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Abstract

Electric vehicles require highly reliable and resilient electric motors, due to the harsh oper-
ating conditions they must withstand. To this end, there is a current trend to design rare-
earth-free machines. Traction electric motors must be optimized in terms of efficiency,
torque density, power factor, constant power speed ratio, and cost. Although different
technologies are available, permanent magnet assisted synchronous reluctance motors
(PMa-SynRM) are promising candidates for such applications. Nowadays, the optimal
design process of electrical motors is based on finite element method (FEM) simulations.
However, it is very time consumingwith a heavy computational burden process, so in order
to speed up the optimization process, it is very appealing to have an accurate pre-design of
the machine. In this chapter, the electromagnetic pre-design of a PMaSynRM is developed.
In the proposed electromagnetic pre-design process, the geometry of the machine is calcu-
lated based on analytical equations that take into account the thermal, electrical, magnetic,
and mechanical behavior of the machine to ensure a suitable and reliable design.

Keywords: synchronous reluctance machines, pre-design, multi-physics, permanent
magnet, electrical machines

1. Introduction

Electric motors for traction applications have been optimized in terms of power density,

efficiency, cost, power factor, and wider speed range. There are different motor topologies to

meet the requirements of such application, for instance, permanent magnet synchronous

motors (PMSM), induction motors (IM), switched reluctance motors (SRM), and synchronous

reluctance motors (SynRM). PMSMs have the best power density ratio and can maintain the

power in a wide speed range. However, the material cost due to the rare-earth magnets and
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concerns about availability and supply of the magnets makes it necessary to use other type of

motors. In this context, the concept of rare-earth-free-motors gains attention [1]. Synchronous

reluctance motors are good candidates in terms of material and manufacture cost; however,

the power density and power factor are low. Then, the idea of permanent magnet-assisted

synchronous reluctance motors (PMa-SynRM) appears, since they improve the performances

of SynRMs by using ferrite magnets. Ferrite magnets have lower electrical conductivity than

rare-earth magnets, so the eddy current losses are much lower, and thus the temperature rise

due to eddy current losses. Although ferrite magnets exhibit a lower remanent magnetic flux

density compared to neodymium magnets, ferrite magnets have a higher Curie temperature.

As a consequence, ferrite magnets are well suited to be applied in high-temperature environ-

ments, such as electric vehicles, thus offering improved reliability with respect to the use of

rare-earth permanent magnets.

The design of a motor usually consists of a multi-physics analysis where the thermal, electric,

magnetic, and mechanic domains are analyzed. In the electromagnetic pre-design stage, the

geometry of the machine is often calculated based on criteria taking into account different

domains. The electromagnetic domain allows calculating the necessary amount of the magnet,

the thermal domain settles the size of the slots of the stator, and the mechanical domain settles

the size of the radials ribs.

The final geometry of the motor is obtained after an optimization process, where the values of

the motor’s parameters are variated to determine the best solution. However, the starting point

of the design is based on the electromagnetic pre-design. This work aims at guiding the

electromagnetic pre-design of the PMa-SynRM.

The pre-design is performed with the basic specifications of the machine, such as mechanical

power, corner speed, phase current, pole number, or efficiency required, among others. Since

FEA is often not applied to speed up the design process, the parameters calculated must be

very accurate, so several refinement loops are introduced. In this context, the whole process is

a combination of analytical equations with iterative loops to refine the estimated parameters,

which are required to start the electromagnetic pre-design.

The starting point consists of estimating some parameters, such as efficiency, power factor, air

gap flux density, or back EMF, in order to determine the required phase current, electrical

power, or number of turns per phase, among others. These estimated values depend on the

machine type, for instance in the SynRM, the power factor can be selected around 0.7, and the

efficiency around 95%.

2. Calculation of electrical parameters

The initial set of equations is given by:

Pe ¼

Pmec

η
(1)
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where “Pmec” is the output mechanical power, which is one of the inputs of the electromagnetic

pre-design, “η” is the estimated efficiency, and “Pe” is the required electrical power. Using the

electrical power calculated in (1), the phase current is given by:

If ¼
Pe

mUf cos φð Þ (2)

Being, “m” and “Uf ” are the number of phases and the RMS phase voltage, respectively, which

are an inputs, and “cos φð Þ” is the estimated power factor.

To finalize with the electrical part of the design, the number of turns per phase can be

calculated according to (3):

Ns ¼
ffiffiffi
2

p
E

ωekw1leff τp
Dis

2 αi
bBg

(3)

where “E” is the back EMF, which is estimated according to 0.97 of the phase RMS voltage [2];

“ωe” is the mechanical speed in electrical rad/s of the base point; “leff ” is the effective length of

the machine; “bBg” is the peak flux density in air gap, which is an estimated value; “kw1” is the

winding factor of the fundamental component, which is fixed by the winding distribution; “αi”

is the coefficient to obtain the arithmetical average of the flux density; “Dis” is the inner stator

diameter; and “τp” is the slot pitch.

Considering a sinusoidal flux density, the value of “αi” is 0.64 (2=π). However, “αi” is related

in [2].

Note that the effective length and the pole pitch cannot be determined since the air gap volume

is unknown. The mains dimensions must be calculated before the number of turns per phase.

3. Main dimensions

The first step to calculate the motor geometry is the determination of the main dimensions of

the motor. These parameters are the outer and inner diameter of the rotor, the outer and inner

diameter of the stator, and the stack length. It is worthy to mention that depending on the

restrictions of the application, the outer dimensions can be fixed. Figure 1 shows several

motor’s parameters, such as inner and outer rotor radius (Rir and Ror, respectively), inner and

outer stator radius (Ris and Ros, respectively), air gap length (g), slot pitch (τs), and pole pitch

(τp). The stack length (Lstk) is the length of the active part, that is, the end winding length is not

considered.

The calculation of the motor’s geometry starts determining the air gap volume/surface or the

outer volume/surface of the machine. In this context, different approaches can be found in the

literature to calculate the motor geometry using the data obtained from the specifications. On the

one hand, Bianchi et al. [3] and Gamba [4] calculate the exterior geometry, which is represented
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by the outer stator diameter and the stack length. The first one uses a relation between the torque

generated and the volume (Kv), meanwhile the second one relates the losses generated with the

outer surface (Kj). According to Bianchi et al. [3], the Kv for these kinds of machines is around

10 Nm/L. However, these values can change depending on the value of the torque. In the second

approach, the thermal loading depends on the coolant system, so it is required to determine the

outer motor geometry. If the outer geometry is fixed, the thermal loading determines the coolant

system required [5]. On the other hand, the electrical loading (A) is used to calculate the

geometry of the air gap [6]. In this case, the allowed electrical loading is also determined by the

coolant system. Another interesting approach relates the mechanical power of the machine with

the air gap volume.

This approach is based on the mechanical constant [2, 7], which is given by:

Cmec ¼
Pmec

D2
isleffnsyn

(4)

where “nsyn” is the rated electrical frequency.

The proposed pre-design starts with the mechanical constant, so a further explanation of the

different values of such constant is required. The value of the mechanical constant is obtained

by analyzing several motors of the same typology and coolant systems. Figure 2, extracted

from [1], shows the relation between the mechanical constant and efficiency for different motor

types.

Nevertheless, when using the electrical loading, mechanical constant, or other parameters to

obtain the volume or surface of the air gap, the relation between diameter and length is

required. The form factor “X” is given by:

Figure 1. Motor basic geometry.
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X ≈

π

4
ffiffiffi

p
p (5)

“p” being the number of pole pairs.

Using (5) and (6), the effective length leff and the bore diameter Dis can be calculated. The stack

length is obtained according to:

Lstk ¼ leff � 2g (6)

In order to maximize the saliency ratio, the air gap thickness must be as low as possible [3].

According to Pyrhönen et al. [2], the air gap should be smaller compared to induction

machines. The air gap in induction machines is given by:

g ¼
0:18þ 0:006P0:4

mec

1000
(7)

where “Pmec” is given in watts.

4. Stator geometry

The stator geometry is completed when the size of the slot, teeth, and yoke are determined.

The width of the teeth (bt) and slots (bs) can be constant or radial. However, some simplifica-

tions can be realized in order to determine the size of these parts. Figure 3A shows the

geometry of the teeth and slots using the smaller dimension, which it is the most restrictive

Figure 2. Machines comparison based on the maximum efficiency point and machine constant of mechanical power. Data

presented have been collected from [8–24].
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width. The slot opening (So) is dimensioned to be higher than the diameter of the conductors.

The height of the slot (hs) and yoke height (hy) are shown in Figure 3B. Finally, the height of

tooth tip (htip) is not important in this stage of the design, although it can be fixed at 1 mm,

depending on the machine. In the same way, the “Δ” is not important in the pre-design and can

be fixed at 0.5 mm depending on the machine.

In order to calculate the size of the slots, the number of conductors in each slot and the tooth

size are required. Then, (3) can be solved since the pole pitch is known. When the number of

turns in series per phase is calculated, the number of conductors in each slot (zq) can be

determined as follows:

zq ≈
2mNph

Qs

(8)

being, “m” is the number of phases and “a” is the number of parallel paths.

Note that “zq”must be an integer, so the result obtained needs to be round to obtain the final

number of conductors in each slot. Then, the number of turns in series per phase must be

updated as:

Nph_new ¼
zqQs

2m
(9)

In this point, the estimated flux density within the air gap changes, so it is calculated as:

bBg_new ¼

ffiffiffi
2

p
E

ωekw1leff τp
Dis

2 αiNph_new

(10)

Considering a sinusoidal magnetic flux distribution within the air gap and how this magnetic

flux distributes through the stator, the size of the teeth and yoke are calculated to obtain a

magnetic saturation below a pre-defined value. The teeth have to be sized to withstand the

magnetic flux that comes from the air gap. The magnetic flux will enter in the teeth instead of

the slots, so the magnetic flux in the pole is divided in the different teeth. However, the teeth

are dimensioned considering the worse scenario. Figure 3B shows the magnetic fluxes lines of

Figure 3. A) Approximate geometry using the most restricted dimensions. B) Flux lines in teeth.
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air gap entering in the teeth. The sinusoidal magnetic flux density is superimposed to under-

stand the different quantity or density of magnetic flux (blue arrows) in both teeth. Then, the

width of teeth is calculated considering the teeth with higher magnetic flux. In order to

oversize the teeth, the magnetic flux density is considered constant at the maximum value as

can be observed in Figure 3B (blue line in the teeth):

ϕt ¼
bBg_newleff τs

Dis

2
(11)

where “τs” is the slot pitch, which is given by:

τs ¼
2π

Qs

(12)

“Qs” being the number of slots.

In order to obtain a correct size of teeth, the maximum allowed magnetic flux density on this

motor part is fixed between 1.5 and 1.8 T. Therefore:

bt ¼
ϕt

ksf bBt

Lstk (13)

where “bBt” is the maximum allowed magnetic flux density and “ksf ” is the stacking factor.

On the other hand, the yoke’s width must be calculated to drive half of the air gap’s magnetic

flux on one magnetic pole as can be observed in Figure 4.

Then, the magnetic flux in the air gap is calculated as follows:

ϕg ¼
2

π
bBg_newleff τp

Dis

2
(14)

where the term “2bBg=π” is used to obtain the average value of a sinusoidal waveform, and

“τp” is the pole pitch, which are calculated as follows:

Bgav
¼

1

π

ðπ

0

bBg_new sin θð Þdθ ¼
1

π
bBg_new � cos πð Þ þ cos 0ð Þð Þ ¼

2

π
bBg (15)

τp ¼
2π

2p
(16)

Then, the width of the yoke is:

hy ¼
ϕg

2ksf bBy

Lstk (17)

where “bBy” is the maximum allowed magnetic flux density in yoke, which is fixed between 1.4

and 1.6 T, corresponding to the knee point of the B-H curve of the magnetic steel laminations.
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According to Figure 3A, when the width of the teeth is known, the slot’s width can be

determined as:

bs ¼ τs
Dis

2
� bt (18)

Then, height of the slot is determined by:

Sslot ¼ bshs ¼
zqIph

Jku
! hs ¼

zqIph

Jkubs
(19)

where “J” is the current density [A/m2] and variates with the coolant system [2, 6] and “ku” is

the winding factor, which can be fixed at 0.40.

The height of the teeth is given by:

ht ¼ hs þ htip þ ∆ (20)

Then, the outer stator diameter is obtained as:

Dos ¼ Dis þ 2ht þ 2hy (21)

5. Rotor geometry

The rotor of the SynRMs is punched to create the anisotropy. The insulation, which is the air

cavity created in the rotor’s perforation, is called flux barrier. The magnetic steel material

between flux barriers is called segment or flux carrier. The rotor structure is completed by ribs;

there are two different ribs. The first one is the tangential rib, which connects the segments.

The other type is the radial rib, which increases the mechanical integrity of the machine. The

mentioned parts are depicted in Figure 5.

A good saliency ratio can be enhanced by a correct design of the rotor [25]. It starts choosing

the proper number of flux barriers [3, 26–28], which is given by:

k ¼
Qs

2p
� 2 (22)

Figure 4. Detail of the magnetic flux in the yoke.
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Note that according to (22), there are two possibilities for k. The choice depends on the

application or the rotor size.

Then, the positioning of the barriers is realized to obtain a good distribution of the magnetic flux,

that is, a reduction of the torque ripple. The ripple reduction is obtained by means of an

optimization process, where the angle of the barriers is changed to find the best solution [29–31].

However, during the pre-design stage, the angle between the end points of the barriers is fixed

according to [28, 32]:

αi ¼
π=p

kþ 1
(23)

Note that (23) calculates the angle between barriers. The angle between the last barrier and the

pole center is 3αm=2 as can be observed in Figure 5B.

The magnetic flux flows through the segments, so a correct sizing is mandatory. Note that the

low reluctance of the magnetic steel is related to the magnetic saturation of the segments. Then,

the calculation of the width of the flux carriers considers the rotor position with the highest

magnetic flux. In this position, which it is called direct axis (d-axis), the maximum magneto-

motive force (MMF) in the stator is located between the magnetic poles, meanwhile the zero

MMF is in the middle of the magnetic pole, as can be observed in Figure 6A. It is worthy to

mention that the MMF is considered sinusoidal in order to simplify the calculation of the

rotor’s geometry.

The widths of the different segments (Si) are dimensioned to obtain the same magnetic satura-

tion in each segment. In order to estimate the magnetic saturation, the magnetic flux (φ) must

be calculated. Considering the geometry shown in Figure 6A, an equivalent magnetic circuit

can be built to determine the relation between the magnetic fluxes, as depicted in Figure 7A.

Only one-half of the pole is represented due to the magnetic symmetry.

Note that the reluctance of the air gap is much bigger than the segments’ reluctances, so the

latter can be disregarded. Then, the magnetic fluxes are given by:

ϕi ¼
MMFdi
Rg

(24)

Figure 5. (A) Basic geometry of the rotor of SynRM. (B) Flux barriers distribution.
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Therefore, the value of fluxes depends on the MMF. The MMF of each segment is represented

by stairs function where the value is the average value of the MMF distribution shown in

Figure 6A. Since all position angles of the barriers have been fixed, the average MMF of each

segment can be calculated as follows:

MMFdi ¼

Ð

2i� 1

2
pαi

2i� 3

2
pαi

cos αð Þdα

pαi
¼

sin
2i� 1

2
pαi

� �

� sin
2i� 3

2
pαi

� �

pαi

MMFdnbþ1 ¼

Ð

π

2
2nb � 3

2
pαi

cos αð Þdα

p
3

2
αi

¼

1� sin
2nb � 3

2
pαi

� �

p
3

2
αi

(25)

Then, taking into account (24), where the flux is proportional to the MMF, and the condition of

obtaining an equal magnetic saturation on each segment, the relation of segment’s width is

given by:

Si
Siþ1

¼
MMFi
MMFiþ1

(26)

Figure 6. MMF distribution in the dq-positions. The blue arrows represent the magnetic flux in the rotor. (A) d-position

(B) q-position.
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The magnetic saturation is calculated using the magnetic flux and the cross section, so (26) is

deducted as follows:

Bi ¼
ϕi

SiLstk
! Bi ¼ Biþ1 !

ϕi

SiLstk
¼

ϕiþ1

Siþ1Lstk
!

MMFdi
Rg

SiLstk
¼

MMFdiþ1

Rg

Siþ1Lstk
(27)

In addition, it is worthy to mention that (26) must be adapted in segment 1, since the magnetic

flux is divided in the two magnetic poles, so the final equation to determine the relationship

between S1 and S2 is given by:

2S1
S2

¼
MMF1
MMF2

(28)

Finally, there are one more unknowns that equations, so one more equation is required to find

out the width of the segments. Since the width of all the segments is equal to the total iron

length in the rotor, the last equation results in:

Ls ¼
Xi¼nbþ1

i¼1

Si ¼
hrotor

1þ kinsq
(29)

where “hrotor” is calculated as hrotor ¼ Dor �Dirð Þ=2, and “kinsq” is the insulation ratio in the q-

axis. Note that “kinsq”, which has values around 1 [2], is defined by:

kinsq ¼
La
Ls

(30)

“La” being the total length of width of air in the rotor given in (37) in the q-axis and “Ls” is the t

width of all the segments of magnetic steel along the q-axis.

Figure 7. d-Axis equivalent magnetic circuit used to determine the width of the segments. (A) d-position (B) q-position.
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On the other hand, the flux barriers must be designed to offer a large magnetic resistance to the

flow of the magnetic flux. In this context, the sizing of the flux barriers is carried out when the

magnetic flux is positioned in the quadrature position, as can be observed in Figure 6B. The

MMF distribution in the q-position is calculated as in the d-position, that is, using the average

value of the MMF considering a sinusoidal distribution, as shown in Figure 6B. In this case, the

MMF is given by:

MMFqi ¼

Ð

2i� 1

2
pαi

2i� 3

2
pαi

sin αð Þdα

pαi
¼

�cos
2i� 1

2
pαi

� �

þ cos
2i� 3

2
pαi

� �

pαi

MMFqnbþ1 ¼

Ð

π

2
2nb � 3

2
pαi

cos αð Þdα

p
3

2
αi

¼

cos
2nb � 3

2
pαi

� �

p
3

2
αi

(31)

Figure 7B depicts the equivalent magnetic circuit in the q-position to calculate the size of the

different flux barriers.

Note that the MMFq1 is zero, so the path of flux 1 can be removed. As can be observed, the

magnetic flux in the q-axis is given by the addition of fluxes 1–4. Then, the purpose of the

barriers’ sizing is to minimize the q-flux. Then, the relation between the widths of each barrier

is given by:

Wqi

Wqiþ1
¼

MMFiþ1 �MMFi
MMFiþ2 �MMFiþ1

¼
∆MMFi
∆MMFiþ1

(32)

A demonstration of the procedure to obtain (32) is further developed. However, the following

example is realized with two barriers for the sake of simplification. Figure 8 shows a rotor with

two flux barriers, the magnetomotive force in each segment, which has been calculated with

(31), and the variable to optimize, which is the size of the first barrier.

Figure 8. Example of two barriers to determine the relation between the widths of the barriers.
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As mentioned before, the sizing of the barriers aims to reduce the total flux in the q-axis (blue

arrows). Then, the flux in each barrier is given by:

ϕi ¼
MMFqiþ1 �MMFqi

Rbi
¼
∆MMFi
Rbi

(33)

The reluctance of the barriers is given by:

Rbi ¼
Wqi

μolqiLstk
(34)

Therefore, the total flux is given by:

ϕ ¼
∆MMF1
Wq1

μolq1Lstk þ
∆MMF2
Wq2

μolq2Lstk (35)

Note that the total flux is a function of the reluctances of the flux barriers, that is, the total flux

is a function of the variable “x” (see Figure 8). Hence:

ϕ xð Þ ¼
∆MMF1

x
μolq1Lstk þ

∆MMF2
La � x

μolq2Lstk (36)

where the total width of air in the rotor is given by:

La ¼
Xi¼nb

i¼1

Wqi ¼
hrotor

1þ 1
kinsq

(37)

Then, the minimization of the flux is obtained as follows:

dϕ xð Þ

dt
¼ �

∆MMF1
x2

μolq1Lstk þ
∆MMF2

La � xð Þ2
μolq2Lstk ¼ 0 (38)

Then, the final result is:

∆MMF1
x2

lq1 ¼
∆MMF2

La � xð Þ2
lq2 !

∆MMF1

W2
q1

lq1 ¼
∆MMF2

W2
q2

lq2 (39)

Finally, the permeance of each barrier can be assumed constant in order to obtain a better distrib-

ution of the flux in the air gap:

lq1

Wq1
¼

lq2

Wq2
(40)

Finally, by introducing (40) in (39), (32) appears.
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It is worthy to mention that there is another approach [27, 28], which relates the size of the

barriers as follows:

Wqi

Wqiþ1
¼

∆MMFi
2

∆MMFiþ1
2

(41)

As can be observed in Figure 6B, there is another variable to define, which it is the width of the

flux barrier in the lateral location (Wdi). The relation between the widths of the barriers in the

q-axis with the thickness in the d-axis is given by [28]:

Wdi

Wdiþ1
¼

Wqi

Wqiþ1
(42)

Note that one more equation is required to solve the sizing of the barriers. The total length of

the barriers can be determined by using the insulation ratio in the d-axis:

Lad ¼
Xi¼nb

i¼1

Wdi ¼ Lskinsd (43)

“kinsd” being the insulation ratio in the d-axis, which is applied to determine the width of the

barriers according to the mechanical angle defined in Figure 5B. “Ls” is the total thickness of

the segments, which it is constant in the whole segment.

In this point, the sizing of the rotor is explained. However, there are several uncertain points.

These undefined variables are the inner rotor diameter and the insulation ratios (kinsd and kinsq).

On the one hand, the inner rotor diameter (DirÞ determines the total space in the rotor, since the

outer rotor diameter is known:

Dor ¼ Dis � 2g (44)

Then, the inner rotor diameter is defined as:

Dir ¼ Dor � 2hrotor (45)

“hrotor” is required to calculate the width of the barriers and segments, as can be observed in

(29) and (37). Then, an iterative system to determine the correct size of the rotor is proposed as

can be observed in Figure 9. Depending on the design restrictions, this part must be adapted.

For instance, the use of magnets makes necessary to size the barriers with thickness greater

than a certain value, which depends on the magnet’s manufacturer (around 3 mm), or to

increase the rotor size to obtain a desired saliency ratio, or to introduce the necessary quantity

of magnet to improve the motor performances in terms of constant power ratio. In this context,

Figure 9 shows the iterative design procedure. Furthermore, an example of the differences is

depicted. In the first iteration (i = 1), the width of the last barrier is 0.5 mm, however, the

specifications only allow values higher than 3 mm. Then, after the iterative procedure (i = n),

the solution is obtained according to the restrictions imposed. Note that the inner diameter of
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the rotor in the first case is 90 mm meanwhile in the final solution is 75 mm. The insulation

ratio in the q-axis is defined by the designer, and probably the best option is obtained after an

optimization. However, values around 1 are good solutions.

On the other hand, the d-axis insulation ratio is not defined. As explained before, this insula-

tion ratio is determined to locate the barriers according to Figure 5. Then, the value of this

variable is swept to obtain the final design. In this case, the criterion to halt the iterative process

is the correct position of the last barrier (the angle is 1:5αm). Figure 10 shows the iterative

procedure and the solutions of two different iterations.

It is noted that a posterior mechanical verification is required to ensure a suitable mechanical

strength of the rotor configuration obtained in this step.

After the calculation of the rotor size, the magnet quantity must be determined in order to

obtain a suitable behavior of the machine during the operation. The north of the magnet is

located in the negative direction of the q-axis (see Figure 11) in order to improve the

motor capabilities, such as torque, base speed, and angle between voltage and current (see

Figure 11B).

The motor capability within the flux-weakening region is related with the magnet contribution

[33, 34]. It means that the magnets can be or not be inserted in all the barriers, depending on

the requirements. In the case of not inserting magnets in all barriers, it is recommended to put

the magnets in the innermost barrier, since the outset barriers are more magnetically stressed,

so the magnet can suffer demagnetization [3, 35].

Figure 9. Iterative loop to size the rotor segments and barriers in the q-position.
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To compute the inductances and the magnet flux linkage, a fast and simple magnetic model is

introduced. It is important to mention that a complex magnetic model is required in the

optimization stage [36, 37]; however, in the electro-magnetic pre-design, the proposed mag-

netic model is good enough to calculate the magnet and improve the accuracy of the geometry.

The magnetic model based on two reluctance networks (RN) not only calculates the magnetic

flux linkage but also estimates the dq-inductances, so the motor performances can be calcu-

lated. Using this magnetic model, the back EMF, power factor, efficiency, saturation factor, and

air gap flux density can be defined with more accuracy and the electromagnetic pre-design can

be improved (see Algorithm 1).

There are two reluctance networks to analyze, the d- and q-axis. The q-reluctance network

(RN) allows calculating the q-inductances and the magnet flux linkage. Figure 12 shows an

equivalent magnetic model to determine the mentioned parameters of the machine.

Figure 10. Rotor iterative loop to size the segments and barriers in d-position.

Figure 11. (A) Magnet orientation in the rotor. (B) Phasor diagram with and without magnets.
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Note that, the magnet is only located in the innermost barrier, however, it can be removed or

more magnets can be introduced in the remaining barriers. The RN is formed by MMF

generators and reluctances. The first one is created by the coils and magnets:

MMFwinding ¼
X

NI (46)

“N” being the number of conductors in the coil and “I” the current in each phase (in this, select

the rated current).

It is worthy to be mentioned that this magnetic model is not complete. The winding MMF

generator is only represented in one tooth, so the whole contribution of the different teeth has

to be added. In [38], there is more information to calculate the MMFwinding according to a given

winding distribution:

MMFmagnet ¼ HcWqi (47)

where “Hc” is the coercive force and “Wqi” is the width of the magnet, which is the same width

as that of the flux barriers. Then, the reluctances are calculated as follows:

R¼
l

μoμrS
(48)

where “l” is the length of the magnetic reluctance, “S” is the cross section of the magnetic

reluctance, “μo” is the magnetic permeability of the vacuum, and “μr” is the relative magnetic

permeability, which in the air is equal to 1 meanwhile in the magnetic steel varies with the

saturation. Note that the magnetic steel is not saturated along the q-axis. Finally, the air gap

reluctance must be multiplied by Carter’s coefficient to reflect the effect of the slot opening.

On the other hand, the d-axis RN is shown in Figure 13. In this case, the magnet is not reflected

since it only influences the q-axis. The magnetic saturation of the magnetic steel must be

considered. The magnetic saturation in the teeth and yoke can be fixed at the value chosen in

the design stage (13) and (17), and in the rotor can be fixed at 1 T.

Figure 12. Simple reluctance network in q-axis.
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The unknown magnetic flux is calculated using two different equations. The first one (49)

relates the MMF obtained in a closed path with the reluctances and the magnetic flux in this

path:

MMF ¼

X

Rϕ (49)

The second one relates the total magnetic fluxes in a node (see Figure 12):

X

ϕ ¼ 0 (50)

The q-axis is solved twice; the first one only considers the MMF generated by the magnets in

order to calculate the magnet flux linkage (Ψmpq), meanwhile the second one takes into account

both MMF generators. The inductances and flux magnet linkage are calculated as follows:

Ld ¼ 2pN
ϕd

I
; Lq ¼

2pNϕq � Ψmpq

I
;Ψmpq ¼ 2pNϕq where Iq ¼ 0 (51)

By using these values, the motor performances can be deducted, so the process could be re-

started with these new values. The back EMF is calculated as follows:

Ed ¼ �ωeLqiq � ωeΨmpq; Eq ¼ ωeLdid (52)

The current angle is given according to the MTPA rule, so the d- and q-currents are known.

Then, the power factor can be deducted by calculating the phase shift between the current and

voltage. Finally, the torque and output power can be calculated:

T ¼

m

2
p Ld � Lq
� �

idiq � Ψmpqid
� �

(53)

Pout ¼ ωeT (54)

Then, the losses, which are composed by copper and iron losses, are given by:

Figure 13. Simple reluctance network in d-axis.
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Pcu ¼ mRsI
2
rms (55)

Pfe ¼ kh
ωe

2
bB
ni
þ ke

ωe

2
bB

� �2
(56)

“Rs” being the phase resistance calculated with the geometry obtained during the calculation

of the stator geometry, “m” the number of phases, and “Irms” the rated current in rms value. On

the other hand, the iron losses are composed by hysteresis and eddy current components. The

hysteresis and eddy current coefficients (kh, ke, ni) are obtained by using the material specific

losses obtained from the manufacturer’s datasheets. The iron loses are per unit of mass, so the

final value must be multiplied by the mass of the different parts. The computed parts can be

the yoke, teeth, and rotor, since these three parts have different magnetic saturation. Then, the

efficiency is given by:

η ¼
Pout

Pout þ Pcu þ Pfe
(57)

In this point, the thermal behavior of the machine has been considered in the sizing of the slot.

The magnetic behavior is analyzed by using the proposed simple magnetic model. Then, the

oversize of the slots and the magnet compensated situation ensure the reliability of the motor

in terms of magnetic and thermal behaviors. However, the mechanical stress has to be consid-

ered to ensure the correct behavior of the machine, since the rotor structure reduces the

mechanical integrity.

The mechanical problems are solved by the correct sizing of the radial ribs. Several authors

deal with this problem [39–41]. The centrifugal force is given according to:

Fc ¼ Mω
2
mRG (58)

where “M” is the mass that the calculated radial rib has to support, “RG” is the radius of the

gravity center of the mass, and “ωm” is the mechanical speed.

Then, the width of the radial ribs (Wr) is given as:

W r ¼
ksFc
σrLstk

(59)

where “ks” is the safety factor, which is chosen over 2 and “σr” is the tensile strength of the

lamination.

6. Summary of the design procedure

In this point, the whole process to obtain the electromagnetic pre-design according to the given

requirements is realized. A summary detailing the parameters and equations required in each

step is shown in Algorithm 1.

Reliable Design of PMaSynRM
http://dx.doi.org/10.5772/intechopen.76355

123



1: Introduce the desired performances (power, rated speed)

2: Introduce the fixed parameters (pole pairs, phase number, slots, Bus DC)

3: Start electro-magnetic pre-design process

4: Estimate parameters (efficiency, power factor, back EMF, saturation factor)

5: while stop criterion is not achieved do

6: Basic parameters calculation: Electric power (1), phase current (2)

7: Estimate Cmec according to Figure 2

8: Calculate Dis and leff using (4) and (5). Compute the g (7) and Lstk (6)

9: Estimate number of turns in series Nph (3)

10: Calculates the number of conductors in slot (8)

11: Calculates the number of turns in series Nph new (9) and the Bg (10)

12: Calculates the stator geometry (teeth, yoke, and slots dimensions) (11–21)

13: Chose the number of flux barriers (22)

14: Calculates the position of the barriers (23)

Calculation of rotor in q-axis (Figure 9)

15: while stop criterion is not achieved do

16: Define hrotor
17: Calculates the width of the segments and barriers (25–30) and (31–32)

18: Evaluates stop criterion

19: end

Calculation of rotor in d-axis

(Figure 10)

20: while stop criterion is not achieved do

21: Define kinsd
22: Calculates the width of the barriers in d-axis(42–43)

23: Evaluates stop criterion

24: end

25: Solve Magnetic model (Figure 12 and Figure 13)

26: Calculates Inductances, magnetic flux linkage (51)

27: Calculates losses (55–56)

28: Calculates motor performances: Torque (53), output power (54)

29: Calculates the estimated values: Back EMF (52), efficiency (57), power factor, saturation

factor, peak air gap flux density (using the d-flux from magnetic model).

30: Evaluates stop criterion (error of estimated parameters)

31:end

32: Calculates the thickness of the radial ribs (58–59)

7. Conclusions

Due to the harsh operating conditions, electric vehicles require highly reliable and resilient

electric motors. To this end, rare-earth-free PMaSynRMs are appealing candidates. In this

chapter, a design procedure of PMaSynRMs has been presented, which includes electromag-

netic, thermal, and mechanical restrictions in order to ensure a reliable and resilient operation

within extended operational limits. For example, in the event of a major demagnetization

failure, the PMaSynRM designed following the proposed approach is able to work as a

synchronous reluctance machine, thus providing about 75% of the rated torque. In addition,

the use of ferrite magnets allows the machine to operate in higher temperature environments.
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