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Abstract

Trans fatty acids (TFAs) have at least one non-conjugate double bond in trans and TFAs 
are divided into two groups such as naturally or industry-occurring groups. Recent stud-
ies reveal that intake of industrial TFA is linked to increased risk of cardiovascular dis-
ease. Moreover, several studies suggest that intake of industrial TFA increases risk of 
diabetes, although other studies show that intake of industrial TFA is not associated with 
diabetes. Therefore, we used adipocytes which play important roles in glucose metabo-
lism and development of diabetes, and our previous study showed that persistent expo-
sure to elaidate, a major industrial TFA, impairs insulin-dependent glucose uptake of 
adipocytes. Since phospholipid acts as a scaffold for molecules of insulin signaling, we 
analyzed intracellular distribution of elaidate and fatty acid composition of lipid species. 
Incorporated elaidate is esterified into triglyceride and phospholipid. Moreover, elaid-
ate-esterified phospholipids are distributed in various organelles. Intriguingly, persistent 
exposure to elaidate reduces the amount of oleate in phospholipid of mitochondria and 
plasma membrane and disturbs the equilibrium between bent and linear-shaped chain 
fatty acid. Therefore, disturbed equilibrium of fatty acid composition of phospholipid 
should be considered to elucidate the mechanism for impaired insulin responsiveness of 
adipocytes exposed to elaidate.
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1. Introduction

1.1. Intake of trans fatty acids from daily diet

Trans fatty acids (TFAs) are defined as unsaturated fatty acids which have at least one non-con-
jugated double bond in the trans form [1] and are divided into naturally or industry-occurring  
group. A major naturally occurring TFA is vaccenic acid (t11-18:1), and it is produced by gas-
tric bacteria of ruminants, for example, cow and goat [2]. Since meat and milk of ruminants 
contain vaccenic acid [3], we intake vaccenic acid from daily diet and vaccenic acid is contained 
in human blood [4]. On the other hand, a major industry occurring TFA is elaidate (t9-18:1), 
which is an artificially produced cis form of unsaturated fatty acids during hydrogenation of 
vegetable oil and food frying [5]. Therefore, we intake elaidate from shortening, margarine 
and fried food such as fried potato, snack food and instant noodles [6, 7]. It is reported that 
elaidate as well as vaccenic acid is contained in our blood at approximately 10–30 μM [4, 8].

1.2. Relationship between intake of industrial trans fatty acids and risk of 
cardiovascular disease and governmental regulation of dietary intake of trans fatty 
acids

It has been revealed that intake of TFAs-rich diet reduces HDL cholesterol level and raises 
LDL cholesterol level in healthy subjects [9]. Moreover, retrospective cohort study shows that 
intake of TFAs-rich diet is associated with higher risks of cardiovascular disease (CVD) [10]. 
These findings are supported by systematic review and meta-analysis [11, 12]. Furthermore, de 
Souza et al. also reveal that mortality of CVD is associated with intake of industrial TFAs, but 
not ruminant TFAs [11]. Consideration of those adverse effects of industrial TFAs on health, US 
Food and Drug Administration decided to eliminate industrial TFAs from food supply until 
2018. Moreover, Denmark, Switzerland, Austria, Canada and Singapore have policy to limit or 
diminish industrial TFAs in food. Some other countries in Asia such as Korea and China obli-
gate to labeling of content of TFAs. These governmental regulations reduce intake of industrial 
TFAs from daily diet, although industrial TFAs are contained in food in many countries [13, 14].

1.3. Is intake of trans fatty acids a risk factor for various diseases?

Emerging evidences suggest that intake of TFAs is associated with the development of various 
diseases. Systematic review by Barnard et al. indicates that intake of TFAs is associated with 
risk of cognitive disorders [15]. Moreover, Golomb et al. reports that dietary TFAs intake is 
negatively related to memory of the word in younger adults [16]. In addition, intake of TFAs 
is inversely related to sperm count in young healthy men [17]. However, since these studies 
do not distinguish between industrial TFAs and ruminant TFAs, it cannot be concluded that 
the adverse effects are caused by intake of industrial TFAs.

A systematic review by de Souza et al. also analyzes the effects of intake of TFAs on diabetes 
[11]. Intake of TFAs has no association with the risk of diabetes. However, intriguingly, when 
TFAs are divided into industrial and ruminant TFAs, intake of ruminant TFAs reduces the risk 
of diabetes. Although there is no data about industrial TFAs in the study, these results suggest 
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that intake of industrial TFAs elevates the risk of diabetes. This hypothesis is supported by 
in vitro study using rat fed with industrial TFAs-rich diet [18]. However, other groups report 
that industrial TFAs do not alter insulin responsiveness in epidemiological study [19], in vivo 
[20] and in vitro study [21]. Hence, the roles of industrial TFAs in development of insulin 
resistance and diabetes remain unclear.

1.4. Elaidate, an industrial trans fatty acid, impairs insulin responsiveness of 
adipocytes

What causes the differences in the effects of industrial TFAs on insulin resistance and diabe-
tes? Osso et al. analyzed the effects of industrial TFAs for about 8 weeks [18]. On the other 
hand, Louheranta et al. and Lovejoy et al. analyzed for 2–4 weeks, respectively [19, 20]. 
Moreover, Granados et al. cultured 3T3-L1 adipocytes for 24 h in the presence of 100 μM elai-
date [21]. We focused on the exposure period to industrial TFAs. To examine the effects of per-
sistent exposure to industrial TFAs, 3T3-L1 preadipocytes were cultured and differentiated 
into adipocytes in the presence of 10 μM elaidate which is close to physiological concentra-
tion in human plasma [4, 8]. Persistent exposure to elaidate before and during differentia-
tion impaired insulin-dependent glucose uptake and translocation of glucose transporter 4 
(GLUT4) to the plasma membrane [22]. On the other hand, culture of 3T3-L1 adipocytes with 
10 μM elaidate for 24 h did not alter insulin-dependent glucose uptake. Thus, our findings 
reveal new factor “period” for consideration of adverse effects of TFAs and emphasize the risk 
of persistent intake of industrial TFAs for development of diabetes.

1.5. How does elaidate impair insulin responsiveness of adipocytes?

Stimulation with insulin activates insulin-signaling cascades [23]. In brief, insulin binding 
to insulin receptor activates its kinase domain, and insulin receptor phosphorylates itself 
and insulin receptor substrates followed by activation of phosphoinositide 3-kinase (PI3K). 
PI3K converts phosphatidylinositol (3,4)-bisphosphate (PIP

2
) to phosphatidylinositol (3,4,5)- 

trisphosphate (PIP
3
). PIP

3
 acts as a scaffold of Akt at the plasma membrane, and it enables 

mTORC2 and PDK to phosphorylate and activate Akt. Activated Akt accelerates translocation 
of GLUT4 storage vesicles (GSVs) to the plasma membrane [24], and GLUT4 transports extra-
cellular glucose into the cells. Our unpublished data indicate that insulin-dependent phos-
phorylation of Akt, but not insulin receptor, is suppressed in adipocytes persistently exposed 
to elaidate. Therefore, suppressive effects of elaidate on insulin signaling are partial but not 
overall. One possibility is that expression or activation of PI3K, mTORC2 or PDK1 may be 
repressed in adipocytes persistently exposed to elaidate. Another possibility is that alterna-
tion in fatty acid composition of phospholipids affects activation of Akt. It is reported that 
saturated fatty acid-contained phosphatidylcholine prevents full activation of Akt in vitro 
[25]. Moreover, oleate-contained PIP

3
 enhances activation of Akt in vitro [26]. Thus, we should 

carefully analyze the effects of elaidate on insulin signaling around Akt.

Our previous data also indicate that incorporated elaidate may affect insulin responsiveness 
of adipocytes. Elaidate acts as a ligand and can activate G protein-coupled receptor 120 at sev-
eral hours [27], although culture of adipocytes with 10 μM elaidate for 20 min or 24 h did not 
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alter insulin-dependent glucose uptake [22]. Therefore, ligand property of elaidate will not be 
involved in an impairment of insulin responsiveness. Another possibility is that incorporated 
elaidate impairs insulin responsiveness. Extracellular fatty acids are incorporated through FATP 
and CD36 [28, 29], and then fatty acids are converted into acyl-CoA derivatives by acyl-CoA 
synthetase [30]. Acyl-CoA derivatives are degraded by β-oxidation or esterified into lipid spe-
cies such as triglyceride and phospholipid. It is reported that elaidate is esterified into triglycer-
ide and phospholipid of heart of rats fed with elaidate-contained diets [31]. Moreover, elaidate 
is incorporated into adipose tissue of rabbits fed with elaidate-contained diets [32], although 
intracellular distribution of elaidate in lipid species of adipocytes is not fully understood. 
Therefore, we provide new data about intracellular lipid distribution of elaidate in adipocytes.

2. Incorporation of extracellular elaidate and its distribution in lipid 
spices of adipocytes

2.1. Materials and methods

2.1.1. Cell culture, differentiation and addition of fatty acids

3T3-L1 pre-adipocytes were purchased from Japanese Collection of Research Bioresources 
(Osaka, Japan). Cells were cultured in Dulbecco’s modified Eagles medium containing 
4.5 mg/L d-glucose (DMEM-high Glucose; Life Technologies, Carlsbad, CA) supplemented 
with 10% fetal bovine serum (FBS, S1820; Biowest, Nuaillé, France), 50 units/ml penicillin 
and 50 μg/ml streptomycin (P7081; Sigma-Aldrich, St. Louis, MO). Before differentiation into 
adipocytes, cells were cultured for 10 days in the presence of 10 μM of bovine serum albumin 
(BSA)-conjugated elaidate (E4637; Sigma-Aldrich), stearate-d35 (BX-245; Olbracht Serdary 
Research Laboratories, Toronto, Canada), oleate-d17 (9000432; Cayman Chemical, Ann 
Arbor, MI), elaidate plus stearate (S4751; Sigma-Aldrich), elaidate plus oleate (O1382; Sigma-
Aldrich) or BSA alone (vehicle), which was prepared as described [22]. Then, cultured 3T3-
L1 pre-adipocytes were differentiated into adipocytes using 3-isobuthyl-1-methylxanthine 
(I7018; Sigma-Aldrich), dexamethasone (D4902; Sigma-Aldrich) and insulin (I5500; Sigma-
Aldrich) for 8 days in the presence of BSA-conjugated fatty acids as described [22].

2.1.2. Subcellular fractionation

Subcellular fractionation was performed as described by Rangel et al. [33]. In brief, cells were 
washed twice with cold phosphate buffered saline (PBS) and once with lysis buffer (10 mM 
Tris-HCl, pH 7.4/250 mM sucrose/1 mM EDTA). Then, scraped cells were homogenized in 
lysis buffer with 7 mL-scale Dounce homogenizer (Kontes Glass Co, Vineland, NJ), and the 
homogenates were centrifugated at 1000 × g for 5 min with MX-107 (TOMY, Tokyo, Japan). 
The pellet was collected as nuclear fraction. The supernatant was further centrifugated with 
20,000 × g for 20 min, and the pellet was collected as mitochondrial fraction. Then, the super-
natant was ultracentrifugated at 100,000 × g for 60 min with Himac CS 150GX (Hitachi, Tokyo, 
Japan). The supernatant was collected as cytosolic fraction which will contain light vesicles, 

Adipose Tissue254



and the pellet was collected as fraction of the plasma membrane. Each pellet was resuspended 
in PBS and sonicated for 10 s using a ultrasonic homogenizer (UR-21P; TOMY).

2.1.3. Analysis of fatty acids composition of triglyceride, free fatty acid and phospholipid

Total lipids were extracted from each fraction using a modified Bligh & Dyer method [34]. 
Triglyceride, free fatty acid and phospholipid in total lipids were separated with thin-layer 
chromatography (Silica gel 60, no. 1.05721.0001; Merck, Darmstadt, Germany) using develop-
ment solvent (petroleum ether:diethyl ether:acetic acid = 82:18:1, v/v/v). Isolated triglycer-
ide, free fatty acid and phospholipid was hydrolyzed and methylated using 10% toluene (no. 
209-06791; Wako, Osaka, Japan) and hydrogen chloride-methanol reagent (5–10%) (X0038; 
Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) for 1 h at 100°C. Then, amount of fatty 
acids in each lipid species was analyzed by GC-MS-QP2010 Ultra (SHIMADZU, Kyoto, Japan) 
as described [22]. Efficiency of extraction, isolation and methylation was normalized with 
triheneicosanoin (B-422; Olbracht Serdary Research Laboratories) for triglyceride, nonadeca-
noic acid (N5252-1G; Sigma-Aldrich) for free fatty acid and 1,2-diheptadecanoyl-sn-glycero-
3-phosphorylcholine (no. 1400; Matreya LLC Inc., Pleasant Gap, PA) for phospholipid. The 
amount of fatty acids was also normalized with cell number.

2.2. Results and discussion

2.2.1. Extracellular elaidate is incorporated into adipocytes and esterified into triglyceride and 
phospholipid

To examine whether incorporated extracellular elaidate is esterified into lipid species of adi-
pocytes, total lipid was extracted from adipocytes exposed to elaidate for 18 days, and it was 
separated by TLC followed by analyzing with GC-MS. In major lipid species of adipocytes 
was triglyceride, phospholipid and free fatty acid, and diacylglycerol and monoacylglycerol 
were in trace amounts. Therefore, we analyzed the amount of elaidate in triglyceride, phos-
pholipid and free fatty acid and revealed that elaidate was contained in triglyceride and phos-
pholipid (Figure 1). On the other hand, the non-esterified form of elaidate was not detected 
(Figure 1, free fatty acid). Moreover, the amount of elaidate in triglyceride was higher than 
that in phospholipid. These results suggest that incorporated extracellular elaidate is mainly 
esterified into triglyceride and phospholipid in adipocytes.

2.2.2. Elaidate-esterified phospholipid is distributed in various organelles membrane

Since phospholipids are a component of membranes of various organelles [35], we further 
examined intracellular distribution of elaidate-contained phospholipids using subcellular 
fractionation methods. Cells were homogenized and organelles in the lysates were enriched by 
centrifugation (Figure 2A). TLC and GC-MS analysis revealed that elaidate was contained in 
phospholipid of nuclear, mitochondrial, cytosolic and plasma membrane fraction (Figure 2B).  
The amount of elaidate in phospholipid of mitochondrial fraction was higher than that of 
nuclear, cytosolic and plasma membrane fraction, suggesting that elaidate-contained phos-
pholipids are mainly distributed in mitochondria.
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2.2.3. Amount of elaidate-contained phospholipids in organelles is different from that of 
stearate or oleate-contained phospholipids

Is the intracellular distribution of elaidate-contained phospholipids specific to elaidate or not? 
Therefore, we compared elaidate (trans-C18:1) with stearate (C18:0) which has similar steric 
structure to elaidate, or oleate (cis-C18:1) which is cis form of elaidate (Figure 3A). For trace of 
incorporated extracellular stearate and oleate, we used deuterium-labeled stearate (stearate-
d35) and oleate (oleate-d17). As shown in Figure 3B, incorporated extracellular stearate-d35 
(dark gray bars) and oleate-d17 (light gray bars) were esterified into phospholipid of each 
organelle, and stearate-d35 or oleate-d17-contained phospholipids were mainly distributed in 
the mitochondria fraction. It is reported that extracellular [3H]-raveled arachidonate is incor-
porated into cells and the distribution ratio of [3H]-raveled arachidonate in the mitochondria 
is lower than that in other organelles at several minutes after addition of [3H]-raveled arachi-
donate into the medium [36]. However, the distribution ratio of [3H]-raveled arachidonate 
dramatically rises at 24 h. Since cells were exposed to fatty acid for 18 days, incorporated 
elaidate, stearate-d35 and oleate-d17 may be transferred from other organelles to the mito-
chondria. Therefore, the mitochondrial distribution of elaidate is not specific to elaidate.

Intriguingly, although the amount of elaidate was similar to that of stearate-d35 and higher 
than that of oleate-d17 in the nuclear, mitochondrial and cytosolic fraction, the amount of elai-
date in the plasma membrane fraction was significantly higher than that of both stearate-d35 

Figure 1. Extracellular elaidate is incorporated into adipocytes, and esterified into triglyceride and phospholipid. 3T3-L1 
pre-adipocytes were cultured for 10 days and differentiated into adipocytes for 8 days with 10 μM elaidate. Amount of 
elaidate in triglyceride, free fatty acid and phospholipid were analyzed by GC-MS after separated by TLC as described 
in Section 2.1. Results are represented as means ± S.D., n = 5 independent experiments. ND means not detected. Asterisks 

indicate a significant difference (***p < 0.001) calculated by Student’ s t-tests.
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and oleate-d17. What causes the difference in the amount of these fatty acids in organelles? 
As shown in Figure 3C, the total amount of elaidate in phospholipid was higher than that of 
oleate-d17, but not stearate-d35. There were several possibilities that oleate-d17 was degraded 
through β-oxidation pathway, the amount of incorporated oleate-d17 into adipocytes was 
lower than that of elaidate, and oleate-d17 tend to be esterified into other lipid species such 
as triglyceride or to be removed from phospholipid by phospholipases compared with elai-
date. It is reported that β-oxidation rate of oleate is higher than that of elaidate in rat heart 
homogenate [37]. Moreover, our unpublished data showed that the amount of oleate-d17 in 
triglyceride is higher than that of elaidate at 6 h after addition of those fatty acids into the 
culture medium of adipocytes, although there was no difference in total amount of oleate-
d17 and elaidate. Since oleate and elaidate have a different steric structure, it may result in a 
difference between oleate and elaidate in metabolism and esterification into or removal from 
phospholipid.

Although steric structure of elaidate is similar to that of stearate, there was a difference in the 
amount of elaidate and stearate-d35 in the plasma membrane fraction (Figure 3B). Moreover, 
the amount of stearate-d35 was not significantly but slightly low in the mitochondrial frac-
tion and high in the nuclear and cytosolic fraction compared with that of elaidate (Figure 3B). 

Figure 2. Elaidate-esterified phospholipid is distributed in various organelles membrane. 3T3-L1 pre-adipocytes were 
cultured and differentiated into adipocytes as described in Figure 1. (A) Each fraction was prepared by centrifugation 
from cell lysates. (B) Amount of elaidate in phospholipids of each fraction was analyzed using GC-MS. Results are 
represented as means ± S.D., n = 3 independent experiments. Asterisks indicate a significant difference (***p < 0.001) 
calculated by Student’ s t-tests.
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It is known that stearate is desaturated by stearoyl-CoA desaturase-1 (SCD-1; n-9 desaturase) 
and converted into oleate [38]. We detected that exposure to stearate increases the amount of 
oleate but not stearate in adipocytes (unpublished data), suggesting that stearate is converted 
into oleate in adipocytes. Since elaidate is already desaturated at n-9 position, elaidate may be 
less likely to be metabolized by SCD-1. However, the different amount of elaidate and stea-
rate in phospholipid was not only explained by the difference in the metabolism, suggesting 
that there are differences between elaidate and stearate in esterification into or removal from 
phospholipid. Therefore, the differences in both metabolism and esterification into or removal 
from phospholipid may result in different amounts of elaidate and stearate in phospholipid 
of organelles.

Thus, since elaidate has a double bond but exhibits linear-shaped structure, it may cause 
unique distribution of elaidate in phospholipid of various organelles membrane.

Figure 3. Amount of elaidate-contained phospholipids in organelles is different from that of stearate or oleate-contained 
phospholipids. (A) Structure of elaidate, stearate and oleate. (B) 3T3-L1 pre-adipocytes were cultured for 10 days and 
differentiated into adipocytes for 8 days with 10 μM elaidate (black bar), stearate-d35 (dark gray bar) or oleate-d17 (light 
gray bar). Amount of elaidate, stearate-d35 or oleate-d17 in phospholipid of each fraction were analyzed using GC-MS. 
(C) Total amount in phospholipids was calculated by summing up the amount of elaidate, stearate-d35 or oleate-d17 in 
each fraction. Results are represented as means ± S.D., n = 3 independent experiments. Asterisks indicate a significant 
difference (*p < 0.05; **p < 0.01; ***p < 0.001; NS, not significant) calculated by Student’ s t-tests.
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2.2.4. Fatty acid composition of phospholipid is altered in adipocytes exposed to elaidate

Next, we examined whether incorporation and esterification of elaidate into lipid species may 
disturb the equilibrium state of metabolism or distribution of other fatty acids. Therefore, 
we analyzed the amount of palmitate, palmitoleate, stearate and oleate, which were mainly 
contained in total lipid of adipocytes and calculated fatty acid composition (%). On the other 
hand, the amount of linoleate (C18:2), linolenate (C18:3) and arachidonate (C20:4) may be 
trace amount in 3T3-L1 adipocytes and we could not detect these fatty acids. As shown in 
Figure 4A, there was no difference in the fatty acid composition of triglyceride and free fatty 
acid. On the other hand, the percentage of oleate in phospholipid was slightly but signifi-
cantly low in adipocytes exposed to elaidate compared with vehicle (Figure 4A).
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Figure 4. Fatty acid composition of phospholipid is altered in adipocytes exposed to elaidate. (A) Analysis of fatty 
acid composition of lipid species in adipocytes cultured with vehicle (white bars) or elaidate (black bars). Fatty acid 
composition (%) was calculated by the amount of each fatty acid dividing by total amount of palmitate, palmitoleate, 
stearate, elaidate and oleate. Results are represented as means ± S.D., n = 5–8 independent experiments. ND means 
not detected. (B) Analysis of fatty acid composition of phospholipid in organelles in adipocytes cultured with vehicle 
(white bars), elaidate (black bars), stearate-d35 (dark gray bars) or oleate-d17 (light gray bars). Fatty acid composition 
(%) was calculated by the amount of each fatty acid dividing by total amount of palmitate, palmitoleate, stearate-d35, 
stearate, oleate-d17, elaidate and oleate. Results are represented as means ± S.D., n = 3 independent experiments.  
(C) Fatty acid equilibrium (%) between monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) or bent 
shaped and linear shaped chain fatty acid in 18-carbon fatty acid. Results are represented as means, n = 3 independent 
experiments. Asterisks indicate a significant difference (*p < 0.05; **p < 0.01) calculated by Student’ s t-tests.
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Further analysis with subcellular fractionation revealed that the percentage of oleate was low in 
phospholipid of mitochondrial and plasma membrane fraction in adipocytes exposed to elaid-
ate (Figure 4B, compare white bars with black bars). Moreover, this alteration was observed 
in both mitochondrial and plasma membrane fraction of adipocytes differentiated with oleate-
d17 but not stearate-d35 (Figure 4B, see dark and light gray bars). Since there was no differ-
ence in the percentage of 16-carbon fatty acids (palmitate and palmitoleate), we surmised that 
elaidate limitedly affects the equilibrium of 18-carbon fatty acids. The equilibrium between 
monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) in 18-carbon fatty acids 
was maintained in adipocytes exposed to elaidate, stearate-d35 and oleate-d17 in both mito-
chondrial and plasma membrane fraction (Figure 4C, upper panels). However, when the steric 
structure was considered, elaidate has similar linear-shaped structure to stearate, and raises 
the percentage of linear-shaped chain fatty acid (Figure 4C, lower panels). Thus, in phospho-
lipid of adipocytes exposed to elaidate, the equilibrium between bent and linear-shaped chain 
fatty acid was disturbed, although the equilibrium between MUFA and SFA was maintained.

The alteration was small compared with the total amount of fatty acid in phospholipid. 
However, since activation of insulin signaling occurs in the local area of the plasma mem-
brane such as raft [39], elaidate may locally disturb the equilibrium of fatty acid of phospho-
lipid and partially suppress the insulin signaling.

2.2.5. Elaidate does not compete with oleate

How does incorporated and esterified elaidate affect the equilibrium of fatty acid of phospho-
lipid? There were possibilities that elaidate competes with incorporation of extracellular ole-
ate into adipocytes or esterification of oleate into phospholipids, or elaidate indirectly reduces 
the amount of oleate through alteration of synthesis or metabolism of intracellular oleate. To 
examine the possibility of competitive inhibition, cells were exposed to 10 μM elaidate plus 1 
to 10 μM oleate, which was expected oleate to competitively inhibit incorporation or esterifi-
cation of elaidate into phospholipid and reduce the amount of elaidate. However, there was 
no difference in the amount of elaidate between cells exposed to elaidate and elaidate plus 
oleate (Figure 5). Since incorporated extracellular oleate and elaidate may exhibit different 
intracellular dynamics (see Section 2.2.3), elaidate does not compete with extracellular oleate 
in an incorporation into adipocytes or esterification into phospholipid. These results suggest  
that elaidate may alter synthesis or metabolism of intracellular oleate which results in a reduc-
tion of the amount and percentage of oleate in phospholipid.

Intracellular oleate is synthesized from stearate by SCD-1, and it is reported that SCD-1 pre-
fers stearate than palmitate [40]. Therefore, reduced activity of SCD-1 may lead to reduced 
amount of oleate but not palmitoleate. However, it may raise the amount of stearate, although 
persistent exposure to elaidate did not alter the amount and percentage of stearate (Figure 4). 
Since the amount of palmitate and palmitoleate in triglyceride was significantly high in adi-
pocytes exposed to elaidate compared with control (data not shown), reduced supplementa-
tion of palmitate from triglyceride to phospholipid may result in the prevention of increased 
amount of stearate, and maintain the equilibrium of MUFA and SFA, but not bent and linear-
shaped chain fatty acid.
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2.2.6. Intracellular distribution of elaidate and its effects on fatty acid composition of lipid 
species

Our results were illustrated in Figure 6. In adipocytes, incorporated extracellular elaidate is 
mainly esterified into triglyceride. The rest is esterified into phospholipid of various organ-
elles such as mitochondria, plasma membrane, nucleus and cytosolic vesicles. Moreover, 
distribution of elaidate into phospholipid is not competitively inhibited by oleate and stea-
rate (data not shown), suggesting that elaidate may exhibit unique intracellular dynamics or 
incorporation into cells is not a rate-limiting step. Furthermore, elaidate reduces the amount 
of oleate which results in the reduction of the percentage of oleate in phospholipid of mito-
chondria and plasma membrane. Intriguingly, esterification of elaidate and reduction of ole-
ate disturbs the equilibrium between bent and linear-shaped chain fatty acid in phospholipid 
but not unsaturated and saturated fatty acid. Therefore, elaidate-esterified phospholipid may 
be recognized as oleate-esterified phospholipid.

To clarify the molecules which may recognize elaidate as oleate-esterified phospholipid and 
command to maintain the equilibrium of MUFA and SFA, we should separate phospholipid  
classes such as phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and 
phosphatidylinositol and analyze its fatty acid composition, since enzymes which are 
involved in synthesis and metabolism of phospholipids (e.g. acyl-CoA synthases, acyltrans-
ferases and phospholipases) have substrate specificity to lipid classes and its fatty-acyl chain 
[41]. Thus, the maintenance of the equilibrium between MUFA and SFA in our results can-
not be explained without a recognition system of fatty acids. Therefore, further analysis also 
enables us to elucidate the recognition system of fatty acids.

Note that certain phospholipids such as phosphatidylinositol and phosphatidylcholine have 
the potential to affect insulin signaling [25, 26]. Further analysis of alteration of fatty acid 
composition in phospholipid classes will lead to elucidate the mechanism for suppression of 
the insulin signaling.

Figure 5. Elaidate does not compete with oleate. The amount of elaidate in phospholipid of mitochondria and plasma 
membrane fraction in cells differentiated with 10 μM elaidate plus 1, 2.5, 5 or 10 μM oleate. Results are represented as 
means ± S.D., n = 3 independent experiments. Significant difference was calculated by Student’ s t-tests.

Adipose Tissue262



3. Conclusions

Our recent study reveals the deteriorative effects of elaidate on insulin responsiveness of adi-
pocytes. In this chapter, we show for the first time that elaidate alters fatty acid composition 
of lipid species of adipocytes. Since lipid species may have important roles in regulation of 
insulin signaling, we should consider the effects of elaidate on lipid species to analyze the 
mechanism for an impairment of insulin responsiveness.
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