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Abstract

Listeria monocytogenes is a foodborne pathogen, which causes listeriosis disease among 
humans and other animal species. Infections in humans mainly occur in immunocom-
promised individuals and are caused by the consumption of ready-to-eat and raw food 
products contaminated with the pathogen. To ensure survival in nature, L. monocytogenes 
easily adapts to different environmental conditions, and that justifies the hurdles to pre-
vent bacterial growth inside the food chain. Exposure to a single or multiple sublethal 
stresses, as those impaired by food processing, food matrices, and the gastrointestinal 
tract, can enhance tolerance of L. monocytogenes to stresses and increase its survival and 
pathogenesis. This chapter summarizes the current information on the adaptive response 
of L. monocytogenes to different stresses, namely (1) cold stress, (2) acid stress, (3) osmotic 
stress, (4) desiccation stress, and (5) high hydrostatic pressure, and the impact of these 
stresses on L. monocytogenes virulence. The objective is to provide the background infor-
mation that is necessary for the development of scientifically sound control strategies to 
improve food safety and to reduce the uncertainty of microbial risk assessments, associ-
ated to limited knowledge on the behavior of cells capable to adapt and survive stresses.

Keywords: Listeria monocytogenes, stress response, virulence

1. Introduction

Listeria monocytogenes is a pathogenic bacterium capable of causing listeriosis disease in humans 

and other animals. L. monocytogenes has a ubiquitous distribution in the environment [1]. 
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Human listeriosis is on the top five most commonly reported zoonosis under the surveillance 
of the European Union (EU) and presents the highest case fatality rate, that is, 16.2% [2]. The 

incidence of invasive forms of the disease is higher in risk groups, such as the elderly, immu-

nocompromised individuals, pregnant women, and newborns. In countries with established 

surveillance programs, the incidence of listeriosis is reported to be increasing, and the distribu-

tion of cases is shifting, primarily affecting elderly persons. In 2016, most cases of listeriosis 
were reported in individuals over 64 years of age [2]. This is worrisome, as advances in the field 
of medicine are leading to growing life expectancies; therefore, an increased risk of foodborne 
listeriosis is expected to occur in the near future.

Listeriosis is an atypical disease with multiple routes of infection, including aerial, cutaneous, 

transplacental, nosocomial, direct contact, or digestive tract. However, surveillance studies 

and investigation of recent outbreaks have demonstrated that the most associated transmis-

sion pathway to humans is the intake of contaminated food (digestive tract). Ready-to-eat 
foods, particularly refrigerated foodstuffs, such as milk and dairy products, meat and meat 
products, raw vegetables, and fruits, have been related to recent outbreaks [3, 4].

The food industry relies on a variety of processing and preservation methods to produce safe 

and healthy products with adequate shelf life and that are appreciated by consumers. These 

methods inactivate or inhibit the growth of pathogenic microorganisms such as L. monocy-

togenes and suppress undesirable chemical and biochemical changes, thereby ensuring food 

safety and maintaining desirable physical and sensory properties. The methods currently 

used in food preservation involve physical, chemical, or biological factors. In combination 

with other strategies, refrigeration, freezing, addition of acidifying agents or curing agents 

(e.g., sodium chloride and sodium nitrite), radiation and high-pressure processing are the 
most reliable and used preservation techniques. However, there are studies which demon-

strate that L. monocytogenes strains have mechanisms that allow them to survive and resist the 

stresses caused by these processing methods [5].

This review focuses on key issues such as the molecular mechanisms underlying L. mono-

cytogenes survival and adaptation to stresses caused by different environmental conditions. 
Since many of the stresses can be found in both food and humans, we will try to correlate 

these molecular mechanisms with the organism’s virulence. Studies on the development of 

technologies to control and prevent the contamination of L. monocytogenes in food matrices 

and food processing facilities are also briefly discussed.

2. Cold stress response

Cold stress adaptation is a fundamental characteristic of L. monocytogenes that markedly con-

tributes to the microorganisms’ dissemination via refrigerated food products. Although most 

foodborne pathogens are effectively controlled under cooling storage, L. monocytogenes pro-

liferation persists so, cold-stored contaminated foods provide proper conditions for survival 

and growth of these organisms [6, 7].

L. monocytogenes, as a psychrotolerant bacterium, is able to grow over a wide range of temper-

atures (1–45°C), although the optimum temperature range is from 30 to 37°C [8]. Cold stress 
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adaptation in L. monocytogenes is mediated through many molecular response mechanisms 

whose nature remains mainly vague, besides some aspects of this phenomenon have been 

clarified in model microorganisms.

2.1. Listerial mechanisms of low-temperature resistance

L. monocytogenes response to cold shock comprises the synthesis of cold-shock proteins 
(CSPs), while during balanced growth at low temperatures, it produces cold acclimation 
proteins (CAPs). Twelve CSPs and four CAPs were identified as a result of cold stress [9]. 

The main functions involving CSPs include chaperones involved in DNA recombination 
course, transcription, translation, and protein folding [10]. The cold adaptation of this 

pathogen is accompanied by gene expression changes. When cultured at 10°C, L. monocyto-

genes RNAs are increasingly synthesized compared to growth at 37°C [11]. A higher mRNA 
expression for chaperone proteases suggests that ClpP, ClpB, and GroEL enzymes may 
participate in the degradation of damaged or abnormal polypeptides arising due to growth 

at low temperatures.

Changes in temperature also lead to an alteration in the membrane lipid composition to 

maintain the ideal membrane fluidity required for proper enzyme activity and transport 
of solutes [12]. Listeria cell membrane contains high amounts of iso and anteiso, odd-num-

bered, branched-chain fatty acids (>95%). When grown under refrigeration temperatures, 
the anteiso-C15:0 represents 65–85% of total membrane fatty acids. When grown at 37°C, 
predominant fatty acids are anteiso-C15:0 (41–52%), anteiso-C17:0 (24–51%), and iso-C15:0 
(2–18%) [13]. Growth at low temperatures also causes an increase of unsaturated fatty acids, 
which helps enhancing the fluidity of the membrane. Decreasing the growth temperature 
from 20 to 5°C precedes a switch from iso to anteiso branching (i-C15:0 to a-C15:0) and a 
fatty acid shortening (a decrease in C17:0). Annous et al. [13] suggested that the growth of  

L. monocytogenes in refrigerated foods could be controlled by food-grade agents inhibiting the 

biosynthesis of anteiso-C15:0.

L. monocytogenes growth at low temperatures is also stimulated by the presence of cryoprotec-

tant compatible solutes, for example, betaine, glycine, and carnitine [14, 15]. Listeria imports 

and accumulates these solutes from the environment, and this is one of the functions of sigma 

factor σB (Listeria’s general stress transcription factor) during growth at low temperature [16]. 

In response to cold shock, σB controls the transcription of genes encoding the BetL, Gbu, and 
OpuC uptake system, involved in the accumulation of glycine, betaine, and carnitine. Studies 
with mutants having deleted osmolyte transporter genes demonstrated the cryoprotective 

activity of these compounds [17].

3. Acid stress response

L. monocytogenes may be exposed to high acidity levels while in the food chain and during gas-

trointestinal (GI) passage in the host (i.e., following exposure to fatty acids, in the phagosome 
of macrophages during systemic infection, and even upon exiting the host, due to fluctuations 
in environmental pH).
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Being a neutrophile (optimum pH 6 or 7), L. monocytogenes keeps the intracytoplasmic pH 
close to neutrality, though pH oscillations in the external medium are imperative for its sur-

vival and a prerequisite for pathogenesis and infection [18]. Acid tolerance response (ATR) 
is the adaptive phenomenon that permits the pathogen to preserve pH homeostasis when 

exposed to low pH. Understanding the molecular mechanisms of acid adaptation and pH 

homeostasis is essential in order to control the pathogen growth in high-risk foods and pre-

dict the ability to cause disease.

3.1. Listerial mechanisms of acid resistance

Cellular exposure to pH stress induces the modulation of fatty acid profiles in Listeria cell mem-

brane, although the changes differ from those documented for other genera [19]. In L. mono-

cytogenes, larger proportions of linear chain fatty acids are incorporated into the membrane, 
with increased levels of C14:0 and C16:0 and a reported concomitant decrease in C18:0 [20, 21].

Under high acidic environments, two chaperonins (DnaK and GroES) and a serine protease 
(HtrA) have been identified and characterized in Listeria, being necessary for the organism 

survival [22–24]. Other studies shed light on the role of σB in modulating genes involved 

in pH homeostasis and gastrointestinal persistence, thus crucial in L. monocytogenes survival 

after exposure to acid conditions. It has been reported that Listeria mutants that lack a sigB 

functional gene exhibit a decreased resistance to low pH conditions, besides σB regulates the 

expression of OpuC, a cold-activated transporter for carnitine.

Additional mechanisms of acid resistance such as the F0-ATPase complex, arginine deiminase 
system (ADI), and the glutamate decarboxylase (GAD) have been elucidated.

3.1.1. F0F1-ATPase complex

F0F1-ATPase is an enzyme organized in two distinct although physically linked domains. The cat-
alytic part (F1) is cytoplasmic while the integral membrane domain (F0) acts as a membrane chan-

nel for proton translocation. Cytoplasmic domain may either catalyze the synthesis of adenosine 

triphosphate (ATP) when the protons pass into the cytoplasm through the membrane-bound 
domain, or hydrolyze ATP when the protons move outside of the cell. Thus, the F0F1-ATPase 
complex is responsible for the aerobic synthesis of ATP, as a result of protons moving into the 
cell, and generates a proton motive force anaerobically by expelling protons. As a consequence of 

the latter mechanism, F0F1-ATPase is thought to increase intracellular pH in acidic situations [25].

3.1.2. Arginine deiminase system

This system comprises three enzymes: arginine deiminase (encoded by arcA) which cata-

lyzes the hydrolysis of arginine to citrulline and ammonia; ornithine carbamoyltransferase 

(encoded by arcB) which is responsible for converting citrulline to ornithine and carbamo-

ylphosphate, in the presence of phosphate; and carbamate kinase (encoded by arcC) which 
synthesizes ATP from carbamoylphosphate and adenosine diphosphate (ADP).

Arginine is transported into the cell in exchange for an ornithine molecule that is moved 

outside through the transporter encoded by arcD, while the pathway enzymes ultimately 
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catabolize arginine to ornithine, ammonia, and CO2. Ammonia is produced through the 

catabolization of arginine via the ADI system combined with intracellular protons to produce 
ammonium ions. This reaction increases intracellular pH, thus allowing survival in hostile 

environments that would otherwise be lethal to the cell [26]. In addition, ATP is generated by 
the system and this can be used for driving out protons through F1F0-ATPase [27].

3.1.3. Glutamate decarboxylase system

The GAD enzyme, generally encoded by gadA or gadB, irreversibly decarboxylates glutamate, 

producing the neutral γ-aminobutyrate (GABA). This reaction results in an increase of the 
cytoplasmic pH due to the consumption of an intracellular proton. GABA produced by the 
decarboxylation reaction is subsequently exchanged on the cell membrane for a glutamate 

molecule by a glutamate: GABA antiporter, generally encoded by the gadC gene [28].

The GAD system is crucial for L. monocytogenes acid adaptation and, consequently, for a suc-

cessful passage through the gastric environment, a necessary condition for latter invasion of 
intestinal epithelial cells [29]. The loss of genes encoding a GAD enzyme and a glutamate 
transporter decreases the cell’s ability to survive in low pH environments and consequently to 

cause infection [30]. Stress factors commonly associated with the GI tract (low pH, anaerobio-

sis, hypo- and hyperosmotic shock, bile salts, and chloride ions) have been shown to induce 
GAD system expression in a variety of bacteria [31, 32].

4. Osmotic stress response

Osmotic stress defines the osmotic strength variation of an organism environment, which 
results from desiccation or from a high content of osmotically active compounds (salt or sug-

ars) in the environment, lowering its water activity (a
w
). Since the bacterial cytoplasmic mem-

brane is permeable to water but not to most other metabolites, hyper- or hypo-osmotic shock 
causes an efflux or influx of water, accompanied by a concomitant decrease or an increase in 
intracellular volume, respectively. In general, the internal osmotic pressure is higher than that 

of the surrounding medium, generating turgor, the driving force for cell extension, growth, 

and division. Therefore, the bacterial maintenance of pressure turgor is critical to survival in 

osmotic stress conditions.

The maximum NaCl concentration that permits L. monocytogenes growth ranges from 7 to 10% 
[33]. This osmotolerance is vital during its infectious cycle, since L. monocytogenes encounters 

elevated osmolarity in the food processing industry and in the gastrointestinal lumen of the 

host. The response of microorganisms to osmotic stress is called osmoadaptation and holds 

physiological changes and variations in gene expression patterns [34].

4.1. Listerial mechanisms of osmotic resistance

Compatible solute osmoadaptation is a biphasic response in which elevated levels of potas-

sium cation K+ (and glutamate, its counter-ion) represent a primary response, succeeded 
by a significant increase in cytoplasmic concentration of compatible solutes. Cells absorb 
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osmolytes from the external environment to restore osmotic balance within cells. The 

solute-mediated osmoprotection stimulates the growth of cells subjected to high salt con-

centrations. Deletions of these osmolyte transporters reduce the growth of Listeria under 

conditions of hyperosmolarity [14, 30, 35]. In addition to previously mentioned compatible 

solutes (glycine, betaine, and carnitine), proline is important for the survival under hyper-

osmolarity conditions [36]. σB factor, as an important part of the overall stress response of 

L. monocytogenes, mediates the expression of ctc gene and the use of betaine and carnitine as 

osmoprotectors.

In response to osmotic stress, two genes involved in cell envelope modification have been 
identified: lmo2085, a putative peptidoglycan-linked protein, and lmo1078, a putative UDP-
glucose phosphorylase that catalyzes the formation of UDP-glucose, a precursor of mem-

brane glycolipids and of the cell wall [37].

A further mechanism of osmotic adaptation is the modification of genetic expression leading 
to an increased or a decreased synthesis of several proteins. Salt-shock proteins are rapidly 
induced and overexpressed for a short time period, being similar to those induced in cold-

shock response (CSPs and CAPs). Among CSPs induced in L. monocytogenes, there are two 

general stress response proteins, DnaK that acts as a heat-shock protein stabilizing cellular 
proteins and Ctc that is involved in high osmolarity resistance in the lack of osmoprotectants, 
such as glycine, betaine, and carnitine, in the medium [38]. Additional stress response pro-

teins, including ClpC (an ATPase), ClpP (a protease), and HtrA (a protease), are essential for 
osmotic and acid stress adaptation in L. monocytogenes [39]. HtrA may play a role in degrading 

misfolded proteins and is beneath LisRK control, a two-component regulatory system impor-

tant for osmoregulation [36].

5. Desiccation stress response

Desiccation tolerance defines the bacteria’s aptitude to survive for extended periods on a 
surface, deficient of nutrients and water. As so, L. monocytogenes desiccation tolerance is 

most likely associated with the ability to persist in food production surfaces and conse-

quently cross-contaminate food products [40]. The low a
w
 resulting from high osmolarity 

decreases turgor pressure in a bacterial cell inhibiting bacterial growth [41]. Drying and 
addition of salt or sugar are traditional methods to lower food a

w
 and therefore enhance 

its prolonged shelf life. L. monocytogenes grows optimally at a
w
 ≥ 0.97, although it may 

survive in foods with low a
w
 [42]. When compared to other common infectious foodborne 

pathogens, L. monocytogenes does not appear to grow at a
w
 < 0.90 but it can survive in these 

conditions, particularly under refrigeration, for long periods. To date, existing informa-

tion regarding L. monocytogenes desiccation survival is limited and primarily focuses on 

factors influencing the survival to osmotic stress [40, 43–46]. Strains of serotypes 1/2c and 
1/2b were the most tolerant to desiccation, followed by 4b and 1/2a [47]. Hansen and Vogel 

[46] showed the protective effect of osmoadaptation and also the formation of biofilms on 
the desiccation survival.

Listeria Monocytogenes94



6. High hydrostatic pressure

A high hydrostatic pressure (HHP) represents the application of pressure in the range of 
50–1000 MPa, though the inactivation of vegetative cells of bacterial species is typically 
reached from 300 to 700 MPa, and bacterial spores inactivation demands higher pressure lev-

els up to 1000 MPa [48]. However, depending on the pressure level, HHP treatments can fully 
inactivate bacteria or impose sublethal injuries. For pressures up to 400 MPa, the integrity of 
Gram-positive bacterial cells and metabolic activity are maintained, with very limited cell 
destruction [49]. Over the last years, it has been stated that L. monocytogenes is potentially 

capable of recovering culturability following HHP exposure [49–52]. Physiological studies 
have also demonstrated that increasing pressure levels results in an accelerated decline of 

metabolic indicators, such as the activity of the LmrP membrane transport system [53]. These 

findings suggest that bacteria exposed to HHP are unable to grow due to cell injury, but yet 
can mount a nonspecific response to high pressure. A proportion of the cell population is able 
to maintain cellular activity of some kind after HHP, demonstrating the capacity to cellular 
repair and regrow, when adequate conditions are available [49].

To date, little research has been conducted regarding the mechanisms of bacterial adaptation 
and resistance to high pressure. Wemekamp-Kamphuis et al. [54] demonstrated that one of 

the responses that enable Listeria survival upon HHP treatment results from induction of the 
general stress response mediated by σB. L. monocytogenes sigB deletion mutant was more sus-

ceptible to HHP exposure than the wild type, while induction of σB resulted in an increased 

HHP protection relative to the untreated control strain.

Several pressure-induced proteins have been increasingly synthesized when compared to the 

synthesis of other control proteins at atmospheric pressure [55]. L. monocytogenes has shown 

to actively express many genes as a response to high pressure, but some functional categories 

appear more affected than others. Genes that tend to be expressed at higher levels under high 
pressure are genes encoding for transport and binding, signal transduction and chemotaxis, 

cellular processes, transcriptional regulators, metabolism, and protein fate [56]. The stabiliza-

tion and maintenance of the bacteria cell is at high focus, showed by the significant regulation 
of ribosomes and proteins, together with components involved in the cell envelope and the 

septal ring. It is assumed that the activation of genes involved in the lipid and peptidoglycan 

biosynthetic pathways is connected to this function. Upregulation of genes associated with 

generalized repair and maintenance has been proved, where the activation of cold- and heat-

shock genes is an example for this [57, 58]. When high pressure demands more energy to be 

used on repair, energy production and conversion is suppressed. The repression of several 

energy production/conversion, carbohydrate, and other carbon compound catabolic genes 
may represent a diminishment of catabolism in cells imposed by HPP treatments. This can be 
seen by the pressure-induced switch from active growth to a cell repair state, the stationary 

phase, resulting in a decreased growth rate [59].

Several genes associated with cell formation and shape, as well as synthesis or reassembly of 

cell-wall constituents, in particular peptidoglycan and fatty acids, were observed to have an 
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increased expression. Because of this, genes involved in such functions can be considered as 
very central in the response to high pressure. It is presumed that L. monocytogenes increases 

both cell division and cell-envelope-associated gene expression aiming to replace damaged 

components and thus compensate membrane and wall damages [59].

Cell membranes damage by HPP may possibly be a main cause of inactivation or death in 
Gram-negative bacteria, but it is fallacious to admit that in Gram-positive bacteria. Cell mem-

brane and wall stabilization in the stationary growth phase do provide a protective effect 
against HPP, being a major factor for the survival of HPP-induced damage [60]. Beyond cell 
envelope damage, HPP interferes within the nascent septal ring formation along with other 
associated cell-wall formation and chromosome segregation processes [59].

7. Stress impact on L. monocytogenes virulence

L. monocytogenes has a profound ability to adapt to unfavorable stressful environments, 

switching from a saprophyte to an intracellular pathogen capable of causing serious infection 

to the host [61]. In this transformation, σB dominates both in the external environment and 

during gastrointestinal transit, while positive regulatory factor A (PrfA) plays a central role 
on the intracellular infection. In concert with PrfA, σB activates the transcription of several  

L. monocytogenes virulence genes: (1) bsh, encoding bile salt hydrolase, essential in gastrointes-

tinal colonization prior to invasion; (2) inlA, encoding internalin A, mediates entry into human 

intestinal epithelial cells; and (3) gadA, encoding part of the glutamate decarboxylase system, 

crucial for acid survival [62]. σB also contributes to the transcriptional activation of prfA, encod-

ing PrfA, a central virulence regulator of virulence gene expression in L. monocytogenes [63].

PrfA-dependent virulence gene cluster or LIPI-1 (Listeria pathogenicity island 1) encodes most 
virulence factors involved in the pathogenic infectious cycle. This chromosomal locus com-

prises the following genes: (1) hly, encoding listeriolysin O (LLO), a pore-forming toxin crucial 
in the escape from phagocytic vacuoles; (2) plcA and plcB, encoding two phospholipases C 

which cooperate with LLO in the escape from bacterial phagosomes; (3) mpl, encoding a metal-

loprotease implicated in the maturation of proenzyme pro-PlcB; (4) actA, encoding ActA pro-

tein involved in the intra- and intercellular motility of the bacteria; and (5) prfA, encoding PrfA, 
a transcriptional activator of LIPI-1 genes [64]. The expression of additional genes dispersed on 

the chromosome may be PrfA-regulated, as the internalin locus inlAB [65], the genes encoding 

internalins InlA and InlB cell-wall-anchored proteins which induce Listeria phagocytosis [66].

Following the complete genome sequencing of several L. monocytogenes strains, an increasing 

number of virulence-related proteins are being identified and their specific involvement dur-

ing infectious stages deciphered (Table 1).

In addition to other factors, the infectious potential of L. monocytogenes is conditioned by the 

environmental conditions prior to host invasion. A correlation between stress response and 

virulence seems to exist and associates strains having more effective stress response mecha-

nisms to being also more virulent [84]. Early studies by Durst [84] and Wood and Woodbine 

[85] demonstrated that cold storage may enhance virulence of some strains because the 
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Involvement Proteins/function Ref.

Regulation PrfA

Positive regulatory factor A, central virulence regulator of virulence gene 

transcription.

[68]

SigmaB (σB)

General stress transcription factor.

[69]

CtsR

Class III stress-response regulator, a transcription repressor.

[70]

HrcA

Heat regulation at controlling inverted repeat of chaperone expression elements. A 

transcription repressor.

[71]

Attachment and invasion InlA

Internalin A, surface protein that mediates entry into cells expressing its receptor, 

the E-cadherin.

[65]

InlB

Internalin B, surface protein that mediates entry into cells expressing one of the 

receptors gC1qR, HGF-SF, Met, and the glycosaminoglycanes (GAGs).

[72]

Lysis of vacuoles LLO

Listeriolysin O, hemolysin required for vacuole escape by lysis of the phagosome 

membrane.

[73]

PC-PLC

Phospholipase activated by proteolytic cleavage involving Mpl or by cellular 

proteases. Required for the lysis of the double-membrane vacuole.

[74]

Mpl

Metalloprotease required for the maturation of PC-PLC.

[75]

Intracellular multiplication Hpt

Hexose phosphate transporter required for intracytosolic proliferation.

[76]

Cell-to-cell spread ActA

Actin assembly-inducing protein, involved in cell-to-cell spread.

[77]

Environmental stress response 

and virulence

HtrA

Serine protease involved in acid and osmotic stress response.

[78]

Bsh

Bile salt hydrolase involved in the intestinal and hepatic phases of listeriosis.

[79]

ClpC

ATPase protein promoting early bacterial escape from the phagosome of 

macrophages and thus virulence.

[80]

ClpP

Serine protease involved in proteolysis and required for growth under stress 

condition.

[81]
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pathogen virulence rather increases when grown under refrigeration than at optimal growth 

temperature. By contrast, virulence gene expression was reported to be downregulated at 
temperatures below 30°C, besides PrfA is only formed at 37°C [85]. According to Loh et al. 

[86], the expression of prfA is nearly 16-times higher at 37°C compared to that at 30°C, and 
imperceptible in cells cultivated at 20°C. The specific pathogenicity of LLO can be fully recov-

ered in less than 24 h by incubating refrigerated cells at 37°C [87]. This virulence recovery 

after heat shock reinforces the importance of eliminating L. monocytogenes from minimally 

processed ready-to-eat foods held at refrigeration temperatures for long periods.

Low pH and high salt content are common factors often found in foods contaminated with L. 

monocytogenes [89]. Even though at these conditions, the growth of most foodborne and spoilage 

bacteria is restricted, L. monocytogenes is capable of surviving and even grow in such environ-

ments; long-term adaptation to these sublethal stress conditions results in altered virulence [88].

Conte et al. [31, 89] demonstrated that short-term exposure (1 h) of L. monocytogenes to a sub-

lethal acidic environment (pH 5.1) not only increased its invasiveness to the human colon 
adenocarcinoma cell line Caco-2 but also increased the ability of L. monocytogenes to survive 

and proliferate in macrophage-like cells, suggesting that exposure to a low pH (e.g., in the 
human stomach) may enhance listerial overall virulence. In addition, LLO excreted by virulent 
L. monocytogenes showed a maximal activity at pH 4.0–5.0. In another study, the exposure of L. 

monocytogenes to acidic shock has induced the transcription of two important virulence genes 
(inlA and bsh) [90]. Conversely, a study by Rieu et al. [91] reported a decrease in virulence gene 

transcription after 5 h at pH 4.0 achieved with acetic acid. This conflicting finding may be sus-

tained by the use of organic acids since they might be more harmful to the bacteria. Some weak 
organic acids enhance pathogenicity of the bacterium, while others reduce it, as the secretion of 

LLO is increased by citrate, acetate, and lactate, whereas sorbate inhibited this hemolysin [92]. 

This knowledge would be important for the selection of acidulants to be used in different foods.

Involvement Proteins/function Ref.

DnaKJ

Chaperone heat-shock proteins encoded by the dnaK operon and required for 

phagocytosis.

[22]

GroES, GroEL

Chaperone proteins which regulate HrcA posttranscriptionally.

[23]

GAD

The glutamate decarboxylase system, involved in acid stress response.

[29]

BetL

Glycine betaine transport system I, involved in osmotic stress response.

[82]

Gbu

Glycine betaine transport system II, involved in osmotic stress response.

[15]

OpuC

Carnitine transport system, involved in cold and osmotic stress response.

[83]

Table 1. Stress response and virulence-associated proteins in Listeria monocytogenes (adapted from reference [67]).
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Garner et al. [93] reported an intensified invasiveness of L. monocytogenes for Caco-2 cells when 
grown at 7°C rather than at 37°C, and, for both temperatures, the invasion ability was greater in 
cells grown at pH 7.4 compared to growth at pH 5.5. A growth temperature of 37°C, pH 7.4, in 
the presence of NaCl or sodium lactate, enhanced L. monocytogenes invasiveness; however, the 

pre-exposure to gastric fluid (pH 4.5), even for as short as 10 s, substantially reduced its invasion. 
These findings intimate that listerial virulence-associated characteristics seem to be affected by 
specific food properties (e.g., the presence of organic acids or salt). The authors further showed 
that L. monocytogenes growth phase affects its ability to invade Caco-2 cells. The invasion by log-
phase cells was 9.5-fold lower than invasion by stationary-phase cells, corroborating other stud-

ies which demonstrate that exposure of L. monocytogenes to different environmental conditions 
can change invasiveness and virulence [93]. Accordingly, the increased stationary-phase inva-

siveness also coincides with stationary-phase induction of σB activity [90]. In stationary-phase 

cells, inlA expression is regulated in a σB-dependent manner, and growth phase-dependent 

effects on invasion appear independent of PrfA [94, 95], contributing to inlA transcription [96].

Complementary studies demonstrate that L. monocytogenes pathogenicity requires an adap-

tive acid tolerance response, so the ability to survive gastric acid fluid and to invade host cells 
is related to ATR activation [30, 89, 97]. This finding is supported by the fact that the glutamate 
decarboxylase (GAD) system, as the ATR most important component, is required for liste-

rial survival in the gastric environment, and also LisRK deletion, a two-component system 
involved in acid resistance regulation, caused a dramatic reduction in virulence [29, 98].

A further prerequisite for L. monocytogenes infection depends on the ability to counteract condi-

tions of elevated osmolarity in the gastrointestinal tract. As mentioned in Section 2.1, the carnitine 
uptake system (OpuC) is directly linked to osmotic stress resistance of L. monocytogenes and to 

its ability to reach and proliferate in the liver and spleen [17]. Carnitine (produced from the des-

quamation of the gastrointestinal epithelial layer) was formerly proved to act as a crucial osmo-

protectant, facilitating growth in this gastrointestinal environment, once changing the carnitine 

transported OpuC resulted in a significant reduction in Listeria ability to colonize the upper small 

intestine and cause subsequent systemic infection [99, 100]. A supporting study by Wemekamp-
Kamphuis et al. [17] demonstrated that a triple mutant, defective in all three compatible uptake 
systems (BetL, Gbu, and OpuC), showed a similar phenotype to that of a single opuC mutant, 
mutually revealing a decreased ability to cause systemic infection relative to the parent. Those 

were clear evidences that betL and gbu do not play a significant role in L. monocytogenes pathogen-

esis and that it is the carnitine uptake system that most induces listerial virulence. In addition, 
Joseph et al. [101] also identified OpuCA and OpuCB as being induced intracellularly. Since the 
contribution of each transporter is dependent on the external environment, there are occurrences 

when each system is tailored for optimal effects within a certain environmental niche.

Over the last years, novel trends in food production tend to preserve the natural flavor and 
texture of products using minimal processing. Non-thermal food preservation usually allows 
a significant microbial reduction, and mounting evidence also demonstrates that the condi-
tions applied by alternative technologies may influence bacterial virulence [102]. The appli-

cation of HHP has been shown not to induce mutations in the internal genes, inlA and inlB, 

implicated in the adhesion and internalization of L. monocytogenes in human cells. However, 

when the effect of HPP on the ctsR gene is observed, a reduction in virulence potential of 
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surviving cells was noted. Likewise, virulence and reduced motility may be the result of a 
mutation in this gene corresponding to the loss of a single amino acid. This suppression could 

be related to a high-pressure tolerance [70, 103].

8. Conclusions

Exposure of L. monocytogenes to sublethal environmental stresses can enhance its survival to 

subsequent lethal conditions and additionally induce the expression of the organism’s viru-

lence genes. Therefore, exposure of L. monocytogenes to food-associated stresses such as high salt 

concentrations or low temperatures during refrigerated storage may result in increased viru-

lence and thus a higher risk for listeriosis. Any strain of L. monocytogenes present in food is actu-

ally considered equally pathogenic. However, results from several studies support the idea that 

the heterogeneity among strains regarding the response to stress and virulence potential should 

be considered, once responses to food matrix and storage conditions are often strain specific.

Although significant advances in our understanding on stress response and virulence poten-

tial have been achieved in the last years, there is still a need to fulfill knowledge gaps on 
molecular mechanisms behind L. monocytogenes response to stress and virulence. Further 

studies on the influence of food matrix on stress tolerance and virulence potential of different 
strains, recovered from foods and from patients, are needed. This information can be further 

used by regulators to refine previous risk assessments and also in the definition of control 
measures by the food industry.
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