including n equations, which

can be written in the normal form and hence it is suitable to be immediately investigated using

common methods.

The differential system (Eqs. (38) and (39)) represents the simplest and in the same time the

most general form of equations of the dynamic system movement. The form of this system is

very simple, and it can be used with the same effectiveness to the investigation of holonomic as

well as non-holonomic systems, as the constraints can represent non-holonomic but also

holonomic type of constraints. Unlike the Lagrangian approach, the non-holonomic or non-

eliminable constraints do not augment the number of differential equations.

Procedure of the Appell-Gibbs equations employment in particular cases is obvious, looking

back at this section. In the first step, the “so called kinetic energy of accelerations” 1
2

PN
r¼1 mr€x

2
r

Nonlinear Systems - Modeling, Estimation, and Stability12



is composed using n acceleration components of the vector €x. It represents the Appell-Gibbs

function G. In a general case, this function includes also all coordinates x and velocities _x.

Nevertheless, it is important that G in Lagrange’s coordinates contains only k selected compo-

nents of accelerations €q. Anyway, all n components of _q and q are still included as a result of a

transformation from basic to Lagrange’s coordinates.

It is worthy to remind that the differentiation outlined in Eq. (38) is very easy in a particular

case. Indeed, let us realize that G can be symbolically expressed as a sum of quadratic function

of accelerations €qs, s ¼ 1, ::, k ! G2, linear function of these components G1 and function with-

out accelerations G0. Differentiating G2, one obtains the relevant acceleration component in a

linear form, which will be moved onto the left side together with a coefficient, which can be a

function of all velocities and displacements _qs, qs, s ¼ 1, ::, n. Differentiation of G1 leads to

acceleration-free coefficients and G0 can be omitted leading to zeroes. Sometimes, the so-called

reduced Appell-Gibbs function G∗ is defined where G0 is a priori omitted.

In the second step, the work of k given forces Q on k virtual displacements q is carried out. It

has the form
Pk

s¼1

Qsδqs. We substitute now back into Eqs. (38) and add l ¼ n� k geometric

constraints following Eqs. (39). So we obtain kþ l ¼ n differential equations for n components

of the vector €q tð Þ. Take a note that no unknown multipliers λ emerge here, which on the other

hand increases the number of unknowns in a Lagrangian approach.

The procedure working with accelerations instead with velocities provides much simpler

governing differential system. Unlike velocities, the acceleration components in the Appell-

Gibbs function are included only in a few parts of energy expression. Therefore, all parts

including only velocity and displacement components disappear during the differentiation of

the Appell-Gibbs function with respect to €qr, r ¼ 1, ::, k, and therefore they can be considered

beforehand as unimportant.

Investigating problems with rotations, we work with Lagrange’s coordinates ω, which repre-

sent in fact velocities. So that by solving the abovementioned differential system, the displace-

ments and velocities ω emerge as results. Rotations themselves remain unattended. May be, it

is a forfeit for a relative simplicity of the governing system in comparison with the Lagrangian

approach. However, this shortcoming is mostly apparent only. The main part of the result

represents usually displacement components, which are obtained without restrictions.

Together with velocities ω, they represent a full set of information needed to get through the

shape of trajectories of the system response including rotation (illustrative example will be

presented later in Section 6). If detailed rotations (not only velocities) are still needed, a

subsequent integration can be performed independently using differential relations between

rotation velocity vector ω and (for instance) Euler angles, see monographs [1, 3, 4] and others.

They provide a detailed description of time history of a body orientation as a function of time t.

This step can be useful, for instance, when a detailed animation is needed for presentation

purposes.
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5. Planar movement of a ball in a spherical cavity

5.1. Engineering motivation

Passive vibration absorbers of various types are very widely used in civil engineering. TV

towers, masts, and other slender structures exposed to wind excitation are usually equipped

by such devices. Conventional passive absorbers are of the pendulum type. Although they are

very effective and reliable, they have several disadvantages limiting their application.

These shortcomings can be avoided using the absorber of the ball type. The basic principle

comes out of a rolling movement of a metallic ball of a radius r inside of a rubber-coated cavity

of a radius R > r. This system is closed in an airtight case, see, for instance, Figure 1. First

papers dealing with the theory and practical aspects of ball absorbers have been published

during the last decade, see [13, 19].

5.2. Planar layout of the system, Lagrangian procedure

The version, when the ball is forced to move solely in a vertical plane, has been thoroughly

studied using Lagrangian approach in [20, 21] and other detailed papers dealing not only with

theoretical aspects but also with experimental verification in the laboratory and in situ exam-

ining absorbers installed on real structures.

The cavity is fixed to a vibrating structure. Their dynamic character is represented by a linear

single degree of freedom (SDOF) system represented by a massM. Inside of the cavity, the ball

m in a vertical plane is moving, that is two degrees of freedom (TDOF) system should be

investigated, as it is outlined in Figure 2. It follows from geometric relations:

R � φ ¼ r ψþ φð Þ ) rψ ¼ ϱrφ, (40)

Figure 1. Dynamic scheme of (a) spherical pendulum absorber, (b) ball absorber, and (c) ball absorber during testing in a

dynamic laboratory, see [19].
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where rr ¼ R� r. It holds for vertical or horizontal components of a displacement and velocity

of the internal ball center:

horiz: : uþ ϱr � sinφ ) _u þ ϱr _φ cosφ,

vert: : ϱr � cosφ ) �ϱr _φ sinφ:

	

(41)

Kinetic energy of a moving system of the ball m and the cavity M can be written in a form:

T ¼
1

2
m _u þ ϱr _φ cosφð Þ2 þ ϱ

2
r _φ2 sin 2φ

h i

þ
1

2
J _ψ2 þ

1

2
M _u2 ¼

1

2
mþMð Þ _u2 þmϱr _u _φ cosφþ

m

2κ
ϱ
2
r _φ2, (42)

where m=κ ¼ mþ J=r2 ) κ ¼ 5=7, while the potential energy is given by an expression:

V ¼ mgϱr 1� cosφð Þ þ
1

2
Cu2: (43)

The damping should be introduced in a form of a simple Rayleigh function:

R ¼
1

2
Mbu _u2 þmbφϱ

2
r _φ2

� �

: (44)

m,M – mass of the ball m, mass of the cavity, M representing the protected structure;

J – inertia moment of the ball m;

bu, bφ – damping coefficients (logarithmic decrements, linear viscous damping);

Expressions Eqs. (42), (43), and (44) should be put into Lagrange’s equations of the second

type, see Eqs. (24) or (25) and monographs, for example, [1, 3, 4] and others:

X

n

r¼1

d

dt

∂T

∂ _qr

� �

�
∂T

∂qr
þ

∂V

∂qr
þ

∂ℛ

∂ _qr

� 	

δqr ¼ Pr tð Þ,

q1 ¼ u ¼ ζ � ϱr , q2 ¼ φ , Pu tð Þ ¼ p tð Þ �Mϱr , Pφ tð Þ ¼ 0,

(45)

which give the governing equations of the system:

Figure 2. Basic scheme of a system.
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€φ þ κbφ _φ þ κω2
m sinφþ κ€ζ � cosφ ¼ 0, að Þ

μ €φ cosφ� μ _φ2 sinφþ 1þ μ
� �

€ζ þ bu _ζ þ ω2
Mζ ¼ p tð Þ, bð Þ

μ ¼ m=M, ω2
M ¼ C=M, ω2

m ¼ g=ϱr: cð Þ

(46)

Equation (46) describes 2D movement of a ball absorber under excitation by the force P tð Þ at

any arbitrary deviation amplitudes including incidental transition through a limit cycle toward

an open regime.

5.3. Illustration of some planar system features

Analysis of the governing system (Eqs. (46)) has been done in a couple of papers, for example,

[20, 21]. Investigation has been carried out using the harmonic or multi-harmonic balance

method, see, for example, [22, 23], respectively.

The system is auto-parametric, see, for example, [24] and other resources. Very rich overview

of a theoretical basis of auto-parametric systems can be found in [25]. Expecting a single mode

response, the Harmonic balance-based methods are applicable. Following approximate

expressions for excitation and response can be written (cf., e.g., [22]):

p tð Þ ¼ p0 sin ωtð Þ,

φ tð Þ ¼ α sin ωtð Þ þ β cos ωtð Þ,

ζ tð Þ ¼ γ sin ωtð Þ þ δ cos ωtð Þ:

(47)

Having four new variables α ¼ α tð Þ, β ¼ β tð Þ,γ ¼ γ tð Þ, δ ¼ δ tð Þ instead of two original

unknowns φ tð Þ, ζ tð Þ, two additional conditions can be freely chosen:

_α sin ωtð Þ þ _β cos ωtð Þ ¼ 0, _γ sin ωtð Þ þ _δ cos ωtð Þ ¼ 0: (48)

After substituting Eqs. (47) and (48) into Eqs. (46) and substituting the sinϖ and cosφ

functions by two terms of Taylor expansion, the harmonic balance procedure gives the differ-

ential system for unknown amplitudes Z ¼ α; β;γ; δ
� �T

, see, for example, [21, 23]:

M Zð Þ _Z ¼ F Zð Þ: (49)

System (49) for amplitudes Z tð Þ is meaningful if they are functions of a “slow time,” in other

words, if their changes within one period 2π=ω are small or vanishing and individual steps of

the harmonic balance operation are acceptable. The matrix M and the right-hand side vector F

have the following form:

M ¼

0 �ω �
1

4
αβκω

1

8
κωAα

ω 0 �
1

8
κωAβ

1

4
αβκω

�
1

8
μωAβ

1

4
αβμω μþ 1

� �

ω 0

�
1

4
αβμω

1

8
μωAα 0 � μþ 1

� �

ω

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

, (50)
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F ¼
1

48

6A0κ 3γω2 � αω2
m

� �

þ 12ω2 κ αβδþ 8� β2
� �

γ
� �

� 4α
� �

� 48βκωbφ

6A0κ δω2 � βω2
m

� �

þ 12ω2 αγκþ βδκ� 4
� �

βþ 48ακωbφ

ω2 A0 A0 þ 22ð Þβμ� 16 3δ μþ 1
� �

� 4βμ
� �� �

þ 48 γωbu þ δω2
M

� �

ω2 A0 A0 þ 22ð Þαμ� 16 3γ μþ 1
� �

� 4αμ
� �� �

� 48 δωbu � γω2
M þ p0

� �

0

B

B

B

B

@

1

C

C

C

C

A

, (51)

where A0 ¼ α2 þ β2 � 8, Aα ¼ 3α2 þ β2 � 8, Aβ ¼ α2 þ 3β2 � 8:

Let us consider stationary response of the system. In this case, the derivatives dZ=dt vanish

and the right-hand side has to vanish too. Eq. (49) degenerates to the form of

F Zð Þ ¼ 0 (52)

Thus, to identify the stationary solutions, the zero solution points of F, depending on the

excitation frequency and amplitude, should be traced. In the same time, the signum and the

zero points of the Jacobian det JFð Þ have to be checked. The negative value of the Jacobian for a

particular point indicates that the corresponding solution is stable, whereas when Jacobian

vanishes a bifurcation could occur.

The curve F α; β;γ; δ;ω
� �

¼ 0, projected into the planes ω;Rð Þ or ω; Sð Þ (for S2 ¼ γ2 þ δ2),

forms the resonance curves known from the analysis of linear oscillators. However, corre-

spondence of this curve to the original Eq. (46) is limited to the case of stationary response.

It is necessary to remind that limits of stationarity of the response cannot be determined

from properties of Eq. (52) itself. The complete Eq. (49) has to be taken into account for this

purpose.

With respect to actual experiences regarding passive vibration absorbers and some interesting

properties of system (46), the following reference input data have been introduced:

M ¼ 10:0; m ¼ 2:0; ϱr ¼ 0:71; bφ ¼ 0:1; bu ¼ 0:2; C ¼ 140; po ¼ 0:5÷2:5: (53)

Figure 3. Nonlinear resonance curves describing the stationary response of the system for excitation amplitudes

p0 ¼ 0:25, 0:5, 1, 1:5, 2:5. Stable branches are shown as solid blue curves, unstable parts are indicated as the red dashed

curves. Amplitudes, see Eq. (47), R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 þ β2
q

are shown in the left part of the figure, amplitudes S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ δ2
q

are on

the right.
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Utilizing Eqs. (52) and (51), the nonlinear resonance curves describing the stationary response

of system (46) can be obtained. A set of such curves for excitation amplitudes

p0 ¼ 0:25; 0:5; 1; 1:5; 2:5 is shown in Figure 3. It is obvious for the first view the nonlinear

character manifesting oneself by a dependence of a position of extreme points on an amplitude

of excitation force. This effect is visible predominantly in a neighborhood of a conventional

“linear” natural frequency of the absorber, although also the second natural frequency

corresponding to the original natural frequency of the structure is affected. The resonance

curves are typical for a system with “softening” nonlinearities.

6. Spatial version of the system, Appell-Gibbs procedure

6.1. Gibbs function

The spatial version of the ball absorber on the basis of rational dynamics has been widely

investigated by authors of this chapter, see, for example, [26, 27]. Lagrangian approach and

Appell-Gibbs procedures have been discussed in these papers combining analytical and numer-

ical methods. Some important issues will be roughly outlined and for details see cited papers.

Unlike the planar version discussed in the previous section, the Appell-Gibbs approach is used

to formulate the governing nonlinear differential system. The authors tried to formulate the

spatial version using the Lagrangian procedure as well, see [28]. Although the governing

system of the respective holonomic system has been successfully assembled, the further anal-

ysis appeared very cumbersome, and therefore, it has been given up to follow this way. Thus,

the Appell-Gibbs approach is used to formulate the governing system. Its structure is much

more transparent and represents a wider option of analytical-numerical investigation of

detailed properties of the ball trajectories within the cavity.

With respect to Sections 2 and 4, the first step represents to construct the Appell-Gibbs function

(often referred to as an energy acceleration function) defined as follows:

G ¼
1

2
M €u2

Gx þ €u2
Gy þ €u2

Gz

� �

þ
1

2
J _ω

2
x þ _ω

2
y þ _ω

2
z

� �

, (54)

whereM is the mass of the ball, J is central inertia moment of the ball with respect to point G,ω

the angular velocity vector of the ball with respect to its center G, uG the displacement of the

ball center with respect to absolute origin O, C contact point of the ball and cavity, A moving

origin related with the cavity in its bottom point, see Figure 4. Coordinates x ¼ x; y; z½ � are

Cartesian coordinates with origin in the point O. Hence, it holds:

uG ¼ uA þ uC þ un, un ¼ r � n

_uG ¼ _uA þ _uC þ r � _un,
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

r _uC, r ¼ 1� r=R, cf: Eq: 40ð Þ : ϱr ¼ R� r
� �

,

(55)
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where uA is the displacement of the moving origin A with respect to absolute origin O, uC the

displacement of the contact point Cwith respect to moving origin A, un the displacement of the

ball center G with respect to contact point C, n the cavity normal unit vector in point C.

Geometry of the cavity (radius R) with respect to moving origin A is given by equation:

x2A þ y2A þ zA � Rð Þ2 ¼ R2, (56)

where xA ¼ xA; yA; zA
� �

are Cartesian coordinates with origin in the moving origin A.

Using Pfaff theorem and adopting a conjecture of non-sliding contact between the ball and the

cavity, the respective non-holonomic constraints of “perfect” rolling can be deduced after a

longer manipulation:

_uGx ¼ _uAx þ r ωy uCz � Rð Þ � ωzuCy
� �

,

_uGy ¼ _uAy þ r ωzuCx � ωx uCz � Rð Þð Þ,

_uGz ¼ þr ωxuCy � ωyuCx
� �

,

(57)

where r ¼ 1� r=R.

In order to substitute for accelerations uo into the Appell function (Eq. (54)), let us differentiate

constraints Eqs. (57).

Several manipulations provide expressions for components of the ball center acceleration €uG,

which consist of acceleration in the moving origin A : €uA representing the given external

kinematic excitation and acceleration related to the point A being given by an expression: r €uC:

Figure 4. Ball rotation vector in moving coordinates.
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€uGx ¼ €uAx þ r _ωy uCz � Rð Þ � _ωzuCy
� �

þ r ωy _uCz � ωz _uCy

� �

,

€uGy ¼ €uAy þ r _ωzuCx � _ωx uCz � Rð Þð Þ þ r ωy _uCz � ωz _uCy

� �

,

€uGz ¼ €uAz þ r _ωxuCy � _ωyuCx
� �

þ r ωx _uCy � ωy _uCx

� �

,

(58)

Because the kinematic excitation is supposed to be horizontal, €uAz ¼ 0 into Eqs. (58) should be

substituted.

Expressions Eqs. (58) are to be substituted into Eq. (54). Thereby, we obtain the Appell-Gibbs

function G for the system investigated. The function G can be significantly simplified keeping

only terms including second-time derivatives €uG and _ω, which represent second-time deriva-

tives of respective rotations. This step provides the reduced Appell-Gibbs function G
r. Using

G
r, one can write the Appell-Gibbs differential system:

∂G
r=∂ _ωx ¼ FGx, ∂G

r=∂ _ωy ¼ FGy, ∂G
r=∂ _ωz ¼ FGz, (59)

where FG is the external force vector acting in ball center G. Vector FG is determined subse-

quently using the virtual displacements principle. Let us introduce the quasi-coordinates

φx, φy, φz where ωx ¼ _φx, ωy ¼ _φy, ωz ¼ _φz. The only external force acting in the ball

center is the gravity. Therefore, the elementary work performed can be expressed as

δFG ¼ �mg � δuGz: (60)

Virtual displacement δuGz can be determined using the third non-holonomic constraint in

Eqs. (57). It holds

δuGz ¼ r uCyδφx � uCxδφy

� �

, (61)

and therefore

δFG ¼ �mgr uCyδφx � uCxδφy

� �

: (62)

At the same time, the elementary work can be expressed in terms of quasi-coordinates:

δFG ¼ FGxδφx þ FGyδφy þ FGzδφz: (63)

Comparing coefficients at respective virtual components δφx, δφy, δφz, in Eqs. (61) and (63),

one obtains

FGx ¼ �rmg � uCy, FGy ¼ rmg � uCx, FGz ¼ 0: (64)

The damping will be introduced later in Section 6.3 in order to separate energy conservative

approach and enable to discuss various stationary regimes with respect to parameter and

excitation settings.
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6.2. Governing system

Carrying out the differentiation outlined in Eqs. (59), and respecting Eqs. (64), it can be written

after some adaptations:

Js _ωx � uCx _Ωs ¼ €uAy þ r ωz _uCx � ωx _uCzð Þ
� �

uCz � Rð Þ
�

�uCy gþ r ωx _uCy � ωy _uCx

� �� ��
,

Js _ωy � uCy _Ωs ¼ � €uAx þ r ωy _uCz � ωz _uCy

� �� �
uCz � Rð Þ

�

þ uCx gþ r ωx _uCy � ωy _uCx

� �� �
Þ, (65)

Js _ωz � uCz � Rð Þ _Ωs ¼ €uAx þ r ωy _uCz � ωz _uCy

� �� �
uCy

�

� €uAy þ r ωz _uCx � ωx _uCzð Þ
� �

uCxÞ,
where

_Ωs ¼ uCx _ωx þ uCy _ωy þ uCz � Rð Þ _ωz,

Js ¼ J þmr
2R2

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
=mr

2:

mass interiamoment of the ball

with respect to center of the cavity

(66)

It can be shown that _Ωs ¼ 0 and therefore the second column on the left side of the system

Eqs. (65) should be omitted. External excitations are specified by movement or acceleration in

the point A. Hence, kinematic excitation in A is given as follows:

EAx tð Þ ¼ €uAx=r, EAy tð Þ ¼ €uAy=r, EAz tð Þ ¼ 0, (67)

as it can be seen in Eqs. (65). Provided we need to investigate the response processes in a

vertical plane, only one component remains non-zero and the second vanishes as well.

In order to obtain the system Eqs. (65) in the form with first-time derivatives concentrated on

the left side, the first derivatives _uC in its right sides should be expressed in displacements uC

using non-holonomic constraints Eqs. (57):

_uCx ¼ ωy uCz � Rð Þ � ωzuCy,

_uCy ¼ ωzuCx � ωx uCz � Rð Þ,

_uCz ¼ ωxuCy � ωyuCx:

(68)

Therefore, we obtained the system of six non-linear ODEs (Eqs. (65) and (68)) in a normal form

with six unknown functions of time: uCx, uCy, uCz,ωx,ωy,ωz. Vector uC depicts displacements of

the contact point and can be used to study the movement of the ball from a global point of view.

Detailed behavior of the ball as a rotating body is given by angular velocitiesω. If the time history

of rotation should be traced, then a subsequent run is necessary to obtain rotations by means of

Euler angles as solution of the system of three ODEs with an input of angular velocitiesω.
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6.3. Influence of the damping

Influence of the damping will be taken into account. Basically, two sources of the energy

dissipation are ruling in the system: (1) dissipation due to air dynamic resistance and (2)

energy loss in contact of the cavity and rolling ball. The former one can be neglected with

respect to obvious geometric configuration of the device and relative velocity ball/cavity.

Concerning the latter one, complicated energy dissipating processes are ruling in contact of

the ball with cavity. Nevertheless, supposing that no slipping arises in the contact, the dissipa-

tion process can be approximated as proportional to relevant components of the angular

velocity vector ω and the quality of the cavity/ball contact. Considering the obvious setting,

the respective material coefficients characterizing the rolling movement of the ball can be

considered constant regardless of the direction in the tangential plane to the cavity in the point

C, see Figure 4. The coefficient determining the rotation resistance around the normal vector n

in the contact point C is different as a rule. Therefore, the resistance moment vector D can be

expressed in moving coordinates p, q, n, see Figure 4, as follows:

D ¼ Dp;Dq;Dn

� �T
: (69)

Components of the above vector can be written in a form as follows:

Dp ¼ κr � ωp, Dq ¼ κr � ωq, Dn ¼ κs � ωn, (70)

where κr,κs are coefficients of “viscous resistance” of rolling and spinning. Their meaning is:

the moment for a unity rotation per second, that is (Nms/rad).

Turning of the vector DG ¼ DGx;DGy;DGz

� �T
expressed in xyzð Þ coordinates into the vector D

can be written as

D ¼ TC �DG, (71)

The transformation matrix TC reads

TC ¼

xC �zC þ Rð Þ

Rν
,

yC �zC þ Rð Þ

Rν
,

ν

R

�yC
ν

,
xC
ν

, 0

�xC
R

,
�yC
R

,
�zC þ R

R

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(72)

where ν
2 ¼ x2C þ y2C. The matrix TC is orthogonal and, therefore, the inverse transformation

goes using matrix T�1
C ¼ TT

C, in particular:

DG ¼ TT
C �D, (73)
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Components of the vector DG should be incorporated onto the right side of Eqs. (59), where

right sides should be completed. It means that the elementary work δFG following Eq. (60)

must be completed by a negative dissipating work due to DG.

δFG ¼ �mg � δuGz �DG � δφ, (74)

Repeating the further derivation like in Section 6.2, one can revisit the system Eqs. (65) and

(68), where the right sides are completed and instead (Eqs. (65)) they read:

Js _ωx ¼ ð €uAy þ r ωz _uCx � ωx _uCzð Þ
� �

uCz � Rð Þ � uCy gþ r ωx _uCy � ωy _uCx

� �� �

Þ �DGx=m,

Js _ωy ¼ ð� €uAx þ r ωy _uCz � ωz _uCy

� �� �

uCz � Rð Þ þ uCx gþ r ωx _uCy � ωy _uCx

� �� �

Þ �DGy=m,

Js _ωz ¼ ð €uAx þ r ωy _uCz � ωz _uCy

� �� �

uCy� €uAy þ r ωz _uCx � ωx _uCzð Þ
� �

uCx
�

�DGz=m:

(75)

Terms DGx=m,DGy=m,DGz=m which are linear functions of ωx,ωy,ωz determine the viscous

type of the damping, although intensity in individual coordinates is variable depending on

the position of the ball within the cavity.

6.4. Ball trajectories within the fixed cavity due to initial conditions

A large program of a ball trajectory investigation within a spherical cavity has been performed

using the differential system (Eqs. (68) and (75)). Basically, it consists of two groups which are

briefly illustrated in this and the next subsections. The first group concerns the fixed cavity (no

excitation is applied). The only source of energy introduced is given by the initial deflection of

the ball from equilibrium position in the point A (“southern pole”), or in other words by non-

homogeneous initial conditions.

Differential system (Eqs. (68) and (75)) admits a number of singular solutions which can serve

as separating limits of zones within which regular solutions exhibit certain character of trajec-

tory shape. Some of them can be found analytically from the differential system taking into

account their special properties concerning individual response component along the trajec-

tory as a whole or in certain points of these curves. For details, special papers should be

referred. Take a note that most of them emerge when no damping is considered. The reason is

that the trajectory should be quasi-periodic (or cyclic-stationary), which is impossible when

damping is respected and no external energy supply is considered. Trajectories start in a

certain point on a meridian into which the ball is elevated. Then, it is thrown horizontally

along the cavity parallel circle. Let us mention a few of the most important:

1. circular trajectory in horizontal plane. No initial spin is considered ωn0 ¼ 0ð Þ. The impulse

applied corresponds with the initial velocity ω ¼ ωps; 0; 0
� �

, where it holds for ωps:

ωps ¼
gMruCz0 2R� uCz0ð Þ

J þMr2R2
� �

R� uCz0ð Þ
: (76)
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This case is the most important and can be called separating circle (SC).

2. circular trajectory in inclined plane, see Figure 5, ω0 ¼ 100:0; 0:0; 0:0½ �. This state is exactly

valid for ωp0 ! ∞. The space spiral type trajectory changes from SC upwards successively

into the upper hemisphere. Before the limit state forωp0 ! ∞ is reached, the osculation plane

of the trajectory can be recognized. It rotates around the vertical axis with a descending

angular velocity as far as it vanishes and osculation and operating planes coincide.

3. trajectory of “kings crown form,” see Figure 5, ω0 ¼ 5:817; 0:0; 5:0537½ �. Cases, when the

initial spin is considered. For a special value of ωn0 ¼ 5:0537 takes a shape visible in the

picture. The apexes of this curve correspond to ω ¼ 0:0; 0:0;ωn0½ � and u ¼ 0:0; 0:0; 0:0½ �,

which is a clue to find forms and parameters of this special case. This trajectory is reached

from SC, increasing the initial spin velocity until the limit value. If it is lower, the trajectory

has the spiral form. For a higher value, it became a curly form, see Figure 5,

ω0 ¼ 5:817; 0:0; 10:0½ �. The limit state for infinite initial spin represents the ball apparently

fixed in the initial point and not moving neither horizontally nor vertically.

Let us have a look at the bottom two pictures in Figure 5. They respect the influence of the

damping. Coefficients κr,κs are different as it corresponds to conditions in the real system.

The left demonstrates trajectory for positive initial spin and the right for negative initial spin.

The transition through limit cases mentioned earlier is visible. The trajectory obviously finishes

in the bottom “southern pole” of the cavity.

Figure 5. Illustration of the ball trajectories; cavity is not excited; energy only supply is due to non-homogeneous initial

condition; in every triplet: movement time history of the contact point C: uCx, uCy , uCz; vertical view of trajectories uCx , uCy

components; axonometric view of trajectories; parameters above triplets: initial values of ω0 ¼ ωp0;ωq0;ωn0

� �

and

damping parameters: κr,κs; line (a): no spin, no damping, line (b): spin considered, line (c): spin and damping considered.
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6.5. Ball trajectories within kinematically excited cavity

The second group of tests deals with the cavity which is undergone to kinematic excitation in a

horizontal plane (only one-direction excitation is reported here).

Two extensive series of tests demonstrate the auto-parametric character of the system. In the

first series, the response has been evaluated separately for every excitation frequency ω

starting from homogeneous initial conditions. Figure 6 shows some selected results of numer-

ical simulations which follow from the differential system (Eqs. (68) and (75)). We briefly point

out a couple of features visible in Figure 6. In the picture (a), we can see the maximal

horizontal amplitude of the ball trajectory, when the cavity is kinematically excited in the

horizontal plane in x direction. The solid curve represents max∣uCx∣ and the dashed curve is

max∣uCy∣ as functions of the exciting frequency ω. We can see that in the interval ω∈ 0; 2:84ð Þ,

the semi-trivial solution is stable and so uy ¼ 0. The point ω ¼ 2:84 is a beginning of the

resonance zone, which spans in ω∈ 2:84; 2:99ð Þ, where auto-parametric resonance occurs and

amplitudes of both response components are commeasurable. For ω > 2:99, the semi-trivial

solution is regained. Samples of the trajectory shape are plotted in picture (b) for four frequen-

cies ω ¼ 2:84, 2:88, 2:92, 2:96. Their vertical views demonstrate the character of the semi-trivial

and the auto-parametric resonance states. Take a note that the trajectory since ω ¼ 2:94 is a

simple ellipse-like curve, which does not exhibit any symptom of a chaotic process. Compare

this finding with analysis concerning the sweeping up and down excitation frequency for

ω around and above B2 bifurcation point (BP) (see Figure 7 and explanation later in this

subsection).

The second series has been controlled by sweeping the excitation frequency up and down in a

large interval and in several detailed regimes in the area of the auto-parametric resonance

Figure 6. Response of the ball in the resonance and adjacent zones due to harmonic horizontal excitation of the cavity: (a)

amplitude of the displacement as a function of the excitation frequency; (b) vertical views of the ball trajectory for

frequencies ω ¼ 2:84, 2:88, 2:92, 2:96.

Appell-Gibbs Approach in Dynamics of Non-Holonomic Systems
http://dx.doi.org/10.5772/intechopen.76258

25



zone. A few of the results are visible in Figure 7. Picture (a) demonstrates amplitudes max∣uCx∣

(solid curves) and max∣uCy∣ (dashed curve) and the total amplitude uCr in the interval

ω∈ 1:0; 8:5ð Þ. Picture (b) is the magnified detail of picture (a) within the interval

ω∈ 2:80; 3:05ð Þ in order to make visible the resonance zone.

Let us pay attention to bifurcation points (BPs). There are obviously concentrated in the

resonance zone. In principle, they can be classified into two categories. The most important

reveal B1 and B2. In the latter one, two branches start. The lower one bl2 approaches zero for

ω! ∞ which indicates the non-moving ball in the vertical view. This branch takes place in the

vertical plane and basically has a form of semi-trivial solution. Its stability increases with rising

ω > ωB2 as it follows from decreasing negative values of the Lyapunov exponent and of

inspection of the relevant stability basins. The upper branch bu2 is spatial. It follows from the

resonance zone where the spatial response type has a chaotic character. The relevant attractor

reveals as an annular concentric area with diminishing width with increasing ω. The trajectory

very quickly approaches a circular form in the horizontal plane. Its level with respect to the

vertical axis rises and approaches “equatorial” position. However, the stability of this trajec-

tory decreases, and we can see in Figure 7 that around ω ¼ 8:0 even numerical perturbations

of the integration process can overcome the stability limit (despite very small integration step)

and the response trajectory falls down to the lower branch in the point D2. Its position is not

fixed. If hypothetically zero perturbation occurs, it could shift to infinity and approach

together with the branch bu2 the asymptote at the level R ¼ 1. Observing black max∣uCx∣ and

red max∣uCy∣ parts of bu2, we can see that they are getting coincide with increasing ω. It means

that trajectory approaches the circle with radius R ¼ 1.

Let us briefly discuss the shape of the response amplitudes for ω below BP B1 and B4. The BP

B1 is reached sweeping up along the branch bl1, when it loses planar character passing through

B4. In such a case, the spatial response type emerges, exhibiting a chaotic response since B1.

This fact is obvious also looking at the dashed red curve representing uCy, which is trivial as far

Figure 7. Amplitudes of the ball displacement under cavity harmonic excitation, when the frequency is swept up and

down: (a) amplitudes overview in the interval ω∈ 1:0; 8:0ð Þ, (b) zooming in the interval ω∈ 2:4; 3:1ð Þ; curves: solid red—

max∣uCx∣, dashed red—max∣uCy∣, solid black—absolute displacement amplitude, blue dashed—attraction boundary

between bu1 and bl1.
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as B4 and can bring the system from the semi-trivial solution into the auto-parametric reso-

nance starting B4. Take a note that passing BP B4, planar response can remain in force, if any

perturbation is avoided. It meets in B3 the branch bl2 following also a planar path for swept up

ω. Branch bu1 starts in B1. Its stability rapidly decreases with descending ω. The point D1

illustrates its limited extent in sub-resonance zone. This feature is visible observing the curve

bs, which represents a limit separating the area of attraction to bu1 and to bl1. Take a note that bs
starts in B4 and approaches D1, despite hypothetically it goes together with D1 as far as the

vertical axis in the point R ¼ 1. The bs can be earned from stability basins for ω in the adequate

interval for initial value ωp ¼ 0. It corresponds to amplitude of uCx as a testing value for

decision about affiliation to bu1 or bl1 attractiveness.

The interval between B1 and B2 includes the spatial response, see non-trivial amplitude

max∣uCy∣. The spatial response has a chaotic character, as it has been already outlined in the

previous paragraph, when commenting the branch bu2.

7. Conclusion

The common physical origin of Lagrangian and Appell-Gibbs approaches has been shown. It

originates from the equilibrium of energy-level evolution in time on one side and power

supply together with energy dissipation on the other side. Various formulations of this princi-

ple lead finally to different variational principles, although they follow from the same minimi-

zation of the energy spent to system response portrait. Comparing individual sections of the

chapter, we can see that each one of commonly used procedures based on particular energy

formulations is preferable for a certain type of problems. It can be concluded that there does

not exist a single universal approach which should be recommended.

Some detailed properties of both approaches have been demonstrated in Sections 5 and 6. Both

of them discuss non-holonomic problem of the ball movement within the spherical cavity

under external excitation. The former one deals with a simple planar problem and shows that

the Lagrangian approach is easily applicable to obtain reasonable results as far as a wide

parametric discussion, which enable to earn a detailed insight into the system dynamic prop-

erties. The latter alternative represents the full space problem with six DOFs and three non-

holonomic constraints. Some earlier studies tried to formulate this problem also in Lagrangian

style using Lagrange’s multipliers. Finally, it proved that the relevant governing differential

system is too complex and does not enable appropriate detailed analysis of dynamic properties

of the system. Therefore, the space problem outlined in Section 6 has been formulated using

Appell-Gibbs approach. Transparent results have been obtained as needed for practical pur-

poses in a device design and in further study of multi-body system dynamics. Take a note

regarding the classification of singular solutions and their applicability for detailed analysis,

stability of various regimes of the system under kinematic excitation, transitions among semi-

trivial, auto-parametric, chaotic, and other states typical for nonlinear system. Let us add that

both 2D and 3D problems have been investigated respecting the full nonlinearity without any
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simplifications of transcendent functions and thus enabling to study all effects without any

limitations in amplitudes.

A certain shortcomings which apparently follow from the knowledge of rotation velocities

only (no rotations themselves are calculated) can be disregarded, when displacements have

been obtained. The rotation velocities represent mostly satisfactory information. Nevertheless,

if rotations are still needed, there exist several variants of a simple differential system (follow-

ing rotation vector definition) relating velocity and rotation vector components. This system

can be subsequently easily solved, when necessary. A hidden complexity of the Lagrangian

approach follows from an implicit connection of both parts, which are independent when

Appell-Gibbs procedure is applied.
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