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Abstract

The presence of azeotropic points in the vapor-liquid equilibria of some solutions is a
limiting factor in separation operations by distillation. Knowledge of azeotropy is based
on understanding its origins and behavior in relation to the different variables that mod-
ulate phase equilibria, and can be used to control the appearance of these singular points.
This work studies the phenomenon of azeotropy and presents a practical view based on
the study of ester-alkane binary solutions. After considering the principles of vapor-liquid
thermodynamics and the special cases of azeotropic points, a detailed description is given
of the experimental techniques used to determine these points and also for their thermo-
dynamic verification. Two different but complementary modeling approaches are pro-
posed: the correlation of experimental data and the prediction of azeotropic variables.
The first is required to achieve a rigorous design of apparatus and installations, while the
second is useful in preliminary design stages. Finally, alternatives to the separation pro-
cess are studied by simulation. For a practical perspective on these aspects, each section is
accompanied by data for ester-alkane solutions, and references are made to applications in
the chemical, food and pharmaceutical industries.
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1. Introduction

In general, the matter that makes up the Earth and everything living on it has a heterogeneous

nature in relation to the different states (solid, liquid and gas). In the case of liquid solutions,

the development of separation technologies is associated with the chemical industry [1, 2],

which is a driving force behind it. Any transformation process of matter requires preliminary

and/or subsequent steps, which change the composition of the solutions involved. One objec-

tive may be to purify the products generated in a reactor, for example, by removing the

presence of inert compounds, contaminants, by-products or excess reagents, and even to

produce solutions with specific compositions, different to those obtained in the reactor. So,

many processes in the chemical industry are essentially combinations of physical separation

processes that do not require a chemical reaction.

There are a variety of separation processes known to date [3], but the performance of distilla-

tion [4] make it the most important and most used operation in the chemical industry. How-

ever, not all solutions can be separated into their simple components by classical multi-step

distillation (rectification) techniques. Because of this, advanced methods aimed at resolving the

limitations of distillation in relation to specific problems have been developed. Two of the most

important complications in the correction of solutions are: (1) the presence of azeotropes and,

(2) the proximity of the boiling points of the components in the dissolution (close boiling

point). Similar strategies are followed to separate solutions with either of these scenarios, and

the main differences between them lie in certain technical details of the design. Some examples

are recorded in Table 1. Most of the procedures described try to modify the system either by

changing the operating conditions (such as in pressure-swing-distillation), or by adding an

extractant (entrainer), although the latter can present some reactivity with some of the compo-

nents present. Other techniques combine the rectification with other operations based on

different physical principles, such as pervaporation or liquid-liquid extraction.

Although important from a practical perspective the problems posed by a “close boiling point”

(CBP) do not require complicated theorization. This phenomenon tends to occur in dissolu-

tions involving chemically similar compounds (of the same chemical nature), with a behavior

close to ideality. Azeotropy, however, is a complex phenomenon with different modes of

presentation for which the complexity increases exponentially with the number of compounds

in solution. Many authors have attempted to write about azeotropy [5, 6], while others have

focused on making experimental measurements with different solutions and/or compiling the

results [7, 8]. However, the current literature is still scarce. It is especially important to clarify

the physical causes of the azeotropes, influenced by the situation and their repercussions on

process design (with the sequence: experimentation, E-modeling, M-simulation, S), particu-

larly from a practical perspective.

Formany years, our research group has conducted experiments on azeotropic systems (see [9–12]),

mainly on solutions containing esters, alkanols and alkanes. Experimental developments have also

been proposed to determine vapor-liquid equilibria (VLE) [13, 14], and theoretical approaches to

model experimental thermodynamic data [14–17] and to assess their quality [18, 19]. In this

chapter, the azeotropy is studied from different perspectives which governs the design of some
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engineering operations, and more specifically those cited above (E-M-S), actions that the authors

have pursued in recent works [20, 21]. Initially, the phenomenon of azeotropy is considered,

supported by the basic thermodynamic formulation, in an attempt to understand its origin and

sensitivity to changes in the system conditions. The experimental methods available to measure

azeotropic points are exposed, their strengths and limitations are discussed, and reference is made

to tools [18, 19] to determine data quality. Regarding the modeling, different strategies are used to

characterize VLE diagrams and to estimate the presence of azeotropes, with a critical analysis to

predict the appearance of singular points. Finally, the information compiled is used in several

examples to design azeotropic separation processes, taking into consideration different conditions

of ester and alkane solutions.

2. Azeotropy: description of the phenomenon and thermodynamic

representation

Etymologically, the term “azeotrope,” coined by the chemists J. Wade and R.W. Merriman

[22], comes from the Greek combination of three words “a” (without), “zein” (boiling) and

“trope” (change), in other words, to boil without change, referring to a solution for which the

variables (p,T,x) remain unchanged, which is the main characteristic of this phenomenon.

These authors described the phenomenon of azeotropy when studying the VLE of the

Enhanced distillation Particular cases Mixtures Entrainer

Azeotropic distillation Minimum boiling point Not found Not found

pressure-swing THF + water

Methyl ethanoate + methanol

Water + ethanol

Non-available

Non-available

Non-available

Boundaries bending Hydrochloric acid + water

Nitric acid + water

Sulfuric acid

Sulfuric acid

Liquid-liquid extraction Ethanol + water

Butanol + water

Hydrocarbon + water

Pyridine + water

Benzene, toluene

Self-entraining

Self-entraining

Benzene

Pervaporation Ethanol + water

Toluene + heptane

Cellulose acetate

membrane

Extractive distillation With volatile solvent Not found Not found

With heavy solvent Isoprene + pentane Furfural, acetonitrile

With salt Ethanol + water Acetate-based salts

Reactive distillation Reactive entrainer without

catalyzer

m-xylene + p-xylene

Ethanol + water

Tert-butylbenzene

Ethylene glycol

Reactive entrainer catalyzed-

promoted

Methyl ethanoate + isobutanol o-xylene + ionic liquid

Table 1. Advanced distillation techniques with industrial examples and details of the entrainer used.
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mixture of water + ethanol at atmospheric pressure. They found that at a given composition

of liquid solution the mixture cannot separate as the distilled vapor (with composition y) has

the same composition as the remaining liquid (with composition x). Thermodynamic formal-

ism establishes the equality x ¼ y, between the compositions vector of the liquid phase,

x ¼ x1; x2;…; xn½ � and the corresponding vapor phase, y ¼ y1; y2;…; yn
� �

of a system with n-

components, to indicate the presence of an azeotrope. The previous identity implies that the

solution behaves, in relation to the distillation process, as a pure product, giving rise to an

unusual situation. The behavior is a result of changes in the structure of the final dissolution

(in singular conditions), with a different reorganization compared to the original one of pure

products. Changes occur in all non-ideal solutions, although not all of them are azeotropic.

We may, therefore, ask, “what is the difference? In the case of azeotropes the average

interactions that affect the molecules of different compounds in solution are equivalent,

causing the volatilities are the same: All components have the same ability to change into

the vapor phase, resulting in both phases (líquid and vapor) having the same composition.

VLE thermodynamics states that the partial pressure of each component, pi, of a mixture in

VLE, is determined by a modified version of Raoult’s law:

pi ¼ yip ¼
xiγip

o
i

Φi
(1)

where p is the total pressure of the system, xi and yi, the compositions of compound i in the liquid

and vapor phase, respectively, γi ¼ γi xi; p;Tð Þ is the activity coefficient of this compound in the

liquid phase, poi ¼ poi Tð Þ the vapor pressure of this component, and Φi ¼ Φi y; p;Tð Þ, related to

the fugacity coefficient of pure compound i in solution bϕi, and as saturated vapor ϕo
i according

to the equation,

lnΦi ¼ ln
bϕi

ϕo
i

 !

þ
�voi p� poi

� �

RT

� �
(2)

The azeotropic condition established previously, x ¼ y, combined with Eq. (1), gives place to

the following relationship for azeotropic pressure:

p ¼ γip
o
i =Φi (3)

which must be obeyed for all components of the system. Equation (4) implies the following

identity between all components of the mixture:

γ1p
o
1

Φ1
¼

γ2p
o
2

Φ2
¼ …

γip
o
i

Φi
¼ … ¼

γnp
o
n

Φn
(4)

This equation is important because it can be used as a starting point for several considerations.

For example, at low and moderate pressures Φi≈1 and often at high pressures its value would

not vary significantly for different compounds and it is acceptable to assume that Φi=Φj≈1.

Therefore, from Eq. (4) it can be deduced that the presence of an azeotrope is due to γi and to

poi , in other words, for there to be an azeotrope in the VLE equations.
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γi T; p; xið Þ ¼ p=poi and γj T; p; xj
� �

¼ p=poj (5)

must have a real-valued solution. The γ’s are a measurement of the non-ideal nature of the

liquid phase owing to the interactional effects in the mixing process and depend upon each

specific solution, they cannot be known a priori, but are modeled mathematically. The vapor

pressures play an important role and depend only upon the equilibrium temperature which, in

turn, depends upon the total pressure of the system studied, see Figure 1. For Eq. (4) to be

rigorously applied, the parameter Φi is required; this is calculated from expressions found in

any textbook on the Thermodynamics of Solutions [23]. Its more general expression is:

lnΦi ¼ Bii p� poi
� �

þ 1=2ð Þp
X

j

X

k
yjyk 2δji � δjk

� �

h i

=RT (6)

where δji = 2Bji-Bjj-Bii, and the δjk are easy to deduce; the virial coefficients of the pure com-

pounds Bii and mixtures Bji can be calculated by a correlation process. Adaptation of Eq. (4) to

binaries gives:

ln
γ1

γ2

¼ ln
po2
po1

þ B11 p� po1
� �

� B22 p� po2
� �

þ pδ12 y1 � y2
� �

(7)

There is a clear dependence between the quotients of the activity coefficients and the vapor pres-

sures. Bancroft [24] introduced a rule which, at least graphically is intuitive, that the appearance

Figure 1. Isobaric-VLE of a binary at different pressures.
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of an azeotrope in a homogeneous solution is dependent on the equality of the vapor pressures at a

given temperature, ignoring the final summands of Eq. (7). The point of intersection of the vapor

pressures is called the Bancroft point; although absence of this point does not imply that there is no

azeotrope.We insist that oneof themost important aspects is todetermine the structural behavior of

the solution, because the formation of these singular states that identify the azeotropic condition

with a pure compound, as mentioned previously, is of significance in the applicability of specific

fluids (as occurs in other phase equilibria). This is why it is interesting to define the formation of

azeotropes knowing the existence of interactions between different molecules, which can be of

attractive nature (favoring the mixing process), or repulsive (impeding it). In the first case, the

solution presents a negative deviation of Raoult’s law γi < 1, and according to Eq.(4) the poi will be

higher than in an ideal solutionaswould alsobe the equilibrium temperatures,Figure 2(a). If thenet

interactional effect is repulsive,γi> > 1,p
o
i wouldbe lower tobalance out the total pressure.Now, the

equilibrium temperatures also diminish creating an azeotrope of minimum temperature, Figure 2

(b). Occasionally, the effects of the interactions of a solution are not entirely attractive or repulsive,

but their sign varies depending on the state (T,p,x) of the system. In these cases, Eqs. (4) and (5) are

satisfied in different regions of the equilibrium plots, and present more than one azeotrope

(polyazeotropy), see Figure 2(c).When the solution is affected by strong repulsive effects, the liquid

phasebecomesunstable and separates into two immiscible liquidphases (liquid-liquid equilibrium,

LLE) [25]. High values of the activity coefficients associatedwith this repulsion favor the formation

of azeotropes at a minimum temperature. Sometimes, both phenomena (immiscibility and

azeotropy) occur in the same conditions (p,T,x,y), Figure 2(d), giving rise to systems in LLE, VLLE.

The types of azeotropes indicated in Figure 2 for binary solutions also occur in multicomponent

systems, although thebehavior of the solution ismore complex.To illustrate this,Figure3 shows the

residues, see [3], of some examples of ternaries. The presence of an azeotrope in one of the binaries,

Figure 3(a), divides the diagram into twodistillation regions bya line that joins the stable nodewith

the unstable node. None of the distillation processes occurring in either of the regions could pass

from one to the other, because as they move closer to the region boundary, it will tend to fall to the

azeotropic point (stable node). The presence of two azeotropic pointswould not necessarily change

the behavior unless this corresponded to some kind of stable node. Hence, if the azeotrope corre-

sponds to a maximum temperature, it can become an unstable node, Figure 3(b), altering the

separation regions.

Ternary azeotropes (those produced in the presence of three solution components) do not

necessarily correspond to the minimum points of the diagram; occasionally, Figure 3(c), they

Figure 2. Azeotrope types. (a) Maximum temperature, (b) minimum temperature, (c) polyazeotrope, and (d) non-

homogeneous azeotrope. V, vapor phase, L, homogeneous liquid phase, and L1 and L2 liquid phases of immiscible system.
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are presented as a saddle-point. However, when they do correspond to the minimum temper-

ature, they also become the stable node for any distillation region. In these cases, the remaining

azeotropes also become saddle-points, Figure 3(d).

3. Characterization of azeotropes. Results for ester + alkane solutions

3.1. Experimental techniques for the determination of azeotropes. Details and

recommendation

In the experimental characterization of an azeotrope the following parameters or properties

must also be specified: (a) composition, (b) boiling point at a given pressure, and (c) the

differences between the boiling points of the azeotrope and the most volatile component

(positive azeotrope) or that of the component of the lowest boiling point (negative azeotrope).

It is usual to specify values for the variables of (a) and (b) to characterize the azeotrope,

although the result that establishes (c) should also be given in each case.

Figure 3. Examples of ternary VLE of azeotropic systems. ( ) stable node, ( ) unstable node, ( ) saddle-point, (———)

separating line. (a) One binary azeotrope, (b) two binary azeotropes, (c) two binary azeotropes and one ternary, (d)

minimum temperature ternary azeotrope.
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Azeotropic points are experimentally determined by several procedures that can be grouped into

two categories: direct and indirect. Direct measurements are applied to determine the azeotropic

composition inside the apparatus, with the greatest accuracy possible. Experimentalists fre-

quently makemistakes when verifying the precision of the azeotropic coordinates, as the starting

products do not always have the desired purity, which distorts the values of the state variables.

The commonest example concerns the presence of moisture in the components of a binary

system, resulting in the formation of binary or ternary azeotropes with the water; this can even

give rise to the appearance of unexpected azeotropes in some systems. Hence, azeotropic exper-

imentation must be rigorous and include a careful rectification procedure. The precise variables

of azeotropes can be obtained in a differential ebulliometer [26], such as the one shown in

Figure 4, with different regions for boiling and condensation, both working to rectify the study

mixture, although the temperature on reaching equilibrium must be the same at a given pres-

sure. A recent design for a differential ebulliometer has been proposed by Raal et al. [27].

Figure 4. Differential ebulliometer [26].
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Several studies are described in the literature [28–30] in which the authors use small or medium-

scale installations with distillation columns with a high number of equilibrium phases, operating

at total reflux and isobaric conditions. These columns can reach a very similar composition to

that of the azeotrope in the reflux, after reaching a steady state. Figure 4 shows a diagram of an

installation Figure 5. Packed-tower used for the direct determination of azeotropic points show-

ing details of the installation and auxiliary apparatus. On right, data representations and flow

control of these characteristics. To collect the purest fraction possible of an azeotrope a differen-

tial ebulliometer is placed adjacent to a distillation column. The pure azeotrope is, therefore,

determined in the differential ebulliometer and the difference between the boiling points of the

reference compound and that of the azeotrope, with the purpose of estimating the latter.

Figure 5 shows a diagram of the experimental apparatus used in our laboratory to directly

measure azeotropic points using a distillation column. This experimental design is useful to

characterize the azeotropic points relative to pressure, and to determine the separate regions in

systems. The former is carried out by adjusting the pressure of the system to reach a stable

temperature at the head of the column, to then take samples of the reflux for analysis. In the case

of ternary systems, different starting compositions are used, with the purpose of conducting the

experiment in the separate regions. The main drawback of this experimental technique is that the

data obtained are not useful for the modeling process, as discrete points are obtained. In any

Figure 5. Packed-tower used for the direct determination of azeotropic points showing details of the installation and

auxiliary apparatus. On right, data representations and flow control.
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case, the azeotropes measured must only be used to complement data available in the complete

VLE diagrams.

The indirect technique to determine the coordinates of the azeotropic points consists in

interpolating from data determined for the VLE diagram. This is the most widespread

procedure [13–15, 26], and the standard one recommended for azeotropes as it describes the

entire VLE in given conditions of pressure and temperature. Likewise, an example of the

experimental installation to determine VLE data is shown in Figure 6, with a small

ebulliometer [13, 14] used in our laboratory equipped with a Cotrell pump and a small

rectification zone, with temperature differences as specified previously. The samples for

binary systems are studied by densimetry/refractometry for ternary systems by gas chroma-

tography. Optimal functioning is achieved by automating the system with suitable software

that can carefully control the different variables.

One advantage of the system is that it can obtain a large quantity of data to produce an

precise characterization of the VLE. The combination of this technique with the direct

method is optimum: the indirect method is used to determine the VLE diagrams of the

system in discrete conditions and this information is complemented by azeotropic data at

different pressures.

Figure 6. Experimental installation for the experimental determination of VLE, ebulliometer and details of auxiliary

equipment.
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3.2. Verification of experimental data

The high quality of the starting products and the improvement in the instrumentation and

control systems combined with standardization of the experimental protocols, increase the

probability of obtaining quality data. In any case, it is important to turn to mathematical-

thermodynamic procedures that certify the quality of those dat, as these have important

repercussions on subsequent operations.

There is a widespread tendency in thermodynamics to establish relationships that verify the

scientific coherence between the variables measured, in other words, that establish the thermo-

dynamic consistency of the data. Although there are several ways to do this [31, 32], they are of

limited scope. In other words, the verification of data must be applied to VLE data before

determining the azeotropic coordinates (indirect method). A strategy to check the consistency

is based on the following rules:

1. Experimental VLE data are analyzed in graphical form showing the variables measured

(x, y, T, p) and those calculated with the thermodynamic formulation, γi and gE. The

coherence of these quantities must be illustrated in graphs, otherwise the location of the

azeotropes can change. In azeotropic systems, the plot of (y-x) vs. x is important as the

intersection of the distribution of points with the x-axis indicates the presence of an

azeotrope. In binaries, the coordinates of this point coincide with the minimum or maxi-

mum temperature (or maximum or minimum pressures).

2. The experimental data must be modeled to solve most of the consistency tests. Recom-

mendations for this are provided in Section 3 of this chapter.

3. A combination of several consistency tests must be used to confirm the quality of the data

and their coherence. The tests as the Areas-test [33] and the Fredenslund-test [34] are

recommended, together with a third procedure, although they cannot be used in some

cases of azeotropy, such as those appearing in partially miscible systems, Figure 1(d), or

polyazeotropes, Figure 1(c). Alternatively, a method proposed by the authors [19], with a

more rigorous thermodynamic formulation, could be used.

4. It is also worth mentioning here a method that should be avoided. The method of

Herington [35] produces incorrect results by assuming false hypotheses [36] in certain

cases. In general, no Area-test should be used as the sole test as they are insensitive to

pressure errors [37]. The composition/resolution-test [38], or any other test aimed at

exactly obeying thermodynamic relations should also be avoided as they are very limiting.

When applying the consistency test to azeotropic systems some peculiarities must be taken

into account. As an example, a brief description is included below of the application of two

tests commonly used to analyze VLE data.

• Area-test (Redlich-Kister [33] or other): the method is based on solving the integral,

A ¼

ðx1¼1

x1¼0

ln
γ1

γ2

dx1 (8)
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which should produce a result close to zero. As mentioned above, the activity coefficients at

the azeotropic points are identified with the quotient of the vapor pressures, which provides

an additional verification of the data.

• Fredenslund-test [34]: in this case the inconsistency is quantified by the residue generated

by this model when reproducing the vapor phase of the VLE system, determining the

quality from the difference:

δy ¼ y exp � ycal

�

�

�

�

�

� (9)

According to this formation, the coordinates of the azeotropic point are only verified with data

from the liquid phase:

δy1 ¼ x1,exp �
x1,expγ1p

o
1

x2,expγ2p
o
2 þ x1,expγ1p

o
1

�

�

�

�

�

�

�

�

¼ x1,expx2,exp
γ2p

o
2 � γ1p

o
1

γ2p
o
2 þ x1,exp γ1p

o
1 � γ2p

o
2

� �

�

�

�

�

�

�

�

�

�

�

(10)

which should have a value less than 0.01.

In the two cases presented here, the quality of the azeotropic data is linked to the determination

of their coordinates by the indirect method. Hence, the azeotropes are verified in the same way

as the rest of the data from the VLE series. In order to obtain a procedure that verify the data

obtained by the direct method, it is convenient to recur to the test proposed by ours [19], which

has the following general expression for a VLE binary (assuming an ideal vapor phase, see [19]):

y1 � x1

y1 1� y1
� � ¼

1

p
�

vE

RT

	 


dpþ
hE

RT2
�

X

2

i¼1

xi
∂lnpoi
∂T

 !

dT (11)

and imposing the condition of azeotropy:

dT

dp
¼ �

1
p �

vE

RT

� �

hE

RT2 �
P

2

i¼1

xi
∂lnpo

i

∂T

	 
 (12)

Integration of Eq. (12), must be carried out numerically as it corresponds to a differential

equation of non-separable variables that relates the azeotropic temperature with the pressure

of the system. Estimation of the difference between the temperature obtained by Eq. (12) and

the experimental temperature is sufficient to verify thermodynamic consistency.

3.3. Azeotropy in ester-alkane solutions

3.3.1. Preliminary analysis

The energetic and volumetric effects of the mixing process of esters and alkanes, due to inter/intra

molecular interactions, present net positive values for gE function, with activity coefficients greater
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C5H12 C6H14 C7H16 C8H18 C9H20 C10H22

Pentane Hexane Heptane Octane Nonane Decane

T
o
b ¼ 309.30 K T

o
b ¼ 341.88 K T

o
b ¼ 371.60 K T

o
b ¼ 398.82 K T

o
b ¼ 423.97 K T

o
b ¼ 447.30 K

C2H4O2 Methyl methanoate T
o
b ¼ 304.80 K E(0.558,293.90)39

D(0.575,294.15)7

D(0.574,294.85)7

E(0.832,302.62)43

E(0.849,302.65)57

EZ7

E(0.992,304.69)45

EZ12

EZ12 EZ12 EZ50

C3H6O2 Ethyl methanoate T
o
b ¼ 327.50 K E(0.218,306.50)39

D(0.215,307.15)7

DZ7

E(0.703,323.32)43

E(0.709,323.21)51

D(0.669,324.90)7

E(0.988,327.30)7

D(0.973,329.75)7

EZ51

EZ12

EZ51

EZ12

EZ51

EZ50

EZ51

Methyl ethanoate T
o
b ¼ 330.02 K E(0.203,307.28)17

D(0.295,305.65)7

E(0.683,325.44)17

D(0.703,322.65)7

D(0.665,324.80)52

E(0.962,329.93)17

E(0.934,329.6)45

EZ17 EZ17 EZ17

C4H8O2 Ethyl ethanoate T
o
b ¼350.26 K EZ40 E(0.339,338.15)40

E(0.343,338.00)46

E(0.343,338.30)53

E(0.834,349.99)40

D(0.947,350.05) 7

EZ40

EZ7

EZ56

EZ40

EZ7

EZ40

EZ 7

Methyl propanoate T
o
b ¼352.90 K EZ14 E(0.279,339.38)47

E(0.216,339.95)7

E(0.844,351.86)14

E(0.929,352.75) 7

EZ47 EZ14 EZ42

Propyl methanoate T
o
b ¼354.00 K EZ39 E(0.283,339.10)43

E(0.295,336.75)7

E(0.763,352.20)12

E(0.736,351.35)7

E(0.786,352.20)55

EZ12

EZ55

EZ12

EZ55

EZ50

C5H10O2. Ethyl propanoate T
o
b ¼ 372.20 K EZ14 EZ47

DZ7

E(0.481,366.61)14

E(0.465,366.15)7

EZ47 EZ14 EZ42

Propyl

ethanoate

T
o
b ¼ 374.69 K EZ41 EZ41

DZ7

E(0.423,366.99)41

D(0.421,366.75)29

E(0.423,366.90)48

E(0.973,374.31)41

DZ 7

EZ41

EZ48

EZ41

Methyl butanoate T
o
b ¼ 375.90 K EZ42 EZ47 E(0.404,367.65)49

D(0.346,368.25)7

E(0.398,368.22)45

E(0.974,375.59)47

DZ7

EZ49 EZ42

Butyl methanoate T
o
b ¼ 379.30 K EZ39 EZ43 E(0.297,368.80)12

D(0.346,367.15)7

E(0.872,379.10)12 EZ12 EZ50

C6H12O2 Ethyl butanoate T
o
b ¼ 394.60 K EZ42 EZ47,54 EZ7,49 E(0.637,392.06) 47

D(0.646,391.65) 7

EZ49 EZ42
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C5H12 C6H14 C7H16 C8H18 C9H20 C10H22

Pentane Hexane Heptane Octane Nonane Decane

T
o
b ¼ 309.30 K T

o
b ¼ 341.88 K T

o
b ¼ 371.60 K T

o
b ¼ 398.82 K T

o
b ¼ 423.97 K T

o
b ¼ 447.30 K

Propyl propanoate To
b ¼ 395.60 K EZ42 EZ42 EZ42

EZ48

E(0.581,392.88)42

D(0.586,391.95) 7

EZ42,48 EZ42

Butyl ethanoate To
b ¼ 399.20 K EZ20 EZ20,44 EZ20 E(0.553,394.00)20

D(0.486,393.65) 7

EZ20 EZ20

C7H14O2 Propyl butanoate To
b ¼ 416.20 K EZ42 EZ42 EZ48,42 EZ42 E(0.713,415.16)42

E(0.726,414.40)48

EZ42

Butyl propanoate To
b ¼ 419.65 K EZ42 EZ42 EZ42 EZ42 E(0.628,417.12)42 EZ42

C8H16O2 Butyl butanoate To
b ¼ 438.61 K EZ42 EZ42 EZ42 EZ42 EZ42 E(0.790,438.29)42

Table 2. Experimental azeotropic coordinates of binary solutions of (an ester + an alkane) at p = 101.32 kPa, (xaze,Taze/K). Type of technique: E = ebulliometry, D = Distillation,

Z = zeotropic system.
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than one. This is demonstrated in previous studies [12, 14, 17], together with the presence of

minimum boiling point azeotropic points for these solutions; we begin with systems at standard

pressure. Table 2 gives the azeotropic coordinates at p = 101.32 kPa available in the literature for

alkyl (methyl to butyl) alkanoate (methanoate to butanoate) + alkane (pentane to decane). The

esters are arranged according to molecular weight, grouping together the different isomers with

similar vapor pressures. Five systems (ethyl methanoate + pentane, methyl methanoate + hexane

or heptane, and propyl ethanoate or methyl butanoate + octane) present different results

depending of the consulted reference: most of the studies do not report azeotropy but others do.

In most cases, isomeric esters with the same molecular formula have azeotropes with the same

alkanes, although this rule is not obeyed by the propyl ethanoate + octane system. An increase

in the number of carbons in the ester produces an increase in the appearance of azeotropic

points with a lower number of alkanes, resulting from a reduction in the activity coefficients

and decreased net effects of the interactions. In esters of greater molecular weight, azeotropes

are formed with hydrocarbons of similar vapor pressure as the esters, but with different

boiling points for the last esters in the series. For example, propyl butanoate forms azeotropes

with nonane, δTo
b<8 K, but no with octane, δTo

b<17 K, or with decane, δTo
b<31 K. In a more

extreme case, methyl methanoate forms an azeotrope with hexane, where δTo
b>37 K. The same

phenomenon is described if a hydrocarbon is taken as a reference and the ester is changed.

This means that the temperature differences that produce the azeotropy tend to decrease as

described in Figure 7. The azeotropes arise in solutions of compounds with similar boiling

Figure 7. Azeotropes-diagram for ester + alkane mixtures: ( ) zeotropic and ( ) azeotropic.
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Figure 8. Representation of the VLE of alkyl alkanoate + heptane at 101.32 kPa. Labels indicate the differences of boiling

points and the activity coefficients at infinity dilution. ( ) T vs. x, ( ) T vs. y, ( ) y-x vs. x. (a) methyl methanoate, (b) ethyl

methanoate, (c) methyl ethanoate, (d) Propyl methanoate, (e) ethyl ethanoate, (f) methyl propanoate, (g) butyl

methanoate, (h) propyl ethanoate, (i) ethyl propanoate, (j) methyl butanoate, (k) butyl ethanoate, (l) propyl propanoate,

(m) ethyl butanoate, (n) butyl propanoate, (o) propyl butanoate and (p) butyl butanoate.
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points arranged near to the diagonal, from the bottom left corner (methyl methanoate +

pentane) to the top right (butyl butanoate + decane).

The distance from the azeotropic points to the diagonal becomes shorter as the boiling points

of the products increase, and it is deduced that the probability that an ester forms an azeotrope

with a given alkane varies with the molecular weight of that ester, although this is reflected

in the VLE diagram of the system. Figure 8 shows the VLE curves of the solutions composed

of the different esters and heptane. The difference between the liquid and vapor curves, which

shows the volatility, is greater in systems with a smaller ester. This difference only significantly

decreases with an increase in the molecular weight of the ester, but does not significantly

change with the isomers. This is a result of a decrease in the non-ideality of the liquid phase

(γ ≈ 1) in solutions of the larger esters. This change makes it possible to find azeotropes in

esters with four carbons, but not in esters with six carbons, in spite of similar differences

between the boiling point of the esters and heptane. In ester solutions with five carbons,

important differences are observed between isomers, and the azeotrope is found in the equi-

molar composition in the ethyl propanoate + heptane solution, and in the other cases slightly

displaced toward greater alkane compositions. In other words, when the vapor pressures of

the compounds are very similar, slight differences in the activity of compounds (e.g., those

derived from small steric effects caused by isomerism), have significant repercussions on the

equilibrium diagrams. For example, the non-ideality of the solution produces a flat region in

the diagram of the solution with methyl methanoate. This does not appear in the mixture with

butyl butanoate, which has a practically ideal nature.

Taking all this into consideration, it is important to study the behavior of the azeotropic

phenomenon within the families of esters. Figures 9 and 10 show the matrix with diagrams

of y vs. x for solutions of (an alkyl ethanoate + an alkane) and (an methyl alkanoate + an

alkane), respectively. In both cases, the presence of azeotropic situations can be observed to

shift from the mixtures of more volatile compounds to the less volatile ones, with the last

azeotrope appearing in the solution of butyl ethanoate + octane in Figure 9, and in the

solution of methyl butanoate + heptane in Figure 10. The increased chain length of the alkyl

ester, Figure 9, systematically displaces the azeotrope to regions with a smaller ester

Figure 9. Plot of y vs. x ( ), for the VLE at 101.32 kPa of binaries (an alkyl ethanoate + an alkane).
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Figure 10. Plot of y vs. x ( ), for the VLE at 101.32 kPa of binaries (methyl alkanoates + alkanes).

Figure 11. Sensitivity of the azeotropic coordinates to pressure in ester + alkane solutions. (a) Ethyl ethanoate + heptane,

(b) ethyl ethanoate + hexane, (c) propyl ethanoate + heptane, (d) methyl butanoate + heptane, (e) methyl propanoate +

heptane, (f) methyl propanoate + hexane.
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composition. This effect can also be observed with increased alkanoic chain length of the

ester, Figure 10. By contrast, increases in the size of the alkane cause a shift toward a higher

ester composition in both cases.

3.3.2. Changes in azeotropes with pressure

The pressure of the system is a determining factor in the azeotropes formation, so it is impor-

tant to determine how this magnitude affects the presence of azeotropic points. Figure 11

shows the case of several azeotropic points determined by distillation for a set of ester + alkane

systems, following indications described previously. In all cases, the composition of the azeo-

trope shifts toward greater alkane compositions as the pressure is reduced. The main reason

for this is that the vapor pressure of the ester diminishes more slowly than that of the alkane,

which increases the volatility of the hydrocarbon. The slope corresponding to the change in

azeotropic composition is similar since the slope of the vapor pressure does not vary greatly

between compounds from the same family. In spite of this, the methyl butanoate + heptane

system, Figure 11(d), presents a gentler slope, since the differences in vapor pressure between

both compounds do not change significantly with temperature.

4. Modeling of azeotropic systems. Correlation and prediction

4.1. Correlation of vapor-liquid equilibria according to the gamma-phi approximation

The modeling of systems presenting azeotropes is not different from that used for any other

system in vapor-liquid equilibrium. In order to do this, the following models must be defined:

1. One for the vapor pressure, poi ¼ poi Tð Þ.

2. One for phi Φi ¼ Φi y; p;Tð Þ.

3. A model for the activity coefficients: γi ¼ γi x; p;Tð Þ.

The relationship between vapor pressures and temperature is established by Clapeyron’s

equation [23], although it is standard practice to use other empirical equations such as those

of Wagner or Antoine [25]. The parameter Φi, defined in Eq. (2), depends on the fugacity

coefficient of compound i as saturated vapor phase and in solution. For the calculation, state

equations can be used that may be different depending on if they are applied to the liquid or

vapor phase.

The activity coefficients are inherent to the formation of the solution and are related to the

interactions occurring therein. The phenomenological description of the fluid material is still

not precise, although there are some models for which the formulation takes into account the

molecular interactions that generate the macroscopic properties. In practice, depending on the

theory of the model chosen, some experimental data are required for their accurate represen-

tation. For the gamma-phi method, models are written for the function of Gibbs excess energy

as gE = gE(x, p, T), and the dependence on γi is related to its partial molar properties [23]:
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The model most used to date is NRTL [57]:

gE ¼ RT
X

i

xi

P

j τjiGjixj
P

k Gkixk
where Gji ¼ exp �αjiτji

� �

and τji ¼ f x;Tð Þ (14)

Our research group has used a polynomial model [14–17], with the general expression:

gEn,N ¼
X

i1i2…in�1 ∈C n;n�1ð Þ

g
E i1�i2�i3…�in�1ð Þ
n�1,N þ Zn � PN (15)

Where n is the number of components present,N the maximum interaction order, g
E i1�i2�i3…�in�1ð Þ
n�1,N

the excess Gibbs function of all the subsystems of inferior order that are present in the system and

the product Zn � PN is a polynomial made up of multiple products of (z1z2…zn) and a polynomial

in zi:

Zn ¼ z1z2::…zn ¼ Tn ¼

Q

n

i¼2

kij
Q

n

i¼1

xi

x1 þ
Pn

j¼2 k
ijxj

h in , PN ¼
XN

j¼0
Pjz

j
n (16)

For a binary or ternary solution, the model (Eq. (15)) can be written, respectively, as:

gE i-jð Þ ¼ zizj
X

N-2

k¼0

g
i-jð Þ
k zki (17)

gE3,4 ¼ g
E 1-2ð Þ
2,4 þ g

E 1-3ð Þ
2,4 þ g

E 2-3ð Þ
2,4 þ z1z2z3 C0 þ C1z1 þ C2z2ð Þ (18)

with the possibility of extending this rule to any number of components. This model has been

used to represent the behavior of many binary and ternary systems and has provided excellent

results when used in combined correlation procedures of all the properties. This combined

modeling method, adapted to suit to each case, was applied to binaries composed of esters and

alkanes [10–17, 39–56]. The two followingmodels: NRTL [57] and the Eq. (17) were used. Several

of the systems modeled present azeotropy, so the results obtained are described briefly below. In

many cases, the two models reproduce the VLE diagram with similar errors. An example is that

shown in Figure 12(a) for the solution methyl methanoate + pentane, with iso-101.32 VLE data

[39]. Slight differences can be observed in the azeotropic coordinates (Taz/K; xaz) calculated by

each model [the proposed model (17) estimates the coordinates to be (293.8; 0.54), while the

NRTL model gives (293.7; 0.57)]. However, Eq. (17) is better at predicting the remaining proper-

ties and, therefore, guarantees a better global capacity of representation (see details in [39, 41]).

Occasionally, the NRTL model does not adequately represent the VLE behavior of azeotropic

systems, especially when the parameters are obtained in a combined correlation process as

Laboratory Unit Operations and Experimental Methods in Chemical Engineering158



recommended here (see [58, 59]). For example the solution butyl ethanoate + octane [20], and

reproduced in Figure 12(b), for which NRTL estimates Taz = 393.4 K, while model (17) gives

Taz = 394.1 K, close to the experimental value of Taz,exp = 394.0 K.

In some cases, a considerable amount of data is modeled together. When these extend over a

broad range of pressures and temperatures the ability of both models to accurately reproduce

the azeotropic coordinates, or any other property, diminishes. In other words, the resolution

capacity in the calculation of coordinates, at a given p, becomes smaller as the range of

estimation increases. This case was studied [60] for the solution propyl ethanoate + heptane,

where VLE data were available for temperatures between 273 and 373 K. Estimations for the

two models, for iso-101.32 kPa VLE, are shown in Figure 12(c), which shows that the

azeotropic temperature calculated for the two models (367.17 K with our model and 367.19 K

with NRTL) is slightly higher than the experimental value (367.0 K). These results are consid-

ered here to be positive. In conclusion, from observations made from the modeling described

in numerous articles [10–17, 39–41], the model (17) appears to be recommendable to correlate

VLE data and hence, to estimate azeotropic conditions. Either model can be used for the

individual correlation of VLE data, although the modeling obtained should not be used to

extrapolate azeotropic coordinates to conditions different from the experimental conditions.

Figure 12. Modeling examples of azeotropic systems using correlative models for: (a) methyl methanoate(1) + pentane(2),

(b) butyl ethanoate(1) + octane (2), (c) propyl ethanoate(1) + heptane(2). (——) Eq. (17), ( ) NRTL, Eq. (14).
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4.2. The prediction of azeotropes by activity coefficients. Application to ester + alkane

solutions

When experimental VLE data are not available, azeotropic points are estimated using predictive

procedures. In the field of chemical engineering, the UNIFAC model by Gmehling et al. [61]

(referenced as UNIFAC-DM), mainly designed for phase equilibria and some derived properties,

is well known. Nonetheless, advances in the molecular sciences have helped to understand

the intrinsic behavior of fluids in greater depth, with more solid phenomenological bases. This

is the case of the quantum chemistry-based COSMO-RS model [62], which is able to estimate a

significant number of properties of solutions. This chapter compares the results obtained after

applying the two models to ester-alkane binaries, enabling us to establish certain criteria for their

use.

Figure 13 represents the relative errors obtained with each of models in the estimation of

azeotropic points of ester-alkane systems. The plot is constructed with color gradient accor-

ding to the magnitude of the error (white cells indicate non-azeotrope). The error measurement

is evaluated as:

Figure 13. Matrices of estimated ARD for azeotropic coordinates of ester + alkane: C
u-1H2u + 1 COOC

v
H2v + 1 + C

n
H2n + 2.

Errors in composition with UNIFAC-DM (a) and COSMO-RS (b); and in temperature using UNIFAC-DM (c) and

COSMO-RS (d). Model fails to estimate the azeotrope; Model wrongly considers the system as azeotropic.
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ARDf ¼ f exp � f est

�

�

�

�

�

�
� 100=f exp where f � xaz or Taz=K (19)

colored according to the scale shown in Figure 13. In general, an acceptable description is

observed for both models for the azeotropic systems studied, although both are less effective at

estimating the composition, max(ARDx) = 33%, than the equilibrium temperature of the azeo-

trope, max(ARDT) = 0.6%. However, there are some differences in the qualitative description

produced by both models. Hence, UNIFAC-DM does not estimate an azeotrope in the systems

methyl ethanoate + heptane, propyl ethanoate + octane and methyl butanoate + octane, but

considers the system ethyl methanoate + heptane to be azeotropic, which is regarded as

zeotropic in the literature. With regards to the COSMO-RS model [61], all the systems described

in the literature as azeotropic qualified to be so by the model, with the exception of methyl

methanoate + heptane and ethyl methanoate + heptane, which are qualifies as azeotropic (see

Figure 13) when experimentally they are not obtained at the pressure studied. In summary,

estimation of the azeotropic coordinates is slightly more accurate when using the COSMO-RS

model than the UNIFAC-DM model, as can be observed in the box-and-whiskers diagrams of

Figure 14. Although both models give a similar mean error, the errors presented by estimations

obtained with COSMO-RS have a significantly smaller interquartile range than those obtained

with UNIFAC-DM; in other words, they have less dispersion. The same pattern can be observed

in the estimation of compositions but with the additional factor that the mean error with the

COSMO-RS model is also smaller.

In the preliminary design of separation equipment or screening procedures involving ester +

alkane systems it is recommended to use COSMO-RS rather than UNIFAC-DM to predict the

azeotrope. This is not because of the quantitative difference between the estimations, but

because of the qualitative improvement obtained with the former model in several of the cases

Figure 14. Plot of boxs and whiskers of ARD distribution on the estimation of temperature (a) and composition (b) of the

azeotropes obtained with the models UNIFAC-DM and COSMO-RS.
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studied here. Without ignoring these observations, if experimental data are available the

model that best represents the real behavior of each system must be chosen in each case.

5. The use of advanced separation techniques in ester + alkane solutions

Advanced distillation techniques for the separation of azeotropic systems are described in

detail in Table 1. This section shows some simulated cases of the use of these techniques for

the treatment of azeotropic solutions of esters and alkanes. This was carried out using the

commercial software Aspen Plus v.8.8 [63], using RadFrac blocks for distillation columns.

5.1. Separation of the binary propyl ethanoate + heptane by pressure-swing-distillation

A complete modeling using a multiobjective correlation procedure [60] to represent Gibbs

excess function, gE/RT, with the proposed model (17), was carried out for the binary propyl

ethanoate + heptane in a previous work using extensive experimental data, with iso-T [64] and

iso-p [4] VLE data as well as other properties (hE, vE, cEp [65]). The resulting model is dependent

on the different intensive variables and can estimate VLE in different conditions of pressure

and temperature to those used in the combined correlation process with a high degree of

reliability. This work compares the degree of representation with those obtained by NRTL

and UNIFAC-DM, although the authors’ observations are not included here (they are not

relevant to this chapter as both models are implemented in ASPEN). Hence, simulation of the

separation of the binary is proposed by means of a distillation train with two towers, see

diagram in Figure 15, operating at different pressure conditions; the first at atmospheric

pressure (p = 101.32 kPa) and the second at high vacuum (p = 7 Pa).

Figure 15. Simulation-scheme to separate the binary propyl ethanoate + heptane by a pressure-swing distillation process.
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The pressure in the second column is extremely low, which is difficult to get in practice, but is

established here to emphasize the characteristics of pressure-swing-distillation operation. As can

be observed in Figure 16, the difference in pressure between the columns significantly dis-

places the coordinates of the azeotropic point, as estimated by Eq. (17). So, in the first column

there is a partial separation of the solution, with the alkane, of high purity, collected in the

bottom. The composition obtained in the head of the atmospheric column that feeds the second

tower, Figure 15, was established between the azeotropic composition at each pressure, in

order to optimize the number of stages.

The influence of the model used on the design was studied [21], and the most significant discrep-

ancy that arises when changing the model occurs in the composition and temperature profiles in

the inside of the column as shown in Figure 17, where important differences can be found. Use of

the proposedmodel can therefore, guarantee reproduction of the real behavior of the apparatus.

5.2. Separation of the binary ethyl butanoate + octane by extractive distillation

In the previous case, it was proposed to reduce the pressure in order to separate the azeotropic

solution. Alternatively, an extractant (entrainer) can be used to displace or destroy the azeotrope.

This can be illustrated by separating the azeotropic solution ethyl butanoate(1) + octane(2) (x1,az =

0.63, Taz = 392 K a p = 101 kPa). For the preliminary design of this type of process a suitable

entrainer must be chosen. In the absence of experimental data, theoretical models are chosen to

establish the feasibility of the process. As possible entrainers for the binary selected, two com-

pounds were chosen from the same families (ester and alkane) but with some structural differ-

ences, with greater molecular weights and, therefore, higher boiling points: (1) decane (2) butyl

Figure 16. Representation of T vs. x,y of propyl ethanoate(1) + heptane(2). ( ) Experimental values, (–––), Eqs. (8–10).
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butanoate. Taking into consideration the comments made in Section 3.2 of this chapter, the

results obtained by UNIFAC-DM and COSMO-RS are compared being the representation of this

azeotropic system more accurate with the former model. On the other hand, the ester + alkane

binaries resulting from combining compounds of the mixture with potential solvents give rise to

zeotropic systems of high relative volatility, with both models producing good estimations.

The final selection of one solvent or the other is based on the dynamics of the ternary system

formed in the column, from analysis of the residual curves, Figure 18. The results obtained

show that decane is the best option, since the residual curves rapidly veer toward the line

x1 = 0, facilitating the subsequent separation. Introduction of the solvent in the process and the

Figure 18. Residue curve map for best solvent selection for extractive distillation operation using different entrainers. (a)

Decane, (b) butyl butanoate. Curves obtained with UNIFAC-DM.

Figure 17. Profiles of temperature (a) and composition (b) for the first and second tower, obtained with Eqs. (17) (– – –),

NRTL ( ), and UNIFAC ( ). ( )T/K, ( ) liquid phase composition, x; ( ) vapor phase composition, y.
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need to use two columns (separation and recovery) increases the number of design criteria.

Therefore, six variables have been taken to configure the first column: number of steps, reflux

ratio, solvent/feed ratio, feed stage, solvent stage, and temperature of the solvent. To obtain the

best conditions for the planned operation a sensitivity analysis was carried out in relation to

different variables, the results of which are summarized in Figure 19. The solvent-feed ratio is

the design variable with the most impact on the compositions of ethyl butanoate in the head

and octane in the bottom, together with the energy consumption of the process. The reflux

ratio largely determines the decane contents in the head.

Maximization of the ethyl butanoate composition in the head and minimization of the compo-

sition of solvent (decane) in the head, together with maximization of octane in the bottoms and

the energy consumption are the main goals that must be found in the design of the extractive

distillation column. The final configuration generated by the simulator is shown in Figure 20.

Figure 19. Sensitivity analysis curves for the following conditions: N = 30, F-S = 20 and S-Stage = 7. (o) S/F = 5; (%) S/F = 6;

(1) S/F = 7. ( ) R = 1; ( ) R = 1.33; ( ) R = 1.66; ( ) R = 2. (a) Top composition of ethyl butanoate; (b) bottom

composition of octane; and (c) top composition of decane.

Figure 20. Simulation-scheme to separate the binary ethyl butanoate + octane by extractive distillation.
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6. Conclusions

The different theoretical and practical settings related to azeotropy within the context of

chemical engineering, have been described taking into account the experience of our research

group in this area. The relationship between the presence of azeotropes, the non-ideality of the

solution and the difference in vapor pressures of the pure compounds has been exposed. This

information, together with some additional knowledge about the compounds involved in a

solution, can be used to estimate the appearance of the azeotrope.

The combination of direct and indirect measuring techniques, together with suitable treatment

of the results, is an excellent way to generate experimental data on which to base the studies.

On the other hand, the polynomial equation proposed and used here would seem to be the

best option to model the systems, provided that the parameters are optimized using all the

experimental data available by means of a combined correlation procedure.

For the prediction of azeotropes, COSMO-RS method produces the best results, although in

some cases the quantitative values produced by UNIFAC-DM approximate real values. Simu-

lation of a process by pressure-swing-distillation and another by extractive-distillation allow verify

the impact of the modeling and selection of the design parameters on the results of the

separation operation.
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Nomenclature

ARDf relative deviations in absolute value (� f exp � f est

�

�

�

�

�

�
� 100=f exp )

Bii, Bij, m
3 mol�1 second Virial coefficient for pure component “i” and ij-pair for mixtures

Cn ternary parameters for molar Gibbs excess model in Eq. (18)

FS feed stage in distillation column

gE, J�mol�1 excess molar Gibbs function

gEn,N excess molar Gibbs function given by Eq. (15)

g
i-jð Þ
k

coefficients for molar Gibbs excess energy model in Eq. (17) for binary i-j

Gij interaction parameters of NRTL model
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hE, J�mol�1 excess enthalpy

L liquid phase

NS number of stages in distillation column

p, kPa pressure

pi, kPa partial pressure of i-th component

pi
o, kPa vapor pressure of pure component i

PN / Pj polynomial of order N / Coefficient of polynomial PN

R or R gas constant Pa�m3 mol�1 / Reflux ratio in distillation column

SS solvent feed stage in extractive distillation column

S/F solvent-To-Feed ratio in extractive distillation column

T, K system temperature

u number of carbons in alkyl substituent of esters

vE, m3 mol�1 molar excess volume

V vapor phase

xi molar fraction of i-th component in the solution

yi generic thermodynamic quantity/vapor composition of i-th component

zi active fraction of i-th component

Zn product of active fractions up to nth-component

Sub/Supercripts

est denotes a property estimated by a model

exp denotes an experimentally determined property

aze relative to azeotropic conditions

Greek letters

αij non-randomness parameter of NRTL model

δij function of second Virial coefficients in the mixture (� 2Bij � Bii � Bjj)

γi activity coefficient of i-th component

Φi ratio between fugacity coefficient of component “i” in solution and as satu-

rated vapor

τij τ-function of NRTL model

v number of carbons in alkanols
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