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Abstract

Bubble shapes have been assumed to be spherical in the currently available breakup models
such as the one developed by Luo and Svendsen (1996). This particular breakup model has
been widely accepted and implemented into CFD modelling of gas-liquid two-phase flows.
However, simulation results obtained based on this model usually yield unreliable predic-
tions about the breakage of very small bubbles. The incorporation of bubble shape variation
into breakupmodels has rarely been documented in the study but the bubble shape plays an
important role when considering the interactions with the surrounding turbulent eddies in
turbulent bubbly flows, especially when the effects of bubble deformation, distortion and
bubble internal pressure change are considered during the events of eddy-bubble collision.
Thus, the assumption of spherical bubbles seems to be no longer appropriate in reflecting
this phenomenon. This study proposes and implements an improved bubble breakup
model, which accounts for the variation of bubble shapes when solving the population
balance equations for CFD simulation of gas-liquid two-phase flows in bubble columns.

Keywords: bubble column CFD simulation, breakup model, bubble shape variations,
interfacial area, mass transfer coefficient

1. Introduction

Previous CFD studies have employed the assumption of a unified bubble diameter, which can

generate reliable predictions if the bubble size distribution is very narrow. However, numerical

modelling of gas-liquid two-phase flow behaviors should also take into account scenarios

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



where wide bubble size distributions and eddy/bubble-bubble interactions exist. These are

very influential factors in the calculation of the gas-liquid interfacial area, which in turn affects

the prediction of the mass and heat transfer between the two phases. By solving the population

balance equations (PBEs) during the numerical simulation, the bubble size distribution can be

derived directly, while the behaviour of the eddy/bubble-bubble interactions can be reflected

within coalescence and breakup models.

For the process of bubble breakup, Coulaloglou and Tavlarides [1] assumed that the breakup

process would only occur if the energy from turbulent eddies acting on the fluid particle was

more than the surface energy it contains. Prince and Blanch [2] acknowledged that bubble

breakup is caused by eddy-bubble collision and proposed that bubble breakup can only be

induced by eddies with approximately the same characteristic length. For instance, eddies at a

much larger length scale transports the bubbles without causing any breakups. Luo and

Svendsen [3] described the bubble breakup process by considering both the length scale and

the amount of energy contained in the arriving eddies. The minimum length scale of eddies

that are responsible for the breakup process is equivalent to 11.4 times the Kolmogorov scale.

The critical probability of bubble breakup is related to the ratio of surface energy increase of

bubbles after breakup to the mean turbulent kinetic energy of the colliding eddy. Therefore,

very small eddies do not contain sufficient energy to cause the bubble breakup process. Lehr et

al. [4] proposed a slightly different breakup mechanism from Luo and Svendsen [3] by consid-

ering the minimum length scale of eddies to be determined by the size of the smaller bubble

after breakup. They also specified that the breakup process is dependent on the inertial force of

the arriving eddy and the interfacial force of the bubble. Based on the results of Luo and

Svendsen [3] and Lehr et al. [4], Wang et al. [5] proposed an energy constraint and capillary

constraint criteria for the breakup model. The energy constraint requires the eddy energy to be

greater than or equal to the increase of surface energy of bubbles after the breakage has

occurred. The capillary constraint requires the dynamic pressure of the eddy to exceed the

capillary pressure of the bubble. The use of these two breakup criteria has restricted the

occurrence of breakage that generates unphysically small daughter bubbles and demonstrated

more reliable results than that of Luo and Svendsen [3]. Similar ideas to those of Wang et al. [5]

have also been adopted by Zhao and Ge [6], Andersson and Andersson [7] and Liao et al. [8]. A

more concise breakup constraint of energy density increase was proposed by Han et al. [9]. The

constraint of energy density increase involves only one term, which is the energy density itself,

to represent what was originally expressed by two terms: capillary pressure and surface

energy. It was shown that the energy density increase during the entire breakup process

should not exceed the energy density of the parent bubble.

Incorporation of a bubble shape variation into the breakup model has rarely been documented

in the open literature. Therefore, the aim of this study is to consider the influence of bubble

shape variation on the bubble breakage process in bubble column flows. A breakage model

accounting for the variation of bubble shapes, coupled with the breakage criterion of energy

density increase, is proposed here.
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2. Mathematical modelling

2.1. Bubble size distribution

The bubble size distribution is determined by employing the population balance model with a

consideration of bubble coalescence and breakup. Bubbles are divided into several size groups

with different diameters specified by the parameter deq,i and an equivalent phase with the

Sauter mean diameter to represent the bubble classes. In this study, 16 bubble classes with

diameters ranging from 1 to 32 mm are applied based on the geometric discretization method

where V i ¼ 2V i�1. The population balance equation is expressed by Eq. (1)

∂ni
∂t

þ ∇ � v
!

i � ni

� �

¼ Si (1)

where ni is the number density for i-th group, vi
!

is the mass average velocity vector and Si is

the source term.

The source term for the i-th group, Si, can be thought of as the birth and death of bubbles due to

coalescence and breakup, respectively. The expression for this particular term is given by Eq. (2)

Si ¼ Bcoalescence, i �Dcoalescence, i þ Bbreakup, i �Dbreakup, i

¼

X

deq, i=2

deq, j¼deq,min

ΩC deq, j : deq, i � deq, j
� �

�

X

deq,max� deq, i

deq, j

ΩC deq, j : deq, i
� �

þ

X

dmax

dj¼di

ΩB deq, j : deq, i
� �

�ΩB deq, i
� �

(2)

The local gas volume fraction can be calculated using Eq. (3),

αgf i ¼ niV i (3)

where f i is the i-th class fraction of the total volume fraction and V i is the volume for the i-th

class.

To describe the coalescence between two bubbles, the coalescence kernel proposed by Luo [10]

was utilized in this study. As this is not the main concern of this work, further details of the

coalescence kernel can be found in Luo’s paper.

The breakup model proposed in this study is based on the work of Luo and Svendsen [3].

Several improvements have been introduced in this study to produce a more realistic breakup

model. In Luo and Svendsen’s model, the shape of breakage bubbles was assumed to be

spherical. However, the experimental studies and statistical results, such as Grace et al. [11]

and Tomiyama [12], have found that bubbles exist in various shapes and the dynamics of

bubble motion strongly depend on the shape of the bubbles. For example, Figure 1 shows the
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experimentally recorded breakup process of a spherical-cap bubble found in an operating

bubble column used in an ongoing research project funded by the Natural Science Foundation

of China (NSFC). The spherical-cap bubble is colliding with a bombarding eddy that was

generated as a consequence of shedding eddy from the preceding bubbles. The spherical-cap

bubble then becomes deformed and distorted and finally breaks into two ellipsoidal bubbles.

This phenomenon may lead to two major implications. Firstly, the shed eddies that interact

with subsequently formed bubbles are mainly induced by the presence of preceding bubbles.

These shed eddies dissipate mainly due to the viscous influence and they will decay down-

stream in a slightly short distance. Thus, these eddies will have the size the same order as the

preceding bubbles. This kind of bubble-induced turbulence may exhibit different dynamic

behaviour as can be distinguished from the typical Kolmogorov �5/3 law on the turbulence

kinetic energy spectrum. It should be pointed here with caution that more fundamental

investigations are required to reveal the interactions between the eddy generated by bubble-

induced turbulence and the bubbles, and the impact of this interaction on the bubble breakage

process. Secondly, although the bubble shape has been assumed to be spherical in the previous

studies for the simplification of models, the variation of bubble shapes could potentially

become a critical factor for better prediction of the bubbly flow characteristics of the gas phase

in CFD simulations, because the type of geometrical shape has a strong impact on the surface

energy of bubbles and interfacial area.

From experimental observations, bubble shapes can be classified into different types. Thus, the

effects of different bubble shapes are taken into account in this study. However, due to the

uncertainty of the spatial orientation of the bubbles during their movement, the determination

of the contact angle of the bombarding eddy is very difficult but this needs to be tackled as the

contact angle will directly affect the projection/sweep area of the eddy-bubble collision tube.

On the contrary, if the bubble that is about to breakup is assumed to be spherical, the projec-

tion/sweep area of the collision tube will be consistent no matter which direction of the

bombarding eddy comes from. Instead of using the original bubble size deq,i to construct the

Figure 1. Time sequence photos of the breakup of a rising bubble in a 150-mm diameter cylindrical bubble column

(Ug = 0.02 m/s; total duration: 0.0366 s).
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collision tube, a nominal diameter, dV, that approximately represents the size of the projected

area of the bubble, is defined in a bounded range given by expression (4),

c ≤ dV ≤ a (4)

where c and a are the length of the short axis and long axis, respectively. The new imaginary

collision tube is presented in Figure 2.

The breakup rate for one individual parent bubble that forms into two daughter bubbles can

be calculated using Eq. (5),

ΩB ¼

ðd

λmin

ωT
BpB dλ (5)

where ωT
B is the collision probability density, which can be estimated from Luo and Swendsen

[3], as defined by Eq. (6)

ωT
B ξð Þ ¼ 0:923 1� αg

� �

εdeq, i
� �1=3

ni
dV, s=deq, i þ ξ
� �

dV, l=deq, i þ ξ
� �

d2eq, iξ
11=3

(6)

Here, ξ =λ /deq,i is the non-dimensional size of eddies that may contribute to the breakage of

bubbles with size di. The breakage probability function pB used by Luo and Svendsen [3] is

given by Eq. (7),

pB ¼ exp �
es
e

� �

(7)

where e is the mean turbulent kinetic energy for eddies of size λ and es is the increase in surface

energy of bubbles after breakage. The mean turbulent kinetic energy can be determined by Eq. (8)

Figure 2. Diagram showing an eddy entering a collision tube and moving through it with a mean velocity.
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e ¼ rl
π
6 λ

3u2λ

2 ¼
πβ
12 rl εdeq, i

� �2=3
d3eq, iξ

11=3
(8)

By assuming the bubbles before and after breakage have deformed shapes with an equivalent

diameter, when the parent bubble of size deq,i breaks into two bubbles of size deq,j and (deq,i
3-deq,

j
3)1/3, the increase in surface energy can be estimated using Eq. (9),

es deq, i; deq, j
� �

¼ σ � πd2eq, i f
2=3
V þ 1� f V

� �2=3
� 1

h i

(9)

where the breakage volume fraction is given by f V ¼ d3eq, j=d
3
eq, i. Since the effects of different

shapes of bubbles are now taken into account, Eq. (9) can be rewritten in a general form in

terms of the surface area of the bubbles, S, as defined by Eq. (10)

es ¼ σ � Sj,1 þ Sj,2 � Si
� �

(10)

Although there have been some recent developments on the instability of bubble shapes, such

as the studies by Cano-Lozano et al. [13], Zhou and Dusek [14] and Tripathi et al. [15], there is

no consensuses on concise definitions on bubble shapes and bubble shape model. Therefore, a

more commonly accepted statistical model of bubble shapes by Tomiyama [12] has been

employed in this study. In addition, the lift model described by Tomiyama [12] has been

adopted as it has been well implemented by different commercial CFD packages. According

to the criteria proposed by Tomiyama [12] and Tomiyama et al. [16], there are three main types

of bubble shapes that should be considered in the bubble columns of this study. These shapes

include spherical, ellipsoidal and spherical-capped bubbles. These three types of bubble

shapes may also be considered for modelling gas-liquid two-phase flow or gas-liquid-solid

three-phase flow in bubble columns with similar scales that operate at similar conditions to

what is applied in this work. The details of these three types of bubble shapes and their

potential breakage scenarios are depicted in Figure 3.

Figure 3. Classification of the three types of bubble shapes and the possible breakage scenarios.
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For an air-water system under atmospheric pressure and room temperature conditions, the

size boundary to categorize between spherical and ellipsoidal bubbles represented by deq,1 is

roughly 1.16 mm for the pure system and approximately 1.36 mm for a slightly contaminated

system. It is very important to point out that the volumes of ellipsoidal bubbles and spherical-

cap bubbles should be equal to the volumes of their equivalent spherical bubbles with diame-

ter deq. For bubbles with ellipsoidal shapes, by assuming an oblate type of ellipsoid, the surface

area can be calculated using Eq. (11),

Sellipsoid ¼
π

2
d2eqE

1=3 1þ
1

2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � 1
p ln 2E2 � 1þ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 � 1
p� �

 !

(11)

where the aspect ratio E can be expressed using the empirical correlation described by Wellek

et al. [17], which is given by Eq. (12)

E ¼ a=b ¼ 1þ 0:163Eo0:757 (12)

Here, Eo is the Eötvös number as defined by Eq. (13)

Eo ¼
g rl � rg

� �

d2eq

σ
(13)

The size boundary to divide between ellipsoidal and spherical-cap bubbles represented by dC
is estimated using Eq. (14),

dC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

40σ=g rL�rgð Þ

q

(14)

where dc is determined to be 17.3 mm for the air-water system. For a single spherical-cap

bubble, the wake angle θW is assumed to be 50o based on the work of Tomiyama [12]. As the

volume of the spherical-cap bubble is equivalent to the volume of the spherical bubble, Eq. (15)

can be formulated as follows:

R3
S ¼

πd3eq=6

1� cosθWð Þ2 � 1� cosθWð Þ3=3
(15)

The curved surface area for the front edge can be calculated from the following relationship

given by Eq. (16):

SCap ¼ 2πR2 1� cosθWð Þ (16)

The experimental observations of Davenport et al. [18] and Landel et al. [19] have clearly

indicated that the rear surface of a single spherical-cap bubble follows a constantly oscillating

lenticular shape, resulting from external perturbations acting on the rear surface. This lenticu-

lar shaped rear surface can be considered to be essentially flat, and the surface energy increase

required to breakup the surface can be neglected based on the consideration that when any
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arriving eddies bombard the flat surface, the energy resulting from the surface tension force

action will be far smaller than the kinetic energy exuded by the turbulent eddies. It should be

noted with caution that these are rough approximations, and more complicated crown bubble

systems are not considered in this work. The influence of the variation of bubble shapes on the

increase in surface energy is further illustrated in Figure 7.

The breakup model proposed by Luo and Svendsen [3] only considered the surface energy

requirement for breakup events but it should be noted that bubble breakage may also be

subjected to the pressure head difference of the bubble and its surrounding eddies, especially

when the breakage volume fraction is small. Therefore, on the basis of the interaction force

balance proposed by Lehr et al. [4], the pressure energy requirement also needs to be consid-

ered as a competitive breakup mechanism. This can be imposed as a constraint. The same idea

has been adopted by Zhao and Ge [6], Liao et al. [8] and Guo et al. [20]. The pressure energy

requirement can be expressed using Eq. (17),

eP ¼
σ

min RC, j;RC,k

� � �
π min deq, j; deq,k

� �� �3

6
(17)

where RC,j and RC,k are the equivalent radius of curvature of daughter bubbles. The theoretical

prediction of the surface energy and pressure energy requirement is shown in Figure 6.

As pointed out by Han et al. [21], from a volume-based energy perspective, the surface energy

density of the parent bubble should always exceed the maximum value of the energy density

increase during the entire breakup process. This is an important breakup criterion that has

been adopted in this study and concurrently relates the size of the parent bubble to the sizes of

the daughter bubbles. This restricts the generation of very small bubbles from the breakup

process because the energy densities of the daughter bubbles will tend towards infinity when

their sizes tend to zero. The energy density criterion can be expressed by Eq. (18) if it is coupled

with the variation of bubble shapes

ð18Þ

The breakup frequency can be obtained by substituting Eqs. (6)–(17) into Eq. (5), which results

in Eq. (19),

ΩB ¼

0:923 1� αg

� �

ni ε=d2eq, i

� �1=3
�
Ð 1
ξmin

dV, s=deq, i þ ξ
� �

dV, l=deq, i þ ξ
� �

ξ11=3
exp �

12σ Sj þ Sk � Si
� �

πβrlε
2=3ξ11=3d

11=3
eq, i

0

@

1

Adξ,

when
6σ Sj þ Sk � Si

� �

πd3eq, i
≥

σ

min Rcj;Rck
� �

0:923 1� αg

� �

ni ε=d2eq, i

� �1=3
�
Ð 1
ξmin

dV, s=deq, i þ ξ
� �

dV, l=deq, i þ ξ
� �

ξ11=3
exp �

2σ min deq, j; deq,k
� �� �3

min Rcj;Rck
� �

βrlε
2=3ξ11=3d

11=3
eq, i

0

@

1

Adξ,

when
6σ Sj þ Sk � Si

� �

πd3eq, i
<

σ

min Rcj;Rck
� �

8
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>
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>

:

(19)

where ξmin is the minimum breakage volume fraction that is able to satisfy the energy density

criterion shown in Eq. (18).
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2.2. Governing Eqs

A three-dimensional (3D) transient CFD model is employed in this work to simulate the local

hydrodynamics of the gas-liquid two-phase bubble column. An Eulerian-Eulerian approach is

adopted in order to describe the flow behaviors for both phases, that is, water as the continu-

ous phase and air as the dispersed phase.

The mass and momentum balance equations are given by Eqs. (20) and (21), respectively,

∂

∂t
rkαkð Þþ∇∙ rkαkukð Þ¼0 (20)

∂

∂t
rkαkukð Þþ∇∙ rkαkukukð Þ¼�αk∇pþ∇∙τk þ αkrkg þ Fk (21)

where rk, αk, uk, τk and Fk represent the density, volume fraction, velocity vector, viscous stress

tensor and the interphase momentum exchange term for the k (liquid or gas) phase, respec-

tively. The sum of the volume fractions for both phases is equal to 1.

A modified k˜ε turbulence model with the consideration of bubble-induced turbulence by Sato

and Sekoguchi [22] is used for turbulence closure. The turbulent kinetic energy kl and dissipa-

tion rate εl are computed using Eqs. (22) and (23),

∂

∂t
riαiki
� �

þ ∇∙ riαikiui
� �

¼ ∇∙ αi μi þ
μeff , i

σk

� �

∇ki

	 


þ αi Gk, i � riεi

� �

(22)

∂

∂t
riαiεi

� �

þ∇∙ riαiεiui
� �

¼∇∙ αi μiþ
μeff , i

σε

� �

∇εi

	 


þ αi
εi

ki
C1εGk, i � C2εriεi

� �

(23)

where Gk, l is the production of turbulent kinetic energy and μt, l is the turbulent viscosity. In this

work, the standard k˜εmodel constants used are Cμ = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 1.0, σε = 1.3.

The effective viscosity is composed of the contributions of turbulent viscosity and an extra

term considering the effect of bubble-induced turbulence and is defined by Eq. (24)

μeff , l ¼ rlCμ

k2l
εl

þ rlCμ,BITαgdb ug � ul
�

�

�

� (24)

The Sato coefficient Cμ,BIT ¼ 0:6 is adopted according to the study [22].

2.3. Interphase momentum transfer

In this study, drag force, lift force and added mass force are considered as the main interactions

between the continuous liquid phase and the dispersed gas phase. The drag force is calculated

using Eq. (25),

FD ¼
3

4

CD

deq
rlαg ug � ul

�

�

�

� ug � ul
� �

(25)
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where CD is the drag coefficient, which can be obtained from the model by Grace et al.

[11]. The Grace model is well suited for gas-liquid flows in which the bubbles exhibit a

range of shapes, such as sphere, ellipsoid and spherical-cap. However, instead of compar-

ing the values of drag coefficients in the original Grace model, the drag coefficient can be

applied directly into the present model as the variation of bubble shapes has been taken

into account. The drag coefficients for the different shapes of bubbles are calculated using

Eqs. (26)–(28),

CD, sphere ¼
24=Reb Reb < 0:01

24 1þ 0:15Re0:687b

� �

=Reb Reb ≥ 0:01

�

(26)

CD, cap ¼
8

3
(27)

CD, ellipse ¼
4

3

gdeq

U2
t

rl � rg

� �

rl

(28)

where Reb is the bubble Reynolds number given by Reb ¼
rl ug�ulj jdeq

μl
and Ut is the terminal

velocity calculated using Eq. (29),

Ut ¼
μl

rld
Mo�0:149 J � 0:857ð Þ (29)

Here,Mo is the Morton number defined byMo ¼
μ4
l
g rl�rgð Þ
r
2
l
σ3

and J is determined by the piecewise

function calculated using the empirical expression (30)

J ¼
0:94H0:757 2 < H < 59:3

3:42H0:441 H > 59:3

(

(30)

H in expression (30) is defined by Eq. (31),

H ¼
4

3
EoMo�0:149 μl

μref

 !�0:14

(31)

where Eo is the Eötvös number and μref ¼ 0:0009 kg= m � sð Þ.

The lift force acting perpendicular to the direction of relative motion of the two phases can be

calculated by using Eq. (32)

FLift ¼ CLrlαg ug � ul
� �

� ∇� ulð Þ (32)

where CL is the lift coefficient and is estimated by the Tomiyama lift force correlation [12], as

described by the following empirical relation (33),
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CL ¼

min 0:288tanh 0:121Rebð Þ; f Eo
0

� �h i

Eo
0

≤ 4

f Eo
0

� �

4 < Eo
0

< 10

�0:29 Eo
0

> 10

8

>

>

>

<

>

>

>

:

(33)

where f Eo
0

� �

¼ 0:00105Eo03 � 0:0159Eo02 � 0:0204Eo
0

þ 0:474. Eo’ is the modified Eötvös num-

ber based on the maximum horizontal dimension of the deformable bubble, dh, as defined and

given, respectively, by Eqs. (34) and (35)

Eo
0

¼
g rl � rg

� �

d2h

σ
(34)

dh ¼ d 1þ 0:163Eo0:757
� �1=3

(35)

The virtual mass force is also significant when the gas phase density is smaller than the liquid

phase density. The estimation of the virtual mass force due to the deformation of bubbles is one

of the unresolved issues that require further investigation. With the caution, the virtual mass

force is still calculated using Eq. (36),

FVM ¼ CVMrlαg
dul
dt

�
dug

dt

� �

(36)

where CVM is the virtual mass coefficient defined as 0.5 in this study.

2.4. Numerical modelling

To validate the influence of variations in bubble shapes considered in the breakup model,

numerical simulations have been carried out for the air-water bubble columns used by

Kulkarni et al. [23] and Camarasa et al. [24] denoted by Case 1 and Case 2, respectively, in

Table 1.

The mesh setup is illustrated in Figure 4. Grid 2 consists of 20 rð Þ � 40 θð Þ � 100 zð Þ nodes in the

radial, circumferential and axial directions, respectively. The grid independence was tested in a

coarser Grid 1 of 16 rð Þ � 32 θð Þ � 80 zð Þ nodes and a refined Grid 3 of 26 rð Þ � 48 θð Þ � 126 zð Þ

nodes, in which case the total number of cells is doubled gradually. The grid independence test

for these three setups has yielded similar results quantitatively, even though the overall trend

of overprediction occurred for all three grids, as shown in Figure 5. Grid 2 was chosen and

used in subsequent simulations to investigate the effects of the improved breakup model.

Diameter (m) Height (m) Superficial velocity (m/s) Static liquid height (m)

Case 1 0.15 0.8 0.0382 0.65

Case 2 0.1 2 0.0606 0.9

Table 1. Details of the experimental setup.
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ANSYS Fluent 3D pressure-based solver is employed in CFD-PBM modelling. The time step is

set to be 0.001 s for all simulations, which is considered to be sufficient for illustrating the time-

averaged characteristics of the flow fields by carrying out the data-sampling statistics for

typically 120 s after the quasi-steady state has been achieved. The improved breakup model is

integrated into the simulations by using the user define function (UDF). At the inlet boundary,

the volume fraction of gas phase is set to be 1. The treatment of the inlet velocity is different

from using a constant superficial gas velocity, but a normally distributed velocity profile is

applied by using the model proposed by Shi et al. [25], which can accurately reflect the

experimental conditions employed in the study by Camarasa et al. [24]. Further information

Figure 5. Comparison of the simulated gas holdup profile to the data reported in Camarasa et al. [24] with three different

grid configurations.

Figure 4. Horizontal cross section and front view of the mesh setup for the main body of the bubble column.
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about the reasons, theoretical basis and the effects of using the inlet model can be found in

their published work. The outlet boundary is set to be a pressure outlet at the top. No-slip

conditions are applied for both the liquid and gas phases at the bubble column wall.

3. Results and discussion

3.1. Effect of deformed bubble shape variations on the pressure and surface energy

required for bubble breakage

To illustrate the influence of pressure energy control breakup, theoretical predictions of the

surface energy and the pressure energy requirements for the breakage of ellipsoidal and

spherical-capped bubble are shown, respectively, in Figure 6. It can be clearly seen from Figure 6

that the energy requirement for ellipsoid bubble shifts from pressure energy to surface energy

with an increase in the breakup volume fraction. This may be attributed to a higher dynamic

pressure being required inside a smaller bubble for resisting the surrounding eddy pressure in

order to sustain its own existence. However, the spherical bubble requires most of the surface

energy for its breakage. This may mainly be due to the contribution of the large front surface of

spherical-capped bubbles.

The surface energy requirement for bubble breakage in Figure 6 has taken into account the

bubble shape variations. To further illustrate the significance of considering the variation of

bubble shapes, a theoretical comparison of the increase in surface energy for the breakage of

the original spherical bubbles versus various shapes of bubbles has been shown in Figure 7.

Figure 6. Two competitive control mechanisms of the breakage of ellipsoidal bubbles (deq,i = 16 mm) and spherical-capped

bubbles (deq,i = 32 mm).
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The generation of spherical bubbles due to eddy collision with large ellipsoidal or spherical-

capped bubble is not covered, as the breakage volume fraction will be far smaller than 0.05.

The generation of small spherical bubbles occurs more frequently due to the interaction of the

shed eddies with the bubble skirt. This phenomenon was concisely described and explained by

numerical modelling work carried out by Fu and Ishii [26]. It is shown in Figure 7 that the

maximum increase in surface energy for ellipsoidal bubbles and spherical-capped bubbles is

different. As binary breakage is assumed, a large ellipsoidal bubble breaks into two smaller

ellipsoidal bubbles in most cases. The maximum increase in surface energy is demonstrated

when equal-size breakage occurs, which suggests that the parent ellipsoidal bubble has been

through a large deformation process itself. However, the spherical-capped bubble can break

into different combinations of daughter bubble types, including one ellipsoidal and one spher-

ical-capped bubble, two ellipsoidal bubbles, or two spherical-capped bubbles. The maximum

increase in surface energy for the breakage of a spherical-capped parent bubble is found with

the largest volume fraction of ellipsoidal daughter bubble. This result coincides with the

existing experimental observations: the ellipsoidal bubble has a more stable structure that is

able to resist bombarding eddies from both the front and the rear, whereas the spherical-

capped bubble can only resist eddies hitting from the front but is easily and rapidly ruptured

by eddies hitting from the rear.

Figure 8 compares the time-averaged gas holdup predicted by the original breakup model

and the improved breakup model. It can be found that the improved breakup model has

achieved results very similar to the experimental data at the core region of the column

Figure 7. Normalized increase in the surface energy for the breakage of original spherical bubbles and various shapes of

bubbles.
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(r/R < 0.6), while underestimation is shown near the column wall for both the original

breakup model and the improved breakup model. Since the standard k˜ε turbulence model

is still applied in this study, the underestimation of gas holdup may be due to the slight

poor prediction of the turbulence dissipation rate. The issue of underestimation on the gas

holdup distribution has also been addressed by Chen et al. [27], in which case the breakup

rate was artificially increased by a factor of 10 to obtain a “better” agreement with the

experimental data.

Figure 9 shows the radial distribution of the time-averaged turbulence dissipation rate for

Case 1. The turbulence dissipation rate distribution predicted by the standard k˜ε model is

smaller than the result obtained by the RNG k˜εmodel. This is because the RNG k˜εmodel has

a specific contribution from the local strain rate as the correction to the turbulence dissipation

rate. The tendency of the standard k˜ε model to underestimate the turbulence dissipation rate

can also be seen in the studies carried out by Laborde-Boutet et al. [28], Chen [29] and Jakobsen

et al. [30]. As a result, the standard k˜εmodel is insufficient to properly estimate the turbulence

dissipation rate in the regions with rapidly strained flows, which most likely corresponds to

the near wall region in the bubble columns. It can be seen from Eq. (19) that the breakup rate

ΩB˜ε
1=3

� exp �ε
�2=3

� �

, which is at least equivalent to the dissipation rate ε of the order of �1/3.

Therefore, the equilibrium state of bubble coalescence and breakup phenomena cannot be

reasonably addressed with an inaccurate estimation of the turbulence dissipation rate and

inevitably affect the predictions of gas holdup. Also, as the predicted coalescence rate is about

one order of magnitude higher than the predicted breakup rate, the bubble coalescence and

Figure 8. Comparison of the original breakup model and the improved breakup model for the prediction of the gas

holdup profile in the radial direction for Case 1.
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breakup phenomena cannot be reasonably addressed under this scenario and will inevitably

affect the predictions of gas holdup. In addition, as pointed out by Jakobsen et al. [30], despite

the accuracy of calculating the local turbulence dissipation rate from the k˜ε turbulence model,

this turbulence dissipation rate merely represents a fit of a turbulence length scale to single-

phase pipe flow data. Therefore, the contribution of turbulence eddies that are induced by the

bubbles has not being included. More importantly, the mechanism of bubble breakage caused

by the interactions of bubble-induced turbulence eddies with the subsequent bubbles, which

may be dominant in the core region of the bubble column, cannot be revealed through the

breakage kernels that are very sensitive to the turbulence dissipation rate.

Figure 10 shows the radial distribution of time-averaged gas holdup at different cross

sections in the axial direction. The results are obtained by using the improved breakup

model. It can be seen clearly from Figure 10 that the predicted time-averaged gas holdup in

the fully developed region (H/D > 5) has achieved self-preserving characteristics regardless

of the axial positions. It appears that the inlet conditions have a weak influence on this self-

preserving nature in the bubble columns, which is a result concurring with some previous

experimental findings [31, 32].

Figure 11 presents the unit volume-based interfacial area in the bulk region for each bubble class.

Due to the large differences in size from the smallest to the largest bubble class, the y-axis is

shown in a log10 scale. Interfacial area is a key parameter that largely affects the prediction of heat

and mass transfer between gas and liquid phase in the bubble columns. Although the differences

in the simulated interfacial area between the improved breakup model and the original breakup

Figure 9. Radial distribution of time-averaged turbulence dissipation rate for Case 1.

Heat and Mass Transfer - Advances in Modelling and Experimental Study for Industrial Applications80



model are not significant when the bubble size is relatively small, the influence of the bubble

shapes is gradually reflected when the shape of the bubbles transforms from ellipsoid to spheri-

cal-cap, resulting in much larger interfacial areas for spherical-capped bubbles.

Figure 11. Comparison of the simulated interfacial area in the bubble column for Case 2.

Figure 10. Radial distribution of time-averaged gas holdup at different axial positions.
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3.2. Effect of deformed bubble shape variations on the interfacial mass transfer across

bubble surfaces

The interfacial area obtained by the improved breakup model is based on the statistical model

of bubble shapes. The results will be slightly different when a more realistic model, which

considers the dynamic deformations that occur during bubble motions, is implanted into the

simulations. Indeed, the current results have implied that assuming all bubbles to be of a

spherical shape may lead to significant underestimation of the interfacial area and hence affect

the predictions of the heat and mass transfer rate when chemical reactions are considered in

the bubble column reactors. To further address this issue, the volumetric mass transfer coeffi-

cient, kLa, estimated based on the improved breakup model for each bubble class is presented

in Figure 12.

The convective mass transfer film coefficient can be defined by Eq. (37)

kL ¼
D

d
Sh (37)

where D is mass diffusivity, d is the bubble diameter and Sh is the Sherwood number. The

Sherwood number represents the ratio of the convective mass transfer to the rate of diffusive

mass transfer. It can be determined by using the Frossling equation described by Eq. (38)

Sh ¼ 2þ 0:552Re
1
2Sc

1
3 (38)

Figure 12. Comparison of the volumetric mass transfer coefficient for each bubble class.
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Re in Eq. (38) is the bubble Reynolds number and Sc is the Schmidt number. The Schmidt

number is the ratio of momentum diffusivity to mass diffusivity, defined by Eq. (39)

Sc ¼
υ

D
(39)

According to the analogy between heat and mass transport phenomena, a similar method can

be applied to calculate the Nusselt number by simply replacing the Schmidt number with the

Prandtl number. By doing so, the ratio of convective heat transfer to conductive heat transfer

can be characterized.

It is observed that the volumetric mass transfer coefficient is greatly increased due to the

contribution of ellipsoidal and spherical-capped bubbles. However, the peak value obtained

based on the improved breakup model may be attributed to the predicted number density of

the corresponding bubble class. As illustrated in Figure 7, the improved breakup model

requires a higher increase in surface energy at the boundary of ellipsoidal and spherical-

capped bubbles, which makes the smallest spherical-capped bubbles more difficult to break.

The results for this particular bubble class may not be a good reflection of the physical

phenomenon in reality, but the overall enhancement of the mass transfer coefficient is still very

significant. The predictions on the overall mass transfer coefficient are shown in Figure 13.

Figure 14 presents the local mass transfer coefficient at different cross sections along the height

of the bubble column. It can be seen from Figure 14 that the mass transfer rate estimations

based on Luo and Svendsen model and the improved breakup model are obviously very

different. The results based on the Luo and Svendsen model may imply that the mass transfer

is mainly associated with the regions where the larger Sauter mean bubble diameter has been

predicted. The results based on the improved breakup model suggest that the mass transfer is

Figure 13. Volumetric mass transfer coefficient predicted using both the improved breakup model and Luo and Svendsen

model [3].
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more uniformly distributed, in which case the enhanced overall mass transfer estimation

comes from the statistical sum of the contributions of each bubble class.

4. Conclusion

In this study, an improved breakup model has been proposed based on the breakup model by

Luo and Svendsen [3]. This improved breakup model takes into account the variation of

bubble shapes in bubble columns, which include spherical, ellipsoid and spherical-cap shaped

bubbles. In addition, the model considers the pressure energy controlled breakup coupled

with modified breakage criteria. The simulation results demonstrate an overall agreement with

the experimental data reported in the open literature. The difference between the surface

energy and the pressure energy requirements for forming various daughter bubbles has been

illustrated. The energy density constraint has been applied to prevent overestimating the

breakage rate of small bubbles. This study on the dynamic behaviour of various bubble shapes

could potentially lead to a more comprehensive understanding of the mass and heat transfer

characteristics of multiphase flows in the bubble column.

Figure 14. Distribution of estimated volumetric mass transfer coefficient at different cross sections in the bubble column for

Case 2. (a) Luo and Svendsen model; (b) improved breakup model. (from top to bottom: H = 0.6, 0.5, 0.4, 0.3 and 0.2 m.).
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Nomenclature

a long half axis length of a ellipse, m

c short half axis length of a ellipse, m

CD effective drag coefficient for a bubble around a swarm, dimensionless

D bubble column diameter, m

D mass diffusivity, m2/s

d bubble diameter, m

deq equivalent bubble diameter, m

dV length of virtual axis, m

Eo Eötvös number, dimensionless

ē mean turbulence kinetic energy, kg�m2/s2

es increase in surface energy, kg�m2/s2

FD drag force, N/m3

FLift lift force, N/m3

FVM virtual mass force, N/m3

fV breakage volume fraction, dimensionless

g gravity acceleration, m/s2

H distance from the bottom surface, m

k turbulence kinetic energy, m2/s2

kL convective mass transfer film coefficient, m/s
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Mo Morton number, dimensionless

n number density per unit volume, m�3

t time, s

Rc radius of curvature, m

Re Reynolds number, dimensionless

S surface area, m2

Sh Sherwood number, dimensionless

Sc Schmidt number, dimensionless

U superficial velocity, m/s

Ut terminal velocity, m/s

ūλ mean velocity of turbulence eddies, m/s

u velocity vector, m/s

V volume, m3

Greek letters

α phase volume fraction, gas holdup

ε turbulence dissipation rate, m2/s3

λ characteristic length scale of eddy, m

μ molecular dynamic viscosity, Pa�s

μeff effective turbulence dynamic viscosity, Pa�s

υ kinematic viscosity, m2/s

r fluid density, kg/m3

σ surface tension, N/m

τ shear stress, Pa

Subscripts

b bubble

g gas

i i-th class bubble

j/k daughter bubble

l liquid
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