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Abstract

The term “geopolymer” was introduced by Davidovits in the 1970s. The prefix “geo” was 
selected to symbolize the constitutive relationship of the binders to geological materials, 
natural stone and/or minerals. Geopolymer is mineral polymers of inorganic polymer 
glasses with structure resembling natural zeolitic materials. Previously, geopolymer for-
mation used source materials such as clay (e.g. kaolin and calcined kaolin) or industrial 
by-product (e.g. slag and fly ash). The precursor material plays an important role in the 
formation of geopolymer. The source material provides silicon (Si) and aluminum (Al) 
for reaction by an alkali activator solution. The Si and Al contents in the source materi-
als dissolve in the alkaline activator solution and then polymerize to form a polymeric 
Si-O-Al-O framework which becomes the binder. Geopolymeric materials are attractive 
because of their excellent mechanical properties; durability and thermal stability can also 
be achieved. Owing to their low calcium content, they are more resistant to acid attack 
than materials based on Portland cement. In addition, they are of great interest because 
of the reduced energy requirement for their manufacture and the higher sustainability. 
Recently the search for alternative low cost and easily available materials led among oth-
ers to Clay. Clay generally consists of a mixture of different clay minerals and associated 
minerals, which are strongly affected by the nature of the parent rocks. These materials 
are extensively distributed over the surface of the world and may show certain reac-
tivity after a thermal activation process shows a great potential to be utilized in geo-
polymer technology. This article presents the potential of different types of clay as the 
source materials for geopolymerization reaction in terms of morphological properties. 
Moreover, the mechanical and microstructural properties of geopolymer made with vari-
ous kinds of clay and its potential application are also presented.

Keywords: geopolymer, inorganic polymer, clay
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1. Introduction

In 1978, the word “geopolymer” was introduced by Davidovits [1]. In general, geopolymer 

is an inorganic polymeric material formed through the reaction between aluminosilicate 

sources and highly alkaline silicate solution, followed by curing at ambient or slightly higher 

temperature [2]. The formation process is termed as geopolymerization reaction.

Geopolymer has an empirical formula of:

   M  
n
   {−   ( SiO  

2
  )   
z

   –  AlO  
2
  }  · w  H  

2
  O  (1)

where M is cation such as K+, Na+ or Ca2+; n is the degree of polycondensation; z is 1, 2, 3 and w is 

the amount of binding water. It has three-dimensional Si-O-Al polymeric networks ranging from 

amorphous to semi-crystalline. Tetrahedral SiO
4
 and AlO

4
 are linked alternately by sharing oxy-

gen atom as shown in Figure 1. As refer to Figure 1, the terminology of geopolymers can be cat-

egorized into three forms which are poly(sialate), poly (sialate-siloxo) and poly (sialate-disiloxo). 
The Al is in IV-fold coordination [3, 4]. This leaves a negative charge in the IV-fold coordinated Al 

that is charge-balanced by cations (Na+, K+, Li+, Ca2+, Ba2+, NH4+ and H
3
O+). The charge-balancing 

by cations is important in determining the structural integrity and fragility of geopolymers [5].

The cations is usually contributed by alkaline silicate solution which is a mixture of alkali 
hydroxides (NaOH or/and KOH) and silicate solution (Na

2
SiO

3
 or/and K

2
SiO

3
) [6–8]. The 

alkali hydroxide is required for the dissolution of aluminosilicates while alkali silicate acts as 
binder, alkali activator and dispersant or plasticizer [9]. The alkali silicate solution contributes 

certain amount of SiO
2
 for the geopolymerization reaction [10].

Figure 1. Geopolymer systems based number of siloxo Si-O units [2].
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2. Aluminosilicates

The aluminosilicate sources are materials rich in alumina and silica content (e.g. ashes [11–14], 

clays [15, 16] or slag [17, 18]). Some other natural and artificial silicoaluminates such as zeolite 
[19] and magnesium-contained minerals [20] have also been used as an important source of 

Si4+ and Al4+ ions in the geopolymer binding system. Normally, the total composition of Al
2
O

3
 

and SiO
2
 is more than 70%, preferable in reactive amorphous phase [3, 21]. In this book chap-

ter, the utilization of clay or clay minerals in geopolymer formation is discussed.

3. Kaolin/kaolinite

Kaolinite is the most common clay mineral used in geopolymer synthesis. It has 1:1 uncharged 

dioctahedral layer structure (Figure 2a) whereby the layers are (Si
2
O

5
)
n

2− sheet and the Al(OH)
3
 

(gibbsite) sheet linked by sharing oxygen atoms. The layers are held together by weak van der 
waals and hydrogen bonds leading to the layered structure (Figure 2b).

Figure 2. Structure of kaolinite (above) and microstructure of kaolinite (below) [22].
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4. Metakaolin

Thermal treatment of kaolinite leads to the transformation of crystalline phases into reactive 

amorphous phases [7], which is the active constituent that determines the final strength of 
geopolymers. The thermal treatment is usually carried out at temperature in the range of 

550–800°C which accompanied by dehydroxylation of strongly bounded hydroxyl ions on the 
Al-constitutive layer. Thus, kaolinite is transformed into metakaolin.

Metakaolin also has layered structure as kaolinite even after the thermal treatment process. 

However, the layer structure appeared more open than kaolinite (Figure 3) [23, 24].

Also, the thermal treatment destroys the hexagonal layer of kaolinite and causes atomic 
arrangement that converted the hexa-coordinated Al ions of kaolinite are converted into 
penta- and tetra-coordinated Al ions [25]. The amount of penta- and tetra-coordinated Al ions 

reflects the reactivity of metakaolin [24].

4.1. Clay-based geopolymers

Clays are frequently used as the source materials in geopolymer formation. They have a total 

composition of Al
2
O

3
 and SiO

2
 in the range between 70 and 90% (Table 1) wherein the com-

position of clay is dependent on the origin and the geology of the location. Initially, in the 

early stage of geopolymer development, kaolin/kaolinite is mostly used as the aluminosilicate 

sources [2, 6, 32, 33]. Later, the experimental work has expanded to calcined clays, ashes and 
slag. This is because kaolin/kaolinite shows low reactivity with alkaline silicate solution causing 

low strength products. It is deemed that the near zero charge between layers and the layered 

structure that does not permit the exchange of ions or other element. Hence, kaolin/kaolinite 
has low surface area for geopolymerization reaction. According to Heah et al. [34], the low sur-

face area limits the dissolution of kaolin/kaolinite to provide Si4+ and Al4+ ions for further reac-

tion. Comparatively, fly ash has greater surface area as they have spherical-shaped particles.

Figure 3. SEM micrograph of metakaolin (800°C for 2 hours) [23].
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Summary of the compressive strength of geopolymers based on clay/clay minerals is tabu-

lated in Table 2. The strength achieved by geopolymers based on clay/clay minerals is low. 

The addition of kaolinite as secondary source of aluminosilicate is necessary in order to 

achieve strength. Unfortunately, the use of kaolinite alone in geopolymer is not preferable 

as it will produce weak structure [35]. The statement is further supported by van Jaarsveld 

et al. [38] who concluded the strength of fly ash geopolymers degraded as the result of high 
kaolinite content (41%) addition. The main reason for the deterioration in strength is because 

not all kaolinite reacted in the reaction.

If the clays/clay minerals are heat-treated, the mechanical strength of the final products 
would increase [35, 39]. Pre-treatment is crucial to increase the reactivity of clays/clay min-

erals. The pre-treatment methods include mechanochemical, chemical and thermal treat-

ments. MacKenzie et al. [40] reported that typical characteristic geopolymers are produced 

with heat-treated (200–1000°C for 2 hours) halloysite. Mechanochemical-treated (high-energy 

grinding for 20 hours at 400 rpm) halloysite showed less complete geopolymer formation. For 

acid-treated (0.1 M HCl) halloysite, the resulting geopolymers were poorly set while alka-

line-treated (0.1 M NaOH) halloysite caused the formation of crystalline zeolites. Thermal 

treatment is the most used methods. Successfully calcined clays lead to highly pozzolanic 

amorphous phase. For instance, geopolymers from clay sediments treated at 750°C for 2 hours 

showed greater compressive strength (6–12 MPa) than those treated at 400°C (1–4 MPa) [29].

Clay/clay 

mineral

SiO
2

Al
2
O

3
Fe

2
O

3
TiO

2
MgO P2O5 Na2O CaO K2O MnO SO3 LOI

Metakaolin [26] 51.35 44.24 0.98 0.90 0.48 0.45 0.16 0.13 0.08 0.01 — 0.72

Metakaolin [27] 52.1 43.0 0.7 — 0.3 — 0.12 2.5 — — 1.0

Metakaolin [28] 59.7 34.1 0.9 — — 0.2 0.1 — 0.1 1.2

Clay sediment 

from Occhito 

reservoir, Italy 

[29]

47.5 15.6 6.7 — 2.4 — 0.3 10.2 1.9 — — 15.4

Clay sediment 

from Sabetta 
reservoir, Italy 

[29]

50.0 15.9 5.7 — 1.9 — 0.3 6.9 1.7 — — 17.5

Kaolinite from 

Hiswa, Jordan 

[30]

48.92 25.16 7.52 0.86 0.21 0.16 0.21 0.68 1.4 0.01 2.94 11.93

Kaolinite [31] 49.35 36.03 0.20 0.02 0.02 — 0.04 0.02 2.29 — — 11.94

Kaolinite [31] 40.86 39.87 0.39 0.46 0.12 — 0.01 0.12 0.17 — — 17.91

Kaolinite [31] 42.66 40.92 1.12 0.45 0.04 — 0.14 0.14 0.09 — — 14.13

Halloysite [31] 48.12 36.33 0.33 0.16 — — 0.05 0.04 0.03 — — 14.8

Table 1. Chemical composition of clays from different origins.
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According to the author, thermally treated clay sediments exhibited improved surface area 
toward dissolution and geopolymerization reaction. Apart from the purely clay geopoly-

mers, blended geopolymers are also produced with the addition of other materials such as 

calcium hydroxide, slag and ashes with the clay materials as the starting source material. 
When calcium hydroxide is added, the strength of the blended geopolymers does not degrade 
[41, 42]. Similarly, the addition of 30% slag in metakaolin geopolymers showed improvement 

in the mechanical strength. Slag acted as filler in the geopolymer structure and enhanced the 
mechanical properties. However, the slag addition is limited to below 50% as it will greatly 

deteriorate the strength at content beyond 50% [43]. The high calcium content in both calcium 

hydroxide and slag caused the formation of geopolymer matrix as the main phases and the 
calcium silicate hydrates (CSH) phases as the secondary phases [27, 43]. This can be clearly 

shown in Figure 4.

Clay/Clay minerals Strength (MPa) Ref.

KOH NaOH

Almandine 10.3c 8.5c [35]

Grossular 16.7c 14.5c [35]

Sillimanite 12.7c 6.5c [35]

Andalusite 11.1c 8.8c [35]

Kyanite 6.8c 6.3c [35]

Pumpellyite 10.8c 8.8c [35]

Spodumene 13.1c 5.0c [35]

Augite 6.7c 5.0c [35]

Lepidolite 4.3c 2.5c [35]

Illite 7.1c 5.8c [35]

Celsian 9.7c 8.7c [35]

Sodalite 15.0c 10.3c [35]

Stilbite 18.9c 14.2c [35]

Heulandite 7.4c 5.6c [35]

Anorthite 14.4c 6.0c [35]

Kaolin - 2 – 10c [37]

Clay residues 5.76 – 5.98f [38]

ccompressive strength;
fflexural strength

Table 2. Strength result of clay/clay minerals geopolymers.
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5. Geopolymerization mechanism

Geopolymer formation involves chemical reaction that transforms partially or totally amorphous 

aluminosilicates into three-dimensional polymeric networks. The geopolymerization reaction is 

exothermic. Under strong alkaline medium, the aluminosilicate sources dissolve into SiO4 and 
AlO4 tetrahedral units which later on participate in the polycondensation process [44, 45].

The chemical attack of kaolinite starts from the surface and edge and continues layer by 
layer inside the structure (Figure 5) [46]. The Al-substituted silicate layers formed and the 

structural deformed Al sites transformed into tetra-coordinated Al sites after attack by alkali 
hydroxide (Figure 6) [47].

Davidovits proposed the reaction mechanism as shown in Figure 7. The reaction aluminosili-

cates and alkali silicate solution produced geopolymers with Si-O-Al backbone.

In general, the geopolymerization mechanism is similar for all types of aluminosilicates. Most 

researchers agreed that the geopolymerization reaction involves dissolution, polycondensa-

tion and hardening process. The dissolution of aluminosilicates is initiated by presence of 

hydroxyl ions in the alkaline silicate solution which releases Si and Al species for further 
polycondensation reaction [9, 49]. The geopolymerization reaction is deemed occurs in mul-

tistep simultaneously [38, 42, 50] such as reorganization and diffusion of dissolved ions with 
formation of small coagulated structures, solid state transformation and hardening to form 

hard solid polycondensation to form aluminosilicate gel phases and dissolution of alumino-

silicates in highly alkaline medium.

In addition, Xu and Van Deventer [51] suggested that geopolymer is formed through Eqs. (2)–(4). 

Eq. (1) represents the mixing of aluminosilicates with alkali silicate solution. Geopolymer gel is 
formed in Eq. (3), while Eq. (4) shows the formation of geopolymer rigid solid.

Figure 4: SEM micrographs of (a) pure metakaolin; and (b) metakaolin-50% slag geopolymer (a—Geopolymer matrix 
and B—CSH phases) [43].
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   Al–Si material  (s)  + MOH  (aq)  +  Na  
2
    SiO  

3
    (s or aq)  ↓     (2)

   Al–Si material  (s)  +  [ M  
z
     ( AlO  

2
  )   
x
     ( SiO  

2
  )   
y
   · nMOH · m  H  

2
   O]  gel ↓     (3)

Figure 5. Reaction of kaolinite under alkaline medium (gray circle denotes the aluminum hydroxyl side groups) [46].

Figure 6. Formation of aluminum substituted silicate layer in metakaolin after attack by NaOH solution [47].
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  Al–Si material  (s)   [ M  
a
   (  ( AlO  

2
  )   
a
     ( SiO  

2
  )   
b

  ) nMOH ·  mH  
2
   O]   (4)

According to Provis et al. [52, 53], the final geopolymer gel phase after extended curing process 
is different from the initial gel phase. The curing process allows continuous rearrangement 
of geopolymer gel phase toward more crosslinking and some zeolite crystals (more ordered 

phases) are formed in the geopolymer structure. Similar model is illustrated by Duxson et al. 
[54] in Figure 8. The intermediate product (Gel 1) having high Al contents transformed into 

Figure 7. Schematic diagram of geopolymer formation [48].

Figure 8. Graphic model of alkali activation of geopolymers [54].
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Gel 2 with high Si content as the reaction progresses and finally rearranged forming three-
dimensional geopolymer frameworks.

5.1. Clay-based geopolymer formation

Most usual method to form geopolymer is direct mixing of aluminosilicate with alkali silicate 
solution. After mixing, the geopolymer paste is compacted in molds and cured at room tem-

perature or slightly higher temperature (20–80°C). To avoid extensive loss of moisture, the 
geopolymer paste is covered with a thin plastic film during the curing process. Besides, other 
mixing method has also been studied with different mixing sequences. The aluminosilicate is 
firstly mixed with liquid sodium silicate and the NaOH solution is added afterwards.

Based on Lecomte et al. [25], the normal mixing and separate mixing did not lower the degree 
of geopolymerization reaction of kaolin/white clay-slag blended geopolymers. However, sep-

arate mixing required additional water for mixing and hence detrimental to the mechanical 
strength. A contradict result is reported by Rattanasak & Chindaprasirt [55] based on fly ash 
geopolymer. The separate mixing permits more time for dissolution of aluminosilicates pro-

viding more dissolved species for the polycondensation process. This in turn leads to forma-

tion of stronger geopolymers. On top of that, the homogeneity of the geopolymer mixtures is 
crucial in order to attain high strength.

Regardless of the different mixing sequence, workability is an important criterion to be taken 
into consideration during geopolymer formation. Serious workability problem leads to com-

paction difficulty and produce weak geopolymer structure [23, 34]. For geopolymer based on 

clay, it usually requires excess water during the mixing process in order to achieve certain 
consistency. The addition of excess water will definitely decrease the mechanical strength 
of the final product. Comparison with fly ash geopolymers, the mixture of clay-based geo-

polymer is usually highly viscous and sticky [56]. The layer structure of clay induces greater 

inter-particle friction which limits the flowability of mixture. Unlike clay, fly ash has spher-

ical-shaped particles. The imposed inter-particle friction is lesser and can acquire adequate 

consistency without addition of excess water.

6. Characterization of clay-based geopolymers

6.1. Morphology

As aforementioned, the kaolinite and metakaolin appears plate-like or layer-like structure. 

After the geopolymerization reaction, this layer-like structure changed. The morphology of 

clay-based geopolymer appeared sponge-like with globular units (Figure 9). The microstruc-

ture grows and develops over time starting from the precipitation of loosely-packed globular 

units on the metakaolin’s particle surface and densification of geopolymer matrix inside and 
outside voids [57, 58]. At the beginning the K/Al and Si/Al molar ratios are high due to leach-

ing of Si from liquid sodium silicate. As time passed, more dissolved Al entered the geopoly-

mer system and lowered the molar ratios [57]. Instead of globular units of geopolymer matrix, 
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fly ash-based geopolymers revealed smooth heterogeneous geopolymer matrix with remnant 
fly ash particles in the hollow cavities due to partially dissolution (Figure 10).

Differently, Wang et al. [59] observed that the metakaolin geopolymers are not compact. The layer 

structure is remained in the geopolymer matrix after geopolymerization reaction (Figure 11).  

The remnant metakaolin geopolymer might have left and embedded in the geopolymer struc-

ture. Based on Rowles et al. [60], the residual raw particles in geopolymer structure may 

weaken the structure. This is because the residual particles act as stress concentration point 

that permit propagation of cracks and fractures. To our knowledge, complete geopolymeriza-

tion reaction is not achieved. There must be come residual raw materials left in the structure 

after the chemical reaction.

The mechanical strength of geopolymer is affected significantly by the density and porosity 
in the structure. High strength geopolymer is associated with low porosity, high dense and 

fine-grained microstructure [61].

6.2. Mineralogy of clay-based geopolymers

The X-ray diffraction (XRD) pattern of kaolinite consists mainly of crystalline phases [34]. The 

thermal treatment of kaolinite transformed the crystalline phases into amorphous phases. 

Figure 9. ESEM micrographs of metakaolin geopolymers after (a) 10 minutes, (b) 3 hours, (c) 6 hours, and (d) 9 hours 

of mixing [57].
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The metakaolin retains some long-range order as result of stacking of the hexagonal layers 
[62]. Therefore, metakaolin shows semi-crystalline to amorphous pattern with a halo at 2θ 
between 15 and 30° [56]. This diffuse halo represents the amorphous silica in metakaolin [63]. 

Marked shift in the scattering peak is observed after the geopolymer formation. The diffuse 
halo in metakaolin shifted to higher angle. Generally, geopolymers show completely amor-

phous X-ray diffraction (XRD) pattern with a diffuse halo peak at 2θ between 27 and 30° 
[25, 48, 57, 64, 65]. The primary binder phase in geopolymer matrix contributes to the amor-

phous characteristic and determines the strength of geopolymers. Also, in a study carried out 

by Wang et al. [59], the halo diffuse peak of metakaolin geopolymer fell at 2θ between 18 and 
25°. Increasing Si/Al ratio reduces the angle of diffuse halo [65].

Crystalline phases, particularly zeolites, are usually grown in geopolymers in conjunction 

with the amorphous binder phases (Figure 12) [46, 66]. As zeolites have similar chemical com-

position with geopolymers, geopolymers are usually deemed as the zeolitic precursor. The 

Figure 11. SEM micrographs of metakaolin geopolymers [59].

Figure 10. SEM micrographs of fly ash geopolymers cured at room temperature for 24 hours and at 80°C for another 
24 hours [15].
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main difference between them is that zeolite is crystalline while geopolymer is amorphous. 
The growth of crystalline phases is facilitated by the high water content, high curing tem-

perature, aging and also extended curing period [4, 67]. Zeolites are highly porous and have 

poor mechanical properties. Some researches [68, 69] claimed that zeolite crystallites reinforce 

and improve strength of clay geopolymers. Yet, the long-term strength reduced. Even so, it is 

strongly believed that there is a tolerance limit on the crystalline phase’s content within the 

geopolymer matrix. Similar trend was reported for fly ash geopolymers [70].

7. Functional group identification

Kaolinite shows FTIR bands around 1113 cm−1 (Si-O bonds in SiO
4
 molecules); 994 cm−1 (Si-O 

bonds in SiO
4
 molecules); 907 cm−1 (AlIV-OH vibrations); 799 cm−1 (SiO-symmetric stretch-

ing) and 537 cm−1 (Si-O-AlVI) [24, 38, 71, 72]. On the other hand, as the kaolinite is thermally 

treated, the band at 1113 cm−1 shifted to lower wavenumber (~ 1031 cm−1) [23]. This is related 

to the amorphous SiO
2
 [25]. The FTIR bands associated with VI-fold coordinated Al vanished 

after calcination as a result of distortion of tetrahedral and octahedral sheets of kaolinite [24]. 

The band at around 781 cm−1 appears in metakaolin as the Al-O stretching vibration in AlO
4
 

tetrahedral [73].

As the geopolymerization reaction progresses, shift of bands are observed. Clay-based geo-

polymer exhibits main FTIR absorption band at 990 cm−1 associated with the asymmetrical 

Figure 12. XRD patterns of geopolymers from Algerian metakaolin, activated with alkaline sodium silicate solution and 
cured at 50°C for 24 h with various Si/Al ratios [66].
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stretching of Si-O-Si and Si-O-Al bonds [42, 74]. This band is shifted from the band at 1031 cm−1 

in metakaolin. In addition, this FTIR band becomes more intense as the reaction proceeds 

indicating more geopolymer networks are formed. The band is usually shifted to lower wave-

number from raw materials and further shifted to higher wavenumber as a consequence of 

curing process. This is because of the changes in the silicate network with more substitution 

of non-bridging oxygen and increasing substitution of Al in the silicate sites. This is proved 
by the model by Duxson et al. [54] who proposed the transformation from Gel 1 to Gel 2 over 

time, aforementioned. This band shift is also observed in fly ash geopolymers (Figure 13) [75].

Another bands at 720 cm−1 (Si-O-Si/ Si-O-Al stretching), 560 cm−1 (tetrahedral aluminum 

stretching bands) and 690-440 cm−1 (Si-O-Si/ Si-O-Al bending vibrations) are also present in 

clay-based geopolymers [41, 42, 56]. High Si content in geopolymer structure produces stron-

ger geopolymers as the Si-O-Si bonds are stronger than Si-O-Al bonds [76].

8. Properties of clay-based geopolymer

Geopolymers exhibit excellent mechanical and physical properties, such as low density, good 
chemical, fire and thermal resistance, high mechanical strength, and so on. Therefore, they are 
widely applied in various fields as new materials with high tech application. Geopolymers 
harden rapidly. In general, metakaolin geopolymers set and harden within 24 h. Short set 

time of 4 h has been reported by De Silva et al. [77] cured at 40°C. Fpr fly ash based geopoly-

mer paste, in another way, sets and hardens faster compared to metakaolin geopolymers. 

Accordance to Hardjito et al., fly ash geopolymer can be hardened up to 2 h when cured at 65 
and 80°C [78]. However, setting time is significantly dependent on the curing temperature. 
The geopolymer will set faster when cured at higher temperature. At 50°C, geopolymeriza-

tion process required 4 h. Furthermore, geopolymerization process needed 1.5 h and 0.5 h 

Figure 13. Shifts of FTIR bands from Gel 1 (G1) to Gel 2 (G2) [75].

Cement Based Materials252



at 85 and 95°C, respectively [2]. If the geopolymer paste is cured at temperatures lower than 

ambient temperature, it might need more than 1 day to set. No degradation in the strength of 

geopolymers at 28 days even they set at a longer time, as reported by Rovnanik [74].

The bulk density of metakaolin geopolymers is reported in the range between 1.20 and 1.80 g/

cm3. Thus, lightweight products can be made out of geopolymers. The bulk density reported is 

lower than ordinary Portland cement paste and almost or even lower than geopolymers based 

on slag and fly ash . For instance, ordinary Portland cement paste has density of more than 
1.80 g/cm3 [35] while coal fly ash geopolymers have density in the range between 1.40 to 1.80 g/
cm3 [79, 80]. Bulk density is mainly affected by the curing condition as well as other synthesis 
parameters, such as the nature of alkali metal silicate, the type of geopolymers and alkali 

concentration. Bulk density decreases with increasing curing temperature [74]. Compressive 

strength increses with the increases of bulk density. Almost similar bulk density values were 

recorded for K-based (1.39–1.82 g/cm3) and Na-based (1.25–1.72 g/cm3) metakaolin geopoly-

mers. Na-based geopolymers are generally lighter than K-based geopolymers. This is due to 

K-based geopolymers are denser and contain fewer pores as aforementioned [65].

From the result obtained by De Silva et al. [77] in Figure 14, high SiO
2
/Al

2
O

3
 ratio in the initial 

composition shows longer setting and hardening times. Strength development of metakaolin 
geopolymers with SiO

2
/Al

2
O

3
 of 3.81 became high and stabilized at a later age, even though 

the setting time was longer. Setting time is short providing that there is high Al
2
O

3
 content; 

however, it will deteriorate strength due to low SiO
2
 content. Besides, the calcium content in 

the precursor materials would definitely affect the setting time. This is due to the fact that the 
Ca content provides extra nucleation sites for precipitation of dissolved species and hence 
leads to setting and hardening at a faster rate [55].

Figure 14. Final setting times and compressive strength of metakaolin geopolymers with varying SiO
2
/Al

2
O

3
 molar ratios 

at constant H
2
O/Na

2
O molar ratio of 13.6 [81].
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Geopolymers achieve compressive strength of 20 MPa after only 4 h at 20°C. The 28-day com-

pressive strength of geopolymers could be as high as 70–100 MPa [1]. High strength means 

the easier or higher dissolution of source materials, generating more aluminosilicate species, 

which are the most important ingredients for geopolymerization process. The reaction extent 
of source materials can be measured directly by the compressive strengths of prepared geo-

polymers. The strength of geopolymers is dependent on the strength of gel phase, the amount 

of gel phase formed and amorphous nature of the reaction products [73].

On the other hand, geopolymers have excellent thermal stability with low shrinkage (2%). 
Geopolymers are stable up to 1000–1200°C [4, 58, 82, 83] and have ceramic-like structure [3]. 

Geopolymers are dimensionally stable in the working range between 250 and 800°C, accor-

dance to Subaer and van Riessen [84]. In order to improve the thermal properties of geopoly-

mers, filler (e.g. granite or quartz) and foaming agents (e.g. Al powder, hydrogen peroxide) 
have been added during geopolymer mixing. Addition of quartz or granite reduced shrink-

age to 1% [85]. In addition, based on Rickard et al. [86], foamed geopolymers reinforced with 

polypropylene fibers achieved fire rating of at least 1 h (Figure 15).

Foamed geopolymers have good potential for ambient application as thermal insulator while 

exhibiting low density and compressive strength. For fire resistance application, materials 
must have very low thermal conductivity and resistance to thermal damage as to achieve the 

similar fire rating. Contradict result was reported by Elimbi et al. [87], whereby metakaolin 

geopolymers decreased in strength when heated between 300 and 900°C. It was explained 
due to the progressive transformation of geopolymer matrix into crystalline phases. The 
metakaolin geopolymers were warped and glazed with cracks at 1000°C.

Figure 15. Cold side temperatures during the fire testing of four mixes of metakaolin geopolymers [86].
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Geopolymers possess high perseverance in acidic and alkaline media [68, 88]. Comparatively, 

they are more stable under alkaline medium. No deterioration in mechanical properties when 

immersed in sea water (pH = 8) and sodium sulfate solution (5% Na
2
SO

4
) up to 360 days. On 

the other hand, geopolymers were severely attacked when immersed in HCl solution for long 
period. Compression strength decreased while mass loss of samples increased. This was prob-

ably due to the de-aluminum of geopolymer structure in highly acidic medium. De-aluminum 

leads to mass loss of geopolymer structure as the consequences of SiAOAAl bonds break that 

form more silicic acid ions in acid medium. The microstructure of the produced geopolymers 

became more porous (Figure 16) [30].

Drying shrinkage is shrinkage of the geopolymer matrix as a result of the loss of unbounded 
water during the curing process. As aforementioned, the addition of filler minimizes shrink-

age of geopolymer samples. In general, shrinkage occurs in greater tendency in materials 

with higher content of finer materials than those with high content of coarser materials [89]. 

For instance, for geopolymers with sand filler, the drying shrinkage recorded was 0.01% at 
180 days. However, for geopolymers without sand filler, the drying shrinkage fluctuated 
between 0.03 and 0.04% [30].

9. Applications of geopolymers

Geopolymers have great potential for variety of applications. Some applications have been 

successfully commercialized and marketed such as PYRAMENT blended cement and 

GEOPOLYMITE binders. GEOPOLYMITE binders have been used in several fields such as 
molding, tooling, foundry work, building’s thermal insulation and furnace insulation while 

Figure 16. SEM micrograph of kaolinite geopolymers subjected to acid attack test after 90 days [30].
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PYRAMENT blended cement has been adapted in civil engineering in the production of pre-

stressed and precast concrete [90].

Besides, geopolymers have been used to produce high-quality brick and tiles. Previously, 

kaolinite geopolymers are formed through low-temperature geopolymeric setting (L.T.G.S.) 
followed by ultra-rapid fire at 1000–1200°C to form bricks and tiles [4]. Up to now, this simi-

lar method has still being investigated by several researchers [91]. The geopolymer ceramics 

are non-burning and fire resistant. Furthermore, a new development of ceramic materials is 
compressing geopolymer powder using powder metallurgy method followed by sintering at 

1000–1200°C [92].

In 1994, fireproof geopolymer fiber-reinforced composites have been used for aviation appli-
cations as aircraft composites and cabin interiors (floor panels, sidewalls, ceiling and par-

titions) to eliminate cabin fire during the aircraft accidents. The idea was arised from the 
problem of the existing plastic materials that were combustible and emitted flammable gases 
when they burnt. Besides, geopolymers have been used by Formula One teams in car manu-

facturing due to its corrosive, fire and heat resistance [4].

Concern toward lightweight materials for easy transportation and less energy consump-

tion has led to lightweight concrete materials from geopolymers in civil engineering [93]. 

Furthermore, the lightweight concrete facilitates structural loading bearing and acts as ther-

mal insulator [94]. Studies on foamed geopolymers in thermal insulation materials for housing 

construction have also been studied [95]. Zhang et al. [96] made reflective and heat insula-

tive coating from geopolymers. With the addition of pigments and fillers (such as hollow 
glass microspheres, talc powder and titanium dioxide), wetting agent, dispersing agent and 
water-retaining agent, the coating produced has 90% reflectivity and thermal insulation per-

formance up to 24°C. Apart from thermal insulative properties, the synthesis of geopolymer 

for acoustic insulation has been reported by Hung et al. [97]. Geopolymers can adequately 

and potentially become sound insulating materials in construction and buildings. The density 

of geopolymer matrix affects the noise reduction coefficient.

In addition, according to Temuujin et al. [98], geopolymers are capable of anti-ultraviolet and anti-

aging, which made them suitable as coating for exterior wall building to conserve energy. The 
studies on the thermal and fire performance of geopolymers have also been reported elsewhere 
[81, 99–101]. As mentioned earlier, geopolymers have molecular structures to resemble zeolitic 

materials. As such, they are able to immobilize toxic waste or heavy metals as they can absorb and 
solidify toxic chemical waste. This is beneficial to the immobilization technology [84, 102].

Porous geopolymers were prepared by Okada et al. [89] for use in cooling system. This idea 

was come about due to high water retention properties or slow water releasing properties 

of geopolymers. This makes geopolymers suitable for surface cooling by water evaporation 

that helps to curb the rising earth temperature due to human activities and country develop-

ment. Potential use of geopolymer in infrastructure rehabilitation was suggested by Pacheco-

Torgal et al. [103]. Geopolymer paste can function as sealer for structures and replaced epoxy 
adhesives in fiber-reinforced polymer retrofiting. Almost similar research was carried out 
by Geraldes et al. [104], whereby geopolymers are used as restoration materials for tiles. In 
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order to further enhance the usage of geopolymers in civil engineering, researchers have 

investigated on one-part geopolymer system [105–107], whereby geopolymer mixture can be 
prepared by just adding water. The interest of this study is caused by the limitation of geo-

polymer technology for in-situ application which lowers its economical value.

n recent year, the study on geopolymers moves toward application as biomaterials. As proven 

by Pangdaeng et al. [28], geopolymer has good bioactivity and it is improved by the addition 

of white Portland cement. On the other hand, geopolymer as drug delivery system has also 

been studied by Jamstorp et al. [108] and Cai et al. [109]. Based on them, geopolymers possess 

variable pore-structure for the release of drug at target cell. This again extends the application 
of geopolymers in the medical fields.
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