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Anomaly Detection & Behavior Prediction: 
Higher-Level Fusion Based on  
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Denis Garagic, James R. Dankert and Michael Seibert 

BAE Systems, Advanced Information Technologies, Burlington, MA,  
U.S.A. 

1. Introduction 

Higher-level fusion aims to enhance situational awareness and assessment (Endsley, 1995).  
Enhancing the understanding analysts/operators derive from fused information is a key 
objective. Modern systems are capable of fusing information from multiple sensors, often 
using inhomogeneous modalities, into a single, coherent kinematic track picture. Although 
this provides a self-consistent representation of considerable data, having hundreds, or 
possibly thousands, of moving elements depicted on a display does not make for ease of 
comprehension (even with the best possible human-computer interface design).  Automated 
assistance for operators that supports ready identification of those elements most worthy of 
their attention is one approach for effectively leveraging lower-level fusion products. 
A straightforward, commonly employed method is to use rule-based motion analysis 
techniques. Pre-defined activity patterns can be detected and identified to operators.  
Detectable patterns range from simple trip-wire crossing or zone penetration to more 
sophisticated multi-element interactions, such as rendezvous.  Despite having a degree of 
utility, rule-based methods do not provide a complete solution. 
The complexity of real-world situations arises from the myriad combinations of conditions 
and contexts that make development of thorough, all-encompassing sets of rules impossible.  
Furthermore, it is also often the case that the events of interest and/or the conditions and 
contexts in which they are noteworthy can change at rates for which it is impractical to 
extend or modify large rule corpora. Also, pre-defined rules cannot assist operators 
interested in being able to determine whether any unusual activity is occurring in the track 
picture they are monitoring. Timely identification and assessment of anomalous activity 
within an area of interest is an increasingly important capability—one that falls under the 
enhanced situational awareness objective of higher-level fusion. 
A precursor of being able to automatically notify operators about the presence of anomalous 
activity is the capability to detect deviations from normal behavior. To do this, a model of 
normal behavior is required. It is impractical to consider a rule-based approach for 
achieving such a task, so an adaptive method is required: that is, a capability to learn what is 
normal in a scene is required. This normalcy representation can then be used to assess new 
data in order to determine their degree of normalcy and provide notification when any O
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activity deviates beyond some level of tolerance from the learned representation of normal 
behavior. Additionally, learned normalcy models can be used to predict future vessel 
behavior over timescales beyond the capabilities of standard track fusion/stitching 
engines—that is, on the order of hours to days (depending on the application domain).  
Learning of kinematic normalcy models for use in anomalous behavior detection and future 
behavior prediction are the core elements of the problem addressed in this chapter. 
Numerous real-world constraints must be addressed when developing such capabilities if the 
results are to have any practical, fieldable utility.  Key drivers for these constraints are that 
new track data are continually collected, that activity patterns can change over time, and that 
operators play no more than a limited role in guiding the evolution of the activity pattern 
learning system. It is not realistic to train models in batch mode where all data contributing to 
the learned representation have to be available prior to training onset.  Periodic re-training 
with datasets of ever increasing size is also untenable. A static representation (one that is 
trained from available data then frozen for use against new data) is a suspect approach for 
situations where activity patterns are not static. Given the potentially huge amount of data to 
be processed, it is not reasonable to expect that labels indicating which tracks (or portions 
thereof) are normal and which are not will be applied to the data.  On the other hand, 
sometimes relevant data are relatively scarce.  So, in addition to being able to handle very large 
amounts of data, it is also important to be able to learn useful representations from limited 
amounts of data. These factors further define the problem addressed here. 
Additional considerations also inform our approach. For instance, it is self-evident from any 
real-world situation that behavior is often contingent on ambient context. For example, 
travel patterns of individuals would (it is to be hoped) differ between weekdays and 
weekends or between daytime and nighttime. These are relatively simple contexts, but even 
so, they provide an important role in helping produce accurate representations of normalcy.  
Another example would differentiate between peak hour and non-peak hour periods when 
considering traffic activity patterns on a highway.  During non-peak hours, stopped vehicles 
(or even those moving slowly) would be unusual, and thus worthy of attention (or even 
suspicion), whereas during peak-hours slowly moving traffic may be the norm. Some 
contexts are far more subtle or difficult to determine a priori. Consider the case of a relatively 
permanent change in daily travel of an individual who changes jobs.  Importantly, that 
individual’s initial visit(s) to the new job location – during the interview process, for 
instance – would have registered as deviations from normal workday travel patterns. If the 
job location were available as context data to the system, then a new model for workday 
travel could be learned once the individual’s status had been updated.  In the absence of 
such context information, the original model would slowly be adapted to the new pattern 
due to the incremental learning that takes place. Prior to the new pattern becoming mature 
in the model, this pattern would still be considered deviant. 
To partially address this type of shortcoming, our learning approach can take advantage of 
externally-generated feedback about its performance to refine the learned representations.  
Although they do not ever need supervision to learn normalcy models, our algorithms can 
certainly exploit human subject matter expertise. Via reinforcement learning, operators can 
influence the learned models in a number of ways.  For instance, regarding the last example 
above, if an operator determines that the new pattern of workday travel is indeed normal, 
then that pattern can be selected from a display, labelled as normal, and fed to the learning 
algorithm, which would then label clusters associated with this new pattern as normal.  In 
effect, this speeds up the learning process on the basis of superior human insight.  By the 
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same token, an operator could select a trajectory that the learned model considers normal 
and indicate that it is to be considered anomalous, whereupon the system would 
thenceforth consider any similar trajectory anomalous and produce corresponding 
notification. Another route to reinforcement learning is available via responses to anomaly 
detections. An operator can respond to notifications with agreement or disagreement. 
Disagreement indicates that the responsible behaviour is not anomalous and should be 
considered normal. 
Neurobiological systems such as the human central nervous system are eminently suited to 
the challenges of such problems, so we draw inspiration for the development of automated 
high-level fusion support systems from computational neuroscience. Complementary, 
neurobiologically-inspired learning algorithms reduce massive amounts of data to a rich set 
of information embodied in models of behavioral patterns represented at a variety of 
conceptual, spatial, and temporal levels. Our approach, based on neurobiological principles, 
learns incrementally as new data are available, adapts learned models as underlying activity 
patterns change, and does not rely on labeled data for learning. Before presenting our 
approach in more detail, a brief survey of related work follows. 

2. Related work 

Beyond that from our group, the literature on trajectory-based motion learning and pattern 
discovery for the type of surveillance outlined in the introduction to this chapter is relatively 
sparse, largely due to the nature of the application. However, the more limited field of 
video-based surveillance (surveyed in Hu et al., 2004a and Liao, 2005) has reported advances 
using a variety of approaches, including Learning Vector Quantization (LVQ) (Johnson & 
Hogg, 1996), Self-Organising Maps (SOMs) (Owens & Hunter, 2000), hidden Markov 
Models (HMMs) (Alon et al., 2003), fuzzy neural networks (Hu et al., 2004b), and batch 
expectation-maximization (EM) (Makris & Ellis, 2005). Most of these techniques attempt to 
learn high-level motion behavior patterns from sample trajectories using discrete point-
based flow vectors as input to a machine learning algorithm.  For realistic motion sequences, 
convergence of these techniques is slow and the learning phase is usually carried out offline 
due to the high dimensionality of the input data space. In addition, many of these 
algorithms use supervised and/or batch learning and require statistically sufficient amounts 
of data for constructing normalcy models of motion pattern behavior upon which to base 
anomaly detection and prediction. A noteworthy example that uses on-line clustering has 
been reported by Piciarelli and Foresti (2006). Alas, the dependence of their approach upon 
data acquisition at fixed time intervals for encoding of temporal information in their 
representation is a limitation that cannot generally be satisfied in real-world applications. 
Our work addresses a wider range of issues relevant to real-world applicability and utility 
than the approaches noted above.  We use incremental, unsupervised learning of non-
statistical and statistical representations to deal with variable amounts of data. This 
produces usable normalcy models early in the learning process while data are still limited, 
yet refines the specificity of the models as additional data become available. 

3. Event-level normalcy learning and anomaly detection 

Our approach for detecting anomalous behavior is to assume that normal activity occurs 
frequently, while activity that is sufficiently different from normal activity is rare and 
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anomalous.  In addition, it must be possible to incorporate explicit knowledge about normal 
and anomalous activity when it is available.  One example is a set of vessel traffic data that 
has been analyzed by an operator who has verified that it contains no anomalous activity.  
Such input may also occur after the training data has already been presented; for example, 
an operator is able to select a vessel track from live data and indicate that its activity is 
normal. Thus, it is required that normalcy models be (1) learned continuously in response to 
incoming vessel track data, (2) adaptable to operator input, and (3) capable of recovering 
from operator mistakes. 
To learn context-sensitive models of vessel behavior, we have developed a neural network 
classifier which incrementally constructs a multidimensional Gaussian (hyper-ellipsoid) 
model of each category that is relatively insensitive to outliers and learns the normal pattern 
of behavior independent of the feature dimensions comprising the learning hyper-space.  
When a new data point falls into a particular category, the network updates its parameters 
adaptively to the incoming data and provides an accurate measure of normal/anomalous 
behavior. When a new data point is sufficiently beyond all learned categories, then a new 
category is formed. During classification, the network reports the distance from the data 
point to its closest category.  If this distance is not within the predefined settable threshold, 
then that point is reported as a deviation from normalcy. The maximum size of each 
category hyper-ellipsoid is also a predefined location- and dimension-dependent variable, 
which controls the representational fineness by constraining the size of each category. The 
network is capable of learning (by updating the categories and their associated hyper-
ellipsoids) and classifying (by comparison to the latest hyper-ellipsoid models) data on-the-
fly without any operator intervention. As each model matures, the gradient of certain model 
parameters reaches an asymptote that can be automatically checked for and utilized to 
activate models for classification purposes. The speed and performance of this learning 
algorithm makes it suitable for real-time situations wherein an operator/analyst can 
interactively facilitate the learning process and/or control over the sensitivity level of 
system alerting to control false alarms. These reasons also make this technology suitable for 
event-level learning in maritime domain awareness (MDA) or other tracking applications. 

3.1 Example results 

Figure 1 illustrates a two-dimensional projection of the learned representation from vessel 

track data recorded in the Miami Harbor vicinity during August 2004.  Each category is 

represented by an ellipse, which accounts for 99% (3 standard deviations around the mean) 

of the data within that category.  One aspect of this learned representation is worthy of note 

here. Panning from west to east (left to right) across the figure the potential locations of 

vessels become less constrained. In fact, in the east-most section of the region, the learned 

representation spans the location space.  It should also be noted that the great majority of 

the learned category ellipses in the east-most area are uniformly pale, an indication that the 

pattern of travel within this area does not follow particular navigation routes. The darker 

ellipses indicate higher traffic areas. Figure 2 shows the learned 4-dimensional model of 

same model illustrated in Figure 1. Note that as vessels get closer to the port, they reduce 

their speed and travel in east-west direction (red-blue ellipsoids) through a narrow channel. 

The left panel in Figure 3 shows the percentage of track reports as a function of Mahalanobis 
distance to the center of closest category for a two-dimensional model (based on position: 
longitude and latitude) of each individual vessel. The thick black curve shows the mean  
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Fig. 1.  Two-dimensional depiction of normalcy model learned from six months of real AIS 
vessel surveillance data from the Miami Harbor area (based on 4 dimensions – latitude, 
longitude, speed, and course).  A map of the relevant region is overlaid with the learned 
representation of normal event activities as a set of shaded ellipses.  Darker shading is 
proportional to the number of observations in an ellipse. 
 

 

Fig. 2.  Four-dimensional depiction of learned model illustrated in Figure 1.  Ellipse coloring 
indicates principal vessel course: red = eastward, blue = westward, green = northward, 
yellow = southward.  Towards the harbor region velocity decreases (as indicated by the 
lower ellipses). 
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across all vessels with more than 2000 track reports. The right panel in Figure 3 shows the 

mean of percent track reports for 2D, 3Dspeed (position, and speed), 3Dcourse (position and 

course) and 4D (position, speed, and course) models of normalcy patterns. Note that all four 

curves approximately follow a Gaussian distribution pattern. As each category accumulates 

more data, the distribution of data within each category becomes closer to a Gaussian 

distribution. 

In order to adaptively learn not only the model categories, but also the scale at which they 

are learned over time, we have developed an enhancement to our learning approach that 

applies the concept of scale space to our learning algorithm. This is a familiar concept in the 

field of computer vision, in which (Gaussian or Laplacian) image pyramids are used to 

efficiently represent and analyze images at multiple scales of image resolution (Burt & 

Adelson, 1983). In our multi-scale learning enhancement, multiple models are learned 

simultaneously as different model layers, with each successive layer having a scale 

parameter that results in a coarser scale model being learned than the model in the previous 

layer. This is an efficient learning representation because, while multiple model layers are 

learned, the coarse-resolution model layers use larger and fewer categories than the fine-

resolution model layers (see Figure 4). Although multiple model layers are learned 

simultaneously, only one of the model layers is “active” at any given time for the purpose of 

detecting deviations and alerting. As learning proceeds the average category evidence in 

each layer is monitored, and this value is used as the criteria for switching between model 

layers. 
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Fig. 3.  Proportion of track reports beyond Mahalanobis distance from ellipse centroids as a 
function of ellipse standard deviations.  Left: Individual vessel model functions; thick black 
line is the average function over all vessels.  Right: Average functions for differing model 
dimensionality. 

4. Inter-event normalcy learning and anomaly detection – behavior prediction 

Learning for behavior prediction aims to predict the future position of a vessel given its 

current behavior (location and velocity).  Essentially, this involves learning links between 

behavioral events. It is important that the prediction learning system operates 
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autonomously so as to not make demands on already busy operators.  Also essential is that 

learning occurs incrementally in order to allow the system to take advantage of increasing 

amounts of data without having to take the system offline in order to batch process massive 

amounts of data.  An additional benefit of this incremental approach is that the system will 

be able to adapt to changing behavior patterns automatically. For these reasons, our learning 

approach for this task is based on the associative learning algorithm introduced in Rhodes 

(2007) and extended in Bomberger et al. (2006), Rhodes et al. (2007a), and Zandipour et al. 

(2008).  Weights between grid locations change via presynaptically gated Hebbian learning.  

The set of weights in which learning takes place is determined by the velocity state of the 

vessel at the start of each temporal prediction window.  Learning is based on the associative 

learning algorithm, as described in Rhodes et al. (2007a): 

 Δ = ⋅ ⋅ −
1

( )ijk jk ik ijk

jk

w x x w
N

  (1) 

where Njk is the number of times that node j has been activated in the kth set of weights 
(which corresponds to the vessel velocity state at the beginning of the prediction interval, 
indexed by k), wijk is the connection weight from node j to node i, and xjk and xik are the 
activations of grid locations j (location at the start of the period—the source location) and i 
(location at the end of the period—the target location) respectively. Note that the learning 
rate is node-dependent, such that it decreases with the amount of activity that has been 
encountered by a node. For a node j in the kth set of weights, the learning rate first starts at a 
maximum of 1 and then decreases inversely with Njk. Each node thus begins in a fast-
learning mode, and then the weights are slowly tuned as more data is presented.  Learning 
is presynaptically-gated by activation at the source location. If this location is not active, 
then no connections from this location to other locations will change their weights.  If the 
source location is active, then links with active target locations will increase their weights 
and links with inactive target locations will decrease their weights. Given the binary 
activations used in the network, weights are bounded between 0 and 1 and the size of 
weight changes is governed by the learning rate and the size of the current weight. This 
data-dependent learning rate causes the learned weights to accurately track the conditional 
probabilities encountered in the training data.  In contrast to neural network approaches 
that use batch learning to minimize a global error function with a limited set of hidden 
weights, this associative learning approach is both incremental and local, and each weight can 
be physically interpreted as part of a probability density function.  The incremental and local 
nature of the learning process causes the model to adapt as new data is received and is less 
prone to convergence to local extrema since there is no global error function to be optimized. 
This form of learning has a number of attractive properties for the current application.  First, 

more frequent combinations of source and target locations are rapidly learned, as indicated 

by larger weights.  Second, random/infrequent combinations will cause learning when they 

occur but will also be unlearned through weight decay when they do not occur. This 

property also provides noise tolerance. Third, the system is able to automatically track 

changes in behavior over time. Fourth, the system is also able to maintain multiple sets of 

models for alternating operating conditions, for example, to capture seasonal differences or 

other factors. Fifth, the learning is entirely unsupervised, and requires no operator 

intervention. 
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Fig. 4. As more data are received, the normalcy models fill in at the various spatial scales.  
Those with coarser resolution ‘mature’ earlier (top), but gradually those with finer 
resolution develop sufficiently to be used (middle, then bottom).  Data-driven utilization of 
finer resolution models serves to maintain detection sensitivity (while enabling rapid initial 
use of less precise models). 
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4.1 Example results 

From the same recorded AIS dataset used in Section 3, we utilized vessel location (latitude 
and longitude) and velocity (course and speed) as the basis for demonstrating our 
mechanism for predicting future vessel behavior.  We placed a square grid over the area of 
interest surrounding the port of Miami so as to discretize vessel location (see Figure 5).  We 
also defined a discretization of vessel velocity that enables learning to be contextually 
specific to the behavior of the vessel. Thus for each vessel report, we were able to place the 
vessel in a grid location having a velocity state.  For purposes of exposition, the chosen 
temporal prediction horizon is 15 minutes. 
 

Zone 1 Zone 2 Zone 3 Zone 4 

Westward 

Eastward 

Target Vessel 

Predicted Positions 
(after 15 min) 

Future Position 
(after 15 min) 

 

Fig. 5. Snapshot from Miami Harbor surrounds depicting system operation. The location 
multi-scale grid is superimposed over an ENC map of the area. Current vessel location is 
indicated on the map by circular markers and identification numbers.  One vessel (ID 
107793) has been selected for prediction display (as indicated by the larger, brighter 
marker). The actual future position of this vessel at the end of a 15 minute prediction 
horizon is indicated by the diamond.  Model predictions of future location are indicated by 
highlighted grid locations. The strength of the weight underlying each prediction is 
indicated by the highlight intensity (pale=small weights; dark=large weights). Since the 
actual future location falls within a predicted grid location, this example represents a hit.  
The map is overlaid with zones that we have imposed for analysis of prediction results.  
Grids in zone 4 are four times larger than grids in zone 3, and 16 times larger than grids in 
zones 1 and 2. 

To determine performance, we compared the set of grid locations (and corresponding 
weights) predicted by the model based on the current location and velocity state of each 
vessel to each vessel’s corresponding actual location 15 minutes into the future. 
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Each location prediction consists of a set of grid locations (the target states) and the 

corresponding model weights from the grid location determined by the known location and 

velocity of the vessel (the source state).  The set of weights from the source state to the target 

states forms a probability density function, where the weight to each target state represents 

the conditional probability that it will occur in 15 minutes given that the source state has 

occurred. 

Recall, precision, accuracy, and coverage statistics were calculated periodically.  Coverage 

provides a measure of how well the learning has progressed in terms of being able to make 

predictions for all events presented to the model. Recall and precision are standard 

information retrieval metrics for assessing model performance. Recall is equivalent to PD 

(probability of correct detection) and is an absolute measure of prediction accuracy.  

Precision is related to PFA (probability of false alarms), which decreases as recall increases.  

Accuracy—as defined here—is a relative measure of prediction accuracy in that it measures 

the probability of correct prediction made.  In contrast, recall factors in all events irrespective 

of whether a prediction was made or not.  Rhodes et al. (2007a) showed that recall is the 

most relevant metric for evaluation of prediction performance. In order to generate a 

prediction at a requested recall level, a subset of the predicted grid locations is selected by 

adding predicted locations (in order from highest to lowest weight) until the sum of the 

weights exceeds the requested recall level. 

Due to fast learning (to a weight of 1) at a node when it is first activated, coverage less than 1 

indicates that some of the vessel states for which predictions are to be made have never been 

previously encountered. Accuracy differs from recall only to the extent that vessel states for 

which predictions are to be made have not been encountered before. The important measure 

is whether the predicted grid locations contain the actual future vessel location with the 

same probability as the recall level that is requested.  That is, does the actual recall match the 

requested recall threshold (TR)? Ideally, actual recall should always match requested recall.  

Therefore, the plot of actual recall vs. requested recall threshold should ideally produce a 

straight line with slope of 1 (and 0 intercept). 

The recall vs. requested recall threshold (TR) is plotted in Figure 6 for all zones and speed states, 

along with the coverage, accuracy, and precision. The solid black line (slope = 1) illustrates the 

recall performance of an ideal predictor for reference, for which the actual recall matches the 

requested recall level. As described earlier, coverage is less than 1 when vessel states for which 

predictions are to be made have not been encountered before, and thus is constant as TR 

increases. Accuracy differs from recall only when coverage is less than 1. Precision decreases 

with increased TR, having a shallow slope. The most important quantity from Figure 6 is 

how well recall matches the requested recall level. If the match is good, the predictions are 

accurate with respect to the uncertainty in the underlying data distribution, so lower 

precision can be tolerated. 

5. Discussion 

The neuro-cognitively inspired learning algorithms and representational paradigms 
described here have been remarkably successful in a variety of application domains. We 
have previously reported their use in a prototype program for port and littoral zone 
surveillance and automated scene understanding (Rhodes et al. 2006, 2007b). We also have 
 

www.intechopen.com



Anomaly Detection & Behavior Prediction: Higher-Level Fusion Based on  
Computational Neuroscientific Principles 

 

333 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Requested

A
c
tu

a
l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Requested

A
c
tu

a
l

Grid Size = 0.0035 

Grid Size = 0.0035, 0.007 

Grid Size = 0.0035, 0.007, 0.014 

 

Fig. 6.  Prediction results compiled across all zones.  The top panel is based on a uniform 
grid; the middle and bottom panels are based on 2-scale and 3-scale grids respectively.  The 
multi-scale grids had significantly better results on the metrics.  Recall (red), coverage 
(magenta), accuracy (green) and precision (blue) are plotted vs. requested recall.  The solid 
black line (slope=1) illustrates the recall performance of an ideal predictor for reference. 
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unreported success in other maritime domain awareness applications as well as land-based 
applications. The latter have been based on data from platforms such as surveillance towers 
and UAVs. 
Learning-based track data analysis and exploitation as a surveillance and monitoring 

capability is an emerging new capability that becomes increasingly important as constraints 

on personnel clash with increasing needs for vigilant watchkeeping. These capabilities 

contribute to higher-level fusion situational awareness and assessment objectives. They also 

provide essential elements for automated scene understanding to shift operator focus from 

sensor monitoring and activity detection to assessment and response. 

While having performed well in a variety of prototype level situations, our current effort 

represents first-generation technology. It is not yet mature enough for operational use. Each 

new application area produces new insight into the strengths and weaknesses of the 

algorithms and how they should be embedded into an overall system. Studying 

performance characteristics under a variety of circumstances enables the robustness and 

generality of the algorithmic components to be identified and enhanced.  This also permits 

incorporation of situation specific functionality as needed to meet specific operational 

requirements. It is also often the case that insights gained from a new domain yield 

solutions that are beneficial across numerous domains. 

6. Future research 

Although the approaches described here have met with considerable success in a variety of 

domain applications, much remains to be done to produce a truly effective capability.  For 

example, we have begun to move beyond the kinematic trajectory domain to address 

abnormality detection problems in other fields. Once we have multi-domain normalcy 

learning capabilities, it will be important to fuse across those domains in order to enhance 

anomaly detection. Consider, for example, a potential situation where a given activity 

pattern is considered normal in each of two domains judged independently, but determined 

to be deviant when the domains are jointly judged. 

Other lines of pursuit include enhancing the flexibility of the contextually-sensitive aspect of 

our learning approach and refining the reinforcement learning approach used to incorporate 

operator feedback. In the former case, our current approach treats contexts in a discrete 

manner, proscribing capabilities such as mixing contexts to determine normalcy of current 

activity patterns or interpolating between contexts to account for previously unseen 

combinations of contextual conditions. As for reinforcement learning, enhancing the model 

refinement utility offered to operators is the key objective. Model fidelity and integrity need 

to be maintained while enabling user-specific insights and expertise to be incorporated via 

simple, intuitive interactions with the system. Moreover, potentially divergent interests of 

different users have to be accommodated in any tool in order for it to be useful in situations 

where multiple operators will be interacting with it. 
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