
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 9

Robust Spectral Clustering via Sparse Representation

Xiaodong Feng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76586

Abstract

Clustering high-dimensional data has been a challenging problem in data mining and
machining learning. Spectral clustering via sparse representation has been proposed for
clustering high-dimensional data. A critical step in spectral clustering is to effectively
construct a weight matrix by assessing the proximity between each pair of objects. While
sparse representation proves its effectiveness for compressing high-dimensional signals,
existing spectral clustering algorithms based on sparse representation use those sparse
coefficients directly. We believe that the similarity measure exploiting more global infor-
mation from the coefficient vectors will provide more truthful similarity among data
objects. The intuition is that the sparse coefficient vectors corresponding to two similar
objects are similar and those of two dissimilar objects are also dissimilar. In particular, we
propose two approaches of weight matrix construction according to the similarity of the
sparse coefficient vectors. Experimental results on several real-world high-dimensional
data sets demonstrate that spectral clustering based on the proposed similarity matrices
outperforms existing spectral clustering algorithms via sparse representation.

Keywords: spectral clustering, high-dimensional data, weight matrix, sparse
representation

1. Introduction

As an important task in data mining cluster analysis aims at partitioning data objects into

several meaningful subsets, called clusters, such that data objects are similar to those in the

same cluster and dissimilar to those in different clusters. With advances in database technol-

ogy and real-world need of informed decisions, data sets to be analyzed are getting bigger—

with many more records and variables. Examples of high-dimensional data sets include docu-

ment data [1], user ratings data [2], multimedia data [3], financial time series data [4],

gene expression data [5] and so on. Due to the “curse of dimensionality” [6], clustering
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high-dimensional data has been a challenging task and therefore, attracts much research in

data mining and related research domains [7].

Many of the existing high-dimensional clustering approaches can be categorized into the

following three types: dimension reduction [8], subspace clustering [9] and spectral clustering

[10–12]. The first two types transform the original feature space to a lower-dimensional space

and then apply an ordinary clustering algorithm (such as K-means). The focus is on how to

extract more important features of data objects and avoid noises from the less important

dimensions. Spectral clustering is based on the spectral graph model, which searches for

clusters in the full feature space and is equivalent to graph min-cut problem based on a graph

structure constructed from the original objects in vector space [12]. Spectral clustering is also

considered superior to traditional clustering algorithms due to its deterministic and polyno-

mial time solution. All these characteristics make spectral clustering suitable for high-

dimensional data clustering [10].

The effectiveness of spectral clustering depends on the weights between each pair of data

objects. Thus, it is vital to construct a weight matrix that faithfully reflects the similarity

information among objects. Traditional simple weight construction, such as ε-ball neighbor-

hood, k-nearest neighbors, inverse Euclidean distance [13, 14] and Gaussian radial basis

function (RBF) [12], is based on the Euclidean distance in the original space, thus not suitable

for high-dimensional data.

In this chapter, we focus on effective weight construction for spectral clustering, based on

sparse representation theory. Sparse representation aims for representing each object approxi-

mately by a sparse linear combination of other objects, which comes from the theory of

compressed sensing [15]. Coefficients of the sparse linear combination represent the closeness

of each object to other objects. Traditional spectral clustering methods based on sparse repre-

sentation [16] use these sparse coefficients directly to build the weight matrix, thus only local

information is utilized. However, exploiting more global information of the whole coefficient

vectors promises better performance, followed by an assumption that the sparse representation

vectors corresponding to two similar objects should be similar, since they can be reconstructed

in a similar fashion using other data objects. If two objects are contributing in a similar manner

to the reconstruction of all other objects in the same data set, they are considered similar.

Therefore, this chapter presents a spectral clustering approach of high-dimensional data

exploiting global information from sparse representation solution. More specifically, using

sparse representation, we firstly convert each high-dimensional data object into a vector of

sparse coefficients. Then, the proximity of two data objects is assessed according to the simi-

larity between their sparse coefficient vectors. This construction considers the complete infor-

mation of the solution coefficient vectors of two objects to analyze the similarity between these

two objects rather than directly using a particular single sparse coefficient, which only con-

siders local information. In particular, we propose two different weight matrix construction

approaches: one of which is based on consistent sign set (CSS) and the other is based on the

cosine similarity (COS) between the two vectors. Extensive experimental results on several

image data sets show that similarly exploiting the global information from the solutions of

sparse representation works better than using local information of the solutions under a

variety of clustering performance metrics.
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2. Related work

2.1. Techniques for high-dimensional data

There are many techniques for dealing with high-dimensional signals (or data), popular of

which include non-negative matrix factorization (NMF), manifold learning, compressed sens-

ing and some combinations between them.

Non-negative matrix factorization (NMF) is a powerful dimensionality reduction technique

and has been widely applied to image processing and pattern recognition applications [17], by

approximating a non-negative matrix X by the product of two non-negative low-rank factor

matrices W and H. It has attracted much attention since it was first proposed by Paatero and

Tapper [18] and has already been proven to be equivalent in terms of optimization process

with K-means and spectral clustering under some constraints [19]. The research about NMF

can be generally categorized into the following groups. The first group is focused on the

distance measures between the original matrix and the approximate matrix, including

Kullback–Leibler divergence (KLNMF) [17], Euclidean distance (EucNMF) [20], earth mover’s

distance metric [21] and Manhattan distance-based NMF (MahNMF) [22]. Besides, there are

researches about how to solve the optimization of NMF efficiently and the scalability of NMF

algorithms for large-scale data sets, for example, fast Netwon-type methods (FNMA) [23],

online NMF with robust stochastic approximation (OR-NMF) [24] and large-scale graph-

regularized NMF [25]. Moreover, how to improve the performance of NMF using some

constrains or exploiting more information of data is also popular, such as sparseness

constrained NMF (NMFsc) [26], convex model for NMF using l1,∞ regularization [27], discrim-

inant NMF (DNMF) [28], graph-regularized NMF (GNMF) [29], manifold regularized discrim-

inative NMF (MD-NMF) [30] and constrained NMF (CNMF) [31] incorporating the label

information.

Manifold learning is another theory to process high-dimensional data, assuming that the data

distribution is supported on a low-dimensional sub-manifold [32]. The key idea of manifold

learning is that the locality structure of high-dimensional data should be preserved in low-

dimensional space after dimension reduction, which is exploited as a regularization term [33–35]

or constraint [36, 37] to be added to the original problem. It has been widely used to machine

learning and computer vision, such as image classification [38], semi-supervised multiview

distance metric learning [39], human action recognition [40], complex object correspondence

construction [41] and so on.

Besides the abovementioned two approaches for high-dimensional data, in recent years, sparse

representation coming from compressed sensing has also attracted a great deal of attention

and proves to be an extremely powerful tool for acquiring, representing and compressing

high-dimensional data. The following section will briefly review of sparse representation.

2.2. Brief review of sparse representation

Given a sufficient high-dimensional training data set, X = [x1, x2,…, xn] ∈ Rm � n, where xi = [xi1,

xi2,…, xim]T ∈ Rm is the column vector of the i-th object. Research on manifold learning [32] has
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proved that any new test data y lie on a lower dimensional manifold, which can be approxi-

mately represented by a linear combination of the training objects:

y ¼ α1x1 þ⋯þ αixi þ⋯þ αnxn ¼ Xα∈Rm
: (1)

Obviously, if m ≫ n, Eq. (1) is overdetermined, and α can usually be found as its unique

solution. Typically, the number of attributes is much less than that of training objects (i.e.

m ≪ n) and Eq. (1) is undetermined, so its solution is not unique.

However, if we add the constraint that the best solution of Eq. (1) should be as sparse as

possible, which means that the number of non-zero elements is minimized, the solution

becomes unique. Such a sparse representation can be obtained by solving the optimization

problem:

α
∗ ¼ arg min

α

αk k0 subject to y ¼ Xα, (2)

where ||. ||0 denotes the l0-norm of a vector, counting the number of non-zero entries in the

vector. Donoho [42] proves that if matrix X satisfies restricted isometry property (RIP) [43],

Eq. (2) has a unique solution of α.

However, it is NP-hard to find the sparsest solution of an underdetermined equation: that is,

there is no known approach to find the sparsest solution that is significantly more efficient

than exhausting all subsets of the entries for α. Researchers in emerging theory of compressed

sensing [44] reveal that the non-convex optimization in (2) is equal to the following convex l1
optimization problem if the solution α is sparse enough:

α
∗ ¼ arg min

α

αk k1 subject to y ¼ Xα, (3)

where ||. ||1 denotes the l1-norm of a vector, summing the absolute value of each entry in the

vector. This problem can be solved in polynomial time by standard linear programming

methods [45].

Since the real data contains noise, it may not be possible to express the test sample exactly as a

sparse representation of the training data. The sparse solution α can still be approximately

obtained by solving the following stable l1 optimization problem:

α
∗ ¼ arg min

α

αk k1 subject to y� Xαk k2 ≤ ε, (4)

where ε is the maximum residual error; ||. ||2 denotes the l2-norm of a vector.

In many situations, we do not know the noise level ε beforehand. Then we can use the Lasso

(least absolute shrinkage and selection operator) [46] optimization algorithm to recover the

sparse solution from the following l1 optimization:

α
∗ ¼ arg min

α

λ αk k1 þ y� Xαk k2, (5)
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where λ is a scalar regularization parameter of the Lasso penalty, which directly determines

how sparse α will be and balances the trade-off between reconstruction error and sparsity.

In addition to Lasso, other sparse learning models are also developed. It will be the elastic net

model [47] if the l2-norm of α is also added to Eq. (5) as another penalty term. Double shrinking

algorithm (DSA) [48] compresses image data on both dimensionality and cardinality via

building either sparse low-dimensional representations or a sparse projection matrix for

dimension reduction. Go decomposition (GoDec) [49] tried to efficiently and robustly decom-

pose a matrix with the low-rank part L and the sparse part S. Locality structure of manifold

can also be combined with sparse representation, such as manifold elastic net (MEN) [50] and

graph-regularized sparse coding (GraphSC) [51], laplacian sparse coding (LSc) [35] and

Hypergraph laplacian sparse coding (HLSc) [35].

Learning tasks such as classification and clustering usually perform better and cost less (time

and space) on compressed representations than on the original data [48]. Therefore, supervised

learning and pattern recognition based on the sparse representation coefficients using these

sparse learning models are proposed, such as sparse representation-based classification (SRC)

[52], Local_SRC [53], Kernel_SRC [54] and the methods outperform traditional classifier, such

as SVM, nearest neighbor (NN) and nearest subspace (NS).

2.3. Sparse representation for clustering

Inspired by the successful application of sparse representation in the above-supervised learn-

ing approaches, researchers have also exploited sparse representation in unsupervised [55–57]

and semi-supervised clustering [58, 59]. The main idea of clustering via sparse representation

is to build weight matrix directly from normalized and symmetrized coefficients of sparse

representation coefficients, called sparsity-induced similarity (SIS) measure [59]. To a certain

extent, weight measure approaches derived from sparse representation can reveal the neigh-

borhood structure without calculating Euclidean distance, which means a great potential to

clustering high-dimensional data.

Some significant work applying SIS to spectral clustering is reviewed as follows. Sparse

subspace clustering [55] directly uses the sparse representation of vectors lying in a single

low-dimensional linear subspace to cluster the data into separate subspaces, followed by

applying spectral clustering. It is also extended to clustering data contaminated by noise,

missing entries or outliers. Experiments show that its performance for clustering motion

trajectories outperforms state-of-the-art methods, such as power factorization and principal

component analysis. Image clustering via sparse representation [56] characterizes the graph

adjacency structure and graph weights by sparse linear coefficients, which is more effective

than Gaussian RBF [12] to cluster an image data set. In semi-supervised learning by sparse

representation [18], the graph adjacency structure as well as the graph weights of the directed

graph construction is derived simultaneously and in a parameter-free manner to utilize both

labeled and unlabeled data. Experiments on semi-supervised face recognition and image

classification demonstrate the superiority over the counterparts based on traditional graphs

(e.g. ε-ball neighborhood, k-nearest neighbors). Compared to approaches using SIS of real
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numbers, non-negative SIS measure [57] exploits the symmetric coefficients of non-negative

sparse representation as weight matrix, which outperforms similarity measures, such as SIS

and Euclidean (with Gaussian RBF baseline [12]), in cluster analysis of spam images.

However, all the above-existing approaches based on sparse representation treat directly the

coefficients or just normalized coefficients of sparse representation as the weight matrix. These

cannot exactly reflect the similarity between objects because the coefficients of sparse repre-

sentation are somehow local similarity and sensitive to outliers. Our approach is expected to

provide more effective weight matrix construction using more global content from the solution

coefficients of sparse representation.

2.4. Graph construction with sparse representation

In clustering analysis, given a high-dimensional object data set X = [x1, x2, …, xn] ∈ Rm � n,

xi = [xi1, xi2,…, xim]
T
∈ Rm, we can use Eq. (5) to represent each objects xi as a linear combination

of other objects. The coefficients vector αi of xi can be calculated by solving the following Lasso

optimization:

αi
∗ ¼ arg min

αi

λ αik k1 þ xi � Xiαik k2, (6)

where Xi = X\xi = [x1,…, xi � 1, xi + 1,…, xn]; αi = [αi,1,…, αi, (i-1), αi, (i + 1),…, αi,n]
T.

Once we get the coefficient vector αi for each object xi (i = 1, 2,…, n) as a sparse representation

of all other data objects by solving the l1 optimization Eq. (6),we can construct the weight

matrix using different approaches.

Existing weight matrix constructions via sparse representation are based on the assumption

that coefficients in the sparse representation reflect the closeness or similarity between two

data objects. For example, the SIS measure [20] is computed as:

wij ¼
max αi, j; 0

� �

Pn
k¼1,k6¼i max αi,k; 0f g

; SISij ¼
wij þ wji

2
: (7)

The l1 Directed Graph Construction (DGC) measure [19] is computed as:

DGCij ¼
αi, j

�

�

�

�þ αj, i

�

�

�

�

2
: (8)

Obviously, the similarity calculation using the absolute coefficients in Eq. (8) will mistake the

big negative coefficient as high similarity, resulting in a cluster of two objects with apparent

opposite attributes value.

The non-negative SIS measure [22] adds a non-negative constraint in l1 optimization Eq. (6):

αi
∗ ¼ arg min

αi

λ αik k1 þ xi � Xiαik k2 s:t:αi , j > 0: (9)
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Then the non-negative SIS measure is computed as:

NNij ¼
αi, j

Pn
k¼1,k6¼i αi,k

: (10)

3. Sparse representation for spectral clustering

Our proposed clustering algorithm consists of three steps: (1) solving l1 optimization of sparse

representation to obtain the coefficients of each object; (2) constructing weight matrix between

objects on the basis of coefficients using more global content forms the solution coefficients of

sparse representation; and (3) exploiting the spectral clustering algorithm with the weight

matrix to get partition of the graph.

Compared to the direct construction methods using the independent solutions of Eq. (6), we

have the assumption that for any two objects xi and xj; the more similar they are, the more

similar the corresponding coefficient vectors (e.g., αi and αj) are not only a particular coefficient

(αi,j or αj,i). According to this assumption, we propose the following two graph adjacency

structure and weight matrix constructions, which are expected to use the global information

of the solution coefficients.

3.1. Proximity based on a consistent sign set

To get the similarity of two objects clearly and logically, we firstly find an object set for each of

the two different objects xi and xj from the object data set X, called CSS. This definition is based

on the assumption that the more objects of which a pair of objects both positively contribute to

the reconstruction, the more similar the pair of objects are. In particular, the sparse reconstruc-

tion coefficients corresponding to xi and xj for every object in this set are both positive, defined

as follows:

CSS xi; xj
� �

¼ xkj αk, i > 0 ∧αk, j > 0
� �

; k 6¼ i; k 6¼ j
� �

∀i 6¼ j: (11)

Furthermore, we can construct graph adjacency structure and weight matrix as follows. A

directed edge is placed between objects xi and xjj if CSS(xi, xj) 6¼ Φ and the weight between

object xi and xj is defined as the ratio of the CSS(xi, xj)’s cardinal to the total number of objects:

wij ¼
∣CSS xi; xj

� �

∣

n
i 6¼ j

0 i ¼ j ,

8

<

:

(12)

where n is the total number of objects in X. Obviously, the weight is between 0 and 1.

3.2. Proximity based on cosine similarity of coefficient vector

We can construct coefficient matrix А of data set X, to which transforming solution coefficients

of Eq. (6) are:
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Α i; jð Þ ¼ α

0

i, j ¼
αi, j i 6¼ j

0 i ¼ j
:

�

(13)

A directed edge is placed from object xi and xj if angle cosine of the two corresponding vectors

is greater than 0, that is:

α

0

i � α
0

j

α
0

i

�

�

�

�

2
� α

0

j

�

�

�

�

�

�

2

> 0, (14)

where αi
’ denotes the i-th row vector of А.

The weight between object xi and xj is defined as the cosine similarity of αi
’ and αj

’:

wij ¼
max 0;

α

0

i � α
0

j

α
0

i

�

�

�

�

2
� α

0

j

�

�

�

�

�

�

2

0

B

@

1

C

A
i 6¼ j

0 i ¼ j

:

8

>

>

>

<

>

>

>

:

(15)

From the above similarity calculation formula, two objects have large similarity in condition

that the corresponding solution coefficients of Eq. (6) are much similar, which is expected to

use the whole solution coefficients.

3.3. The relationship between consistent sign set (CSS) and cosine similarity of

coefficient vector (COS)

Since proposed proximity based on both CSS and COS are trying to exploit more information

from the solution coefficient of sparse representation, the relationship between each other is

following:

1. Both of them asses the weight between two objects according to the similarity between the

corresponding coefficient vectors of the two objects. However, the difference is that proxim-

ity based on CSS uses the column vectors of the coefficient matrix Аwhile proximity based

on COS calculates the similarity between row vectors, which means two understandings

of the coefficient matrix. The reason for defining these two approaches like this is just

experimental.

2. Proximity based on COS is to calculate the similarity of the original coefficient vector,

while CSS can be considered as the discretization of the original coefficient vector with

threshold zero. Therefore, proximity based on COS can be seen as the generalization of

that based on CSS.

3. Specifically, another equivalent way to understand proximity based on CSS is as follows:

• Transform the coefficients matrix А to DA: DA i; jð Þ ¼
1 A i; jð Þ > 0

0 else

�

;

• The weight between xi and xj is:
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• wij ¼
DAi �DAj

n
i 6¼ j

0 i ¼ j

8

<

:

, where DAi denotes the i-th column vector of DA.

Obviously, the inner product (DAi DAj) between DAi and DAj is equal to CSS (xi, xj)’s cardinal

|CSS(xi, xj)|.

To illustrate the differences between our approaches for weight construction and others also

using sparse representation, an example is given as follows. Assume that the coefficient matrix

А of a data set with five objects obtained from solution coefficients of Eq. (6) is as the following

5 � 5 matrix:

А ¼ α

0

i, j ¼

0 0:3 0:6 0:6 -0:7

0:4 0 0:5 0:6 -0:6

0:4 0:4 0 -0:1 -0:2

-0:6 -0:3 0:2 0 0:7

-0:5 0:3 0:2 0:4 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

According to the above introduction of different weight constructions:

1. SIS13 = 0.4, SIS12 = 0.2, DGC13 = 0.5 and DGC12 = 0.35, and these numbers show that the

similarity between x1 and x3 is larger than that between x1 and x2. However, in our

approaches using more entries in А, CSS13 = 1/5 = 0.2, CSS12 = 2/5 = 0.4, COS13 = 0.24 and

COS12 = 0.98 and these numbers show the different weights compared to the first group,

where CSS and COS are the abbreviation of the above two proximity approaches, respec-

tively.

2. DGC25 = 0.45, CSS25 = 0, COS25 = 0.16, thus DGCmistakes the big negative coefficient (α25
’)

as high similarity while CSS and COS both give lower similarity.

3.4. Algorithm description

Algorithm 1 describes the general procedure for spectral clustering of high-dimensional data,

using sparse representation. The basic idea is to extract coefficients of sparse representation

(Lines 1–4); construct a weight matrix using the coefficients (Line 5); and feed the weight

matrix into a spectral clustering algorithm (Line 6) to find the best partitioning efficiently.

Algorithm 1. General procedure for spectral clustering of high-dimensional data.

Input: high-dimensional training data set X = [x1, x2, …, xn] ∈ Rm � n, where xi = [xi1, xi2,…, xim]T ∈ Rm represents the i-th

data object; the number of clusters K.

Parameter: penalty coefficient λ for Lasso optimization

Output: cluster labels corresponding to each data object: c = [c1, c2,…, cn]

//standardize the input data for Lasso optimization

Robust Spectral Clustering via Sparse Representation
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1 for each data object xi ∈ X do

// Solve Eq. (6) with Lasso optimization

2 Set Xi = X\xi = [x1,…,xi-1, xi + 1,…, xn];

3 αi
* arg min λ||αi||1 + || xi - Xαi ||2;

4 end

5 W ConstructWeightMatrix(α);

6 c SpectralClustering(W);

7 return c.

The construct weight matrix () sub-routine can exploit any weight matrix construction method,

such as those mentioned in Section 4. In particular, we describe the algorithm for computing

the two newly proposed weight matrices, one based on the CSS (see Section 4.1) and the other

based on COS of sparse coefficient vectors (see Section 4.2).

Algorithm 2 describes the procedure to construct the weight matrix according to the concept of

CSS. To find the CSS of each pair of data objects (the two outermost loops), there is the need of

checking the sparse coefficients of each remaining object to these two objects, so the time

complexity of weight matrix constructions based on CSS is O (n3).

Algorithm 2. Construct weight matrix based on consistent sign set.

Input: Coefficients for sparse representation α

Output: Weight matrix W

1 for i 1 to n do

2 for j 1 ton do

3 if j = i then wij 0;

4 else

5 ncss 0;

6 for k 1 to n do

7 if k 6¼ i and k 6¼ j and αk,i > 0 andαk,j > 0 then

8 ncss ncss + 1;

9 end

10 end

11 wij ncss/n;

12 end

13 end

14 end

Algorithm 3 describes the procedure to construct the weight matrix according to the COS of the

sparse coefficients between each pair of items. The computation complexity for calculating the
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COS of two vectors of length n is O(n), and there are O(n2) pairs of data objects whose COS

needs to be computed. Thus the complexity for COS-based weight matrix construction isO(n3).

Algorithm 3. Construct weight matrix based on similarity of coefficient vector.

Input: Coefficients for sparse representation α

Output: Weight matrix W

1 for i 1 to n do

2 for j 1 ton do

3 if j = i then wij 0;

4 else

5 cosine 
α

0

i
�α
0

j

α
0

ik k2� α
0

j

�

�

�

�

�

�

2

6 if cosine > 0 then wij cosine;

7 else wij 0;

8 end

9 end

10 end

As shown in line 6 of Algorithm 1, after constructing the weight matrix W, we can use the

classical spectral clustering algorithm [10] to discover the cluster structure of high-dimensional

data.

The main characteristics of our proposed algorithm include the following: (1) compared to

traditional graph construction induced from the Euclidean distance or other measures in the

original high-dimensional space, the weight matrix is constructed after transforming the high

dimensional data space into another space via sparse representation, which is expected to have

better performance resulting from the superiority of compressed sensing [58] for high-

dimensional data; (2) our graph construction based on consistent sign set or similarity of

coefficient vector can simultaneously complete both the graph adjacency and weight matrix,

while traditional graph constructions (such as ε-ball neighborhood or k-nearest neighbors)

complete the two tasks separately, which are interrelated and should not be separated [19];

(3) rather than existing graph constructions via sparse representation directly and indepen-

dently applying the solution of l1 optimization for each object in Eq. (6) to determine a row of

the weight matrix, our approach considers the global information from the coefficients of the

whole object set to calculate one element in the weight matrix.

4. Experimental results

In this section, we use experimental results to demonstrate the performance of our proposed

approaches on real-world data sets using several effectiveness evaluations.
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We select three data sets from the UCI machine-learning repository [60] and three face recog-

nition data sets [61–63], which are well known in the machine learning and data mining

research community. Table 1 lists a summary of these data sets.

In Yale and ORL face data sets, each image is transformed into a 32 � 32 pixel configuration

using Matlab Image Processing Toolbox. In Yale B data set, which has 10 clusters, and each

cluster has 585 image data, since the original size (5850) is too big, which leads to too much

time consumption in clustering, we randomly select 60 images from the totally 585 images in

each cluster. In all the data sets, each image is normalized to have unit norm.

We use interior-point method-based l1_ls_matlab tool [64] to solve Eq. (6) for each data object

and then implement different weight matrices for algorithm 1 in Matlab to cluster each data

set. Table 2 shows a summary of the proposed and baseline algorithms.

Since the true class labels of each data set are known, five commonly used external cluster

validation metrics [66–68] are employed to evaluate the clustering results, namely clustering

accuracy (CA) and normalized mutual information (NMI)1.

1

We use the matlab toolbox from: http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

Data set # Instance # Attributes # Classes Source

Heart 270 13 2 UCI

Image (Image segmentation) 2310 18 7 UCI

Yale 165 1024 15 [61]

Yale B 600 1200 10 [62]

ORL Face 400 1024 40 [63]

Movement 360 90 15 UCI

Table 1. Summary of data sets.

Name Description Source Role

CSS Spectral clustering with weight matrix from consistent sign set Section

3.1

Solution

proposed

COS Spectral clustering with weight matrix from cosine similarity of sparse coefficients Section

3.2

Solution

proposed

RBF Spectral clustering with weight matrix from Gaussian RBF [12] Baseline

SIS Spectral clustering with weight matrix from sparsity induced similarity measure [59] Baseline

DGC Spectral clustering with weight matrix from l1 Directed Graph Construction [58] Baseline

NN Spectral clustering with weight matrix from non-negative sparsity induced

similarity measure

[57] Baseline

KM k-means clustering [65] Baseline

Table 2. Summary of algorithms to be compared.
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To illustrate the weight matrices from different approaches, we demonstrate the visual prop-

erty of the proposed graph weight matrices in comparison with traditional ones in Figure 1,

taking the Yale data set as an example. In Figure 1, each subfigure is a weight matrix with N*N

(entries larger than the threshold is shown in white, otherwise black) and images from the

same cluster are arranged together. These sparse representation-based graphs include consis-

tent sign set (CSS), cosine similarity of coefficient vectors (COS), induced similarity measure

(SIS), l1 directed graph construction (DGC), nonnegative sparsity induced similarity measure

(NN) and Gaussian RBF (RBF).

Since none of the original weight matrices constructed by the five approaches is sparse, we set

threshold values (0.2 for COS; 0.388 for CSS; 0 for RBF (σ is set 4 in RBF); 0.02 for the other

three matrices) to get the best sparse matrices of different threshold values in Figure 1. A value

larger than the threshold is shown in white, otherwise black. Normally, the clustering perfor-

mance will be good if the weights between two objects from different clusters are little while

weights from the same cluster are large. This comment can be equalized in the matrix with

above arrangement that good matrix should be compact in diagonal position and sparse in

other positions.

From Figure 1, we have the following observations: (1) matrices in all subfigures are compact

in diagonal position; (2) the matrix of COS is sparser than others in lower left or upper right

Figure 1. Visualization of the graph weight matrices of the Yale data set, where images from the same subject are

arranged together. (a) SIS, (b) DGC, (c) NN, (d) RBF, (e) CSS, (f) COS.
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parts. This means that there are less inter-cluster adjacency connections in the COS than other

graphs, so COS can encode more discriminating information and hence is more effective in

spectral clustering than other traditional graphs; (3) CSS has a similar performance to SIS,

DGC and NN Graph in Yale data set.

The clustering results obtained from the seven clustering algorithms with different evaluation

metrics are reported in Tables 3 and 4, each of which corresponds to one evaluation metric. For

each data set, the best results are in bold. All the numbers, except the last two rows in each

table, represent the best clustering results using different lasso parameters (λ). The last two

rows in each table present the average performance of each algorithm over all six data sets.

Since the k-means clustering within spectral clustering is sensitive to initial centroids, we run

spectral clustering 50 times for each case and report the mean and standard deviation (std).

From Tables 3 and 4, we can clearly see that, generally, CSS or COS algorithm gets the best

clustering performance with all the two evaluation metrics. However, there are also some

particular cases where CSS or COS does not get best result. For example, though NN gets the

best CA on Yale B data sets, COS gets almost the same CA result as NN, that is, from 0.8937 to

0.8940; though NN also gets the best NMI for movement data set, COS gets best result in other

metric on this data set. In particular, COS performs better than CSS with mean value of

evaluation metrics, and the average standard deviation between 50 random tests of CSS is

lowest for all metrics except CA.

Overall, for most data sets, CSS and COS show better performance than those baselines, which

are robust across various external validation metrics. However, it is noticed that COS out-

performs CSS in terms of all average mean metrics except CA, and CSS outperforms COS in

Data set CSS COS DGC SIS NN BRF KM

Heart Mean 0.7704 0.8174 0.5852 0.7889 0.7519 0.7963 0.7320

(Std) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0882)

Image Mean 0.7631 0.7921 0.7020 0.7820 0.7360 0.5335 0.6215

(Std) (0.0148) (0.0323) (0.0339) (0.0341) (0.0379) (0.0305) (0.0355)

Yale Mean 0.6823 0.7408 0.7178 0.7023 0.6417 0.6635 0.5482

(Std) (0.0432) (0.0345) (0.0414) (0.0314) (0.0412) (0.0395) (0.0529)

Yale B Mean 0.8572 0.8937 0.8320 0.8620 0.8940 0.6918 0.6862

(Std) (0.0791) (0.0713) (0.0768) (0.0635) (0.0767) (0.0226) (0.0721)

ORL face Mean 0.7315 0.7570 0.7225 0.7243 0.6903 0.7314 0.7196

(Std) (0.0247) (0.0218) (0.0222) (0.0244) (0.0207) (0.0252) (0.0311)

Movement mean 0.5241 0.5472 0.5009 0.5183 0.5304 0.4874 0.4653

(Std) (0.0222) (0.0187) (0.0248) (0.0193) (0.0271) (0.0232) (0.0203)

Average Mean 0.7214 0.7580 0.6767 0.7296 0.7074 0.6506 0.6288

(Std) (0.0307) (0.0298) (0.0332) (0.0288) (0.0339) (0.0235) (0.0500)

Table 3. Evaluation of all algorithms with CA as metric.
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terms of all average standard metrics. It can be explained that CSS is more stable because its

discretization may lower the variance of the pairwise of similarity, while COS get more

generalized information of the pairwise of similarity leading to better average metrics but

higher variance. Therefore, the choice between stability and quality should be taken into

account when it is facing the clustering problem, in practice, using this kind of approach.

Finally, we plot the averages of the mean value and standard deviation (from the last two rows

of the five tables), for comparing clustering algorithms, as shown in Figure 2.

Data set CSS COS DGC SIS NN BRF KM

Heart Mean 0.2208 0.3149 0.0511 0.1791 0.0331 0.2712 0.2028

(Std) (0.0000) (0.0000) (0.0000) (0.0000) (0.0312) (0.0000) (0.1013)

Image Mean 0.7088 0.7451 0.5921 0.7319 0.6637 0.7451 0.6122

(Std) (0.0071) (0.0184) (0.0171) (0.0176) (0.0357) (0.0284) (0.0437)

Yale Mean 0.7137 0.7815 0.7513 0.7641 0.6926 0.6989 0.6484

(Std) (0.0211) (0.0183) (0.0203) (0.0188) (0.0198) (0.0271) (0.0342)

Yale B Mean 0.9008 0.9526 0.9202 0.9379 0.9510 0.7768 0.7858

(Std) (0.0302) (0.0360) (0.0422) (0.0326) (0.0398) (0.0224) (0.0621)

ORL face Mean 0.8477 0.8688 0.8492 0.8547 0.8426 0.8512 0.8620

(Std) (0.0116) (0.0108) (0.0105) (0.0118) (0.0109) (0.0140) (0.0157)

Movement Mean 0.5891 0.5914 0.5933 0.6000 0.6306 0.5741 0.5818

(Std) (0.0128) (0.0124) (0.0140) (0.0130) (0.0173) (0.0169) (0.0180)

Average Mean 0.6635 0.7090 0.6262 0.6779 0.6356 0.6529 0.6155

(Std) (0.0138) (0.0160) (0.0174) (0.0156) (0.0258) (0.0181) (0.0458)

Table 4. Evaluation of all algorithms with NMI as metric.

Figure 2. Error bar of different algorithms (a) CA, (b) NMI.
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5. Conclusion

In this chapter, we present a study of spectral clustering based on sparse representation, using

two novel weight matrix construction approaches to assess the consistency of two sparse

vectors. This construction considers the global information of the solution coefficient vectors

of two objects to analyze the similarity between these two objects rather than directly using the

sparse coefficients, which only considers local information. Evaluation experiments on real-

world data sets show that spectral clustering for high-dimensional data using our novel

weight matrix construction exploiting global information outperforms direct k-means and

spectral clustering approaches using Gaussian RBF, SIS, l1-directed graph construction and

non-negative SIS in five evaluation metrics (CA and NMI).

These results demonstrate a reliable performance of our algorithm and therefore promise wide

applicability in practice. The findings also shed light on developing global solutions theories in

the future work.

Figure 2 clearly demonstrates that COS and CSS algorithms outperform other algorithms, and

COS is better than CSS on average. CSS obtains the least average value of standard deviation

among all seven algorithms. The KM and DGC algorithms have comparable performance,

which is usually worse than the other algorithms.
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