
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 3

Differential Evolution Algorithm in the Construction of
Interpretable Classification Models

Rafael Rivera-Lopez and Juana Canul-Reich

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75694

Abstract

In this chapter, the application of a differential evolution-based approach to induce
oblique decision trees (DTs) is described. This type of decision trees uses a linear combi-
nation of attributes to build oblique hyperplanes dividing the instance space. Oblique
decision trees are more compact and accurate than the traditional univariate decision
trees. On the other hand, as differential evolution (DE) is an efficient evolutionary algo-
rithm (EA) designed to solve optimization problems with real-valued parameters, and
since finding an optimal hyperplane is a hard computing task, this metaheuristic (MH) is
chosen to conduct an intelligent search of a near-optimal solution. Two methods are
described in this chapter: one implementing a recursive partitioning strategy to find the
most suitable oblique hyperplane of each internal node of a decision tree, and the other
conducting a global search of a near-optimal oblique decision tree. A statistical analysis of
the experimental results suggests that these methods show better performance as decision
tree induction procedures in comparison with other supervised learning approaches.

Keywords: machine learning, classification, evolutionary algorithms

1. Introduction

Knowledge discovery refers to the process of nontrivial extraction of potentially useful and

previously unknown information from a dataset [1]. Within the stages of this process, data

mining stands out since it allows analyzing the data and producing models for their represen-

tation. In particular, machine learning provides data mining with useful procedures to build

these models, since many of the techniques aimed at information discovery are based on

inductive learning. Decision trees (DTs), artificial neural networks (ANN), and support vector

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

machines (SVMs), as well as clustering methods, have been widely used to build predictive

models. The ability to track and evaluate every step in the information extraction process is

one of the most crucial factors for relying on the models gained from data mining methods [2].

In particular, DTs are classification models characterized by their high levels of comprehensi-

bility and robustness. Knowledge learned via a DT is understandable due to its graphical

representation [3], and also DTs can handle noise or data with missing values and make correct

predictions [4].

On the other hand, soft-computing-based approaches have been widely used to solve complex

problems in almost all areas of science and technology. These approaches try to imitate the

process of human reasoning when solving a problem with the objective of obtaining acceptable

results in a reasonable time. For the case of data mining, soft computing techniques such as

ANN, metaheuristics (MHs), fuzzy logic methods, and other approaches have been used as

tools to solve the data mining challenges. In particular, an MH is a general algorithmic

template based on intelligent processes and behaviors observed in both nature and other

disciplines [5]. Evolutionary algorithms (EAs) are one type of MH that have been successfully

applied for providing near-optimal solutions for many computationally complex problems in

almost all areas of science and technology. The effectiveness of EAs is due to two factors:

(1) they combine a clever exploration of the search space to identify promising areas and (2)

they perform an efficient exploitation of these areas aiming to improve the known solution or

solutions. EAs are inspired by evolutionary theories that synthesize the Darwinian evolution

through natural selection with the Mendelian genetic inheritance. In particular, differential

evolution (DE) algorithm is an EA designed for solving optimization problems with variables

in continuous domains that, instead of implementing traditional crossover and mutation

operators, it applies a linear combination of several randomly selected candidate solutions to

produce a new solution [6].

MHs have been previously applied to build DTs, and there exist several surveys that describe

their implementation [7–11]. Some approaches apply a recursive partitioning strategy in which

an MH finds a near-optimal test condition for each internal node of a DT; however, the

approach most commonly used is to perform a global search in the solution space with the

aim of finding near-optimal DTs. Since DE is one of the most powerful EA to solve real-valued

optimization problems, and the task of finding a near-optimal oblique hyperplane with real-

valued coefficients is an optimization problem in a continuous space, in this chapter, two DE-

based methods to induce oblique DTs are described: one implementing a recursive partitioning

strategy to find the most suitable oblique hyperplane of each internal node of a decision tree,

and the other conducting a global search of a near-optimal oblique decision tree. A statistical

analysis of the experimental results suggests that these methods show better performance as

decision tree induction procedures in comparison with other supervised learning approaches.

The rest of this chapter is organized as follows: Section 2 provides a set of basic definitions

about DTs and the DE algorithm. The induction of oblique DTs by means of MH-based

approaches is described in Section 3. The constituent elements of the DE-based methods

described in this chapter is discussed in Section 4, and the experimental results are discussed

in Section 5. Finally, Section 6 describes the conclusion and the future work.

Artificial Intelligence - Emerging Trends and Applications50

2. Background

Machine learning methods are an essential tool in emerging disciplines such as data science

[12] and business intelligence [13] since they provide efficient predictive models constructed

from the data previously collected. DTs, ANN, and SVMs, as well as clustering methods, have

been widely used to build these models. A DT is a hierarchical model using an ordered

sequence of decisions to predict the class membership of new unclassified instances. An ANN

consists of many nonlinear elements connected by links associated with weighted variables

operating in parallel [14], in which learning is performed iteratively as the network processes

the training instances, trying to simulate the way a human being learns from previous experi-

ences. Finally, one SVM finds the hyperplane that best separates the training instances into two

different classes using a set of functions called kernels. The optimal hyperplane is described

with a combination of entry points known as support vectors [15].

A DT is an acyclic connected graph with a single root node used as one classification model

induced through a set of training instances. A DT contains zero or more internal nodes and one

or more leaf nodes [16]. Each internal node evaluates a test condition consisting of a combina-

tion of one or more attributes of the dataset, and each leaf node has a class label. The arcs

joining an internal node with their successor nodes are labeled with the possible outcomes of

its test condition. Each DT branch represents a sequence of decisions made by the model to

determine the class membership of a new unclassified instance. The DT induction (DTI)

process commonly implements a recursive partition strategy. In each stage of this process, the

most appropriate test condition to split the training set is selected according to some partition

criterion. As a result of evaluating the training instances with this test condition, two or more

instances subsets are created which are assigned to the successor nodes of the current internal

node. This process is recursively applied until a stop criterion is reached. If the number of

attributes used in the test conditions of the tree internal nodes is regarded, two types of DT can

be constructed: axis-parallel or multivariate DTs. An axis-parallel DT is a univariate DT that

evaluates a single attribute in each test condition to split the training set. On the other hand,

oblique DTs and nonlinear DTs are multivariate DTs in which a linear combination and a

nonlinear composition of attributes are utilized in the test conditions of a DT, respectively.

Multivariate DTs commonly show better performance, and they are smaller than univariate

DTs, but they require more computational effort to induce them. In particular, an oblique

hyperplane divides the instance space into two halfspaces, and it is defined as follows:

Xd

j¼1

hjxj þ b > 0 (1)

where d is the number of attributes in the dataset, xj is the value of the j-th attribute, hj is a real-

valued coefficient in the hyperplane, and b represents the independent term of the hyperplane.

Figure 1 shows an axis-parallel DT induced from the iris dataset [17] using the J48 method [18],

and Figure 2 shows a near-optimal oblique DT constructed from the same dataset by the DE-

based method implementing a global search strategy. Iris dataset has four attributes, three

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

51

class labels, and 150 instances. It is clear that the oblique DT is more compact and more

accurate than its axis-parallel version, but it has been proved that to find the oblique hyper-

plane that minimizes the number of misclassified instances both above and below is an NP-

hard problem [19].

On the other hand, MHs are general algorithmic templates that can be easily adapted to solve

almost all optimization problems [20]. MHs are nature-inspired procedures using stochastic

components to find a near-optimal solution and have several parameters that need to be fitted

to the specific problem [21]. In accordance with the number of candidate solutions used in its

search procedure, MHs have been grouped in single-solution-based MHs and population-

based MHs [22]. Single-solution-based MHs implement intelligent search procedures that

iteratively replace a candidate solution with a neighboring solution with the aim of reaching a

near-optimal solution. Simulated annealing (SA) and Tabu search (TS) are two well-known

single-solution-based MHs. Population-based MHs use a group of candidate solutions in each

step of their iterative process. The most commonly used population-based MHs are related to

EAs and Swarm intelligence (SI) methods. Genetic algorithms (GA), genetic programming

(GP), evolutionary strategies (ES) and DE are the most prominent EAs, and ant colony optimi-

zation (ACO) and particle swarm optimization (PSO) are examples of SI methods.

In particular, DE is an effective EA designed to solve optimization problems with real-valued

parameters [6]. DE evolves a population X ¼ x1; ; x2;…; ; xNP
� �

of NP chromosomes by applying

Figure 1. An axis-parallel DT induced from the iris dataset.

Figure 2. An oblique DT induced from the iris dataset.

Artificial Intelligence - Emerging Trends and Applications52

mutation, crossover, and selection operators with the aim to reach a near-optimal solution.

Several DE variants differing in the implementation of the mutation and crossover operators

have been described in existing literature. In this chapter, the standard DE algorithm, named

DE/rand/1/bin in agreement with the nomenclature adopted to refer DE variants, is used as

a procedure to find a near-optimal solution. At each iteration of this evolutionary process,

known as a generation, a new population of chromosomes is generated from the previous one.

For each i∈ 1;…;NPf g in the g-th generation, xi is taken from the Xg�1 population, and it is

used to build a new vector ui by applying the mutation and crossover operators. Vectors xi and

ui are known as the target vector and the trial vector, respectively. To build a new chromosome,

instead of implementing a traditional mutation operator, DE first applies a linear combination

of several chromosomes randomly chosen from the current population (xr1 , xr2 , and xr3) to

construct a mutated vector vi ¼ xr1 þ F xr2 � xr3ð Þ, where F is a user-specified value

representing a scale factor applied to control the differential variation. Next, the crossover

operator determines each parameter in ui from either xi or vi, based on a stochastic decision. If

a random value is less than a crossover factor (CF), the j-th parameter value of ui is taken from

vi, otherwise its value is uij ¼ xij. Finally, a one-to-one tournament is applied to determine

which vector, between xi and ui, is selected as a member of the new population Xg. Figure 3

shows a scheme of the application of the DE operators to build a new chromosome for the next

population.

DE has been used in conjunction with several machine learning techniques to implement

classification methods [23–27]. It has been mainly applied to optimize the parameters of

classification methods or to conduct preprocessing tasks in a data mining process. DE has

several advantages in comparison with other MHs, and since mutation operator is based on a

linear combination of several randomly chosen individuals, DE exhibits a good trade-off

between its exploitation and exploration skills [28]. On the other hand, although DE requires

the definition of a smaller number of parameters compared to other MHs, its performance is

sensitive to the values selected for CR, F, and NP.

Figure 3. DE operators applied to build a new chromosome for the next population.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

53

3. Induction of oblique decision trees using metaheuristics

Several MHs have been used to induce DTs with methods implementing a recursive parti-

tioning strategy. One timeline of these methods is shown in Figure 4. Single-solution-based

MHs such as SA and TS have been used to induce DTs through this strategy. SA is applied in the

simulated annealing of decision trees (SADT) method [29] that iteratively perturbs one ran-

domly selected coefficient to build a new hyperplane, and in one variant of the oblique classifier

1 (OC1) system [30], named OC1-SA [31], that disturbs simultaneously several coefficients of the

best axis-parallel hyperplane found by the OC1 algorithm. TS is used in the linear discriminant

and TS (LDTS) method [32] and in the linear discrete support vector DT with TS (LDSDTTS)

method [33]. Furthermore, EAs such as ES, GA, and DE also have been applied to build an

oblique DT through this strategy. The OC1-ES algorithm [31] and the multimembered ES

oblique DT (MESODT) method [34] obtain a near-optimal hyperplane using the 1þ 1ð Þ-ES

and the μ;λ
� �

-ES, respectively. Furthermore, GA evolves a population of hyperplanes

encoded: (1) with a binary chromosome in the binary tree-GA (BTGA) algorithm [35] and in

the HereBoy for DT (HBDT) method [36] and (2) with a real-valued chromosome in the OC1-

GA algorithm [31] and in the procedures described by Krȩtowski [37], and by Pangilinan and

Janssens [38]. Finally, DE is applied in an OC1 variant named OC1-DE algorithm [39].

On the other hand, several MH-based approaches implementing a global search strategy have

been described in the existing literature. GA evolves a population of variable-length chromo-

somes in the generalized decision tree inducer (GDTI) method [40] and in the evolutionary full

tree induction (EFTI) method [41]. Other GA-based approaches such as the Global EA for

oblique DTI (GEA-ODT) procedure [42, 43] and the tree analysis with randomly generated

Figure 4. Timeline of the MH-based approaches to induce oblique DTs.

Artificial Intelligence - Emerging Trends and Applications54

and evolved trees (TARGET) algorithm [44] use trees as chromosomes. Furthermore, the

standard GP is applied by Liu and Xu [45], the strongly typed GP is used by Bot and Langdon

[46, 47], and the grammar-based GP is utilized in the GP with margin maximization (GP-MM)

method [48]. Finally, DE is implemented in the perceptron DT (PDT) method [49, 50] and in the

DE for inducing oblique DTs (DE-ODT) method [51].

4. DE-based methods to induce oblique decision trees

In this chapter, two methods to induce an oblique DT using the DE/rand/1/bin algorithm are

described. The first method, named OC1-DE, is similar to the OC1 system and its variants, but

it applies DE to find a near-optimal hyperplane at each internal node of an oblique DT [39].

The second one, named DE-ODT method, implements a global search strategy to induce

oblique DTs [51].

4.1. OC1-DE method to search near-optimal oblique hyperplanes

The OC1-DE method is based on the OC1 system [30] and the OC1-GA procedure [31]. The

OC1 system applies a two-step process to find a better hyperplane. First, it finds the best axis-

parallel hyperplane splitting the instance set. Next, it applies two procedures to disturb the

hyperplane coefficients:

• Sequential perturbation: This is a deterministic rule that adjusts the hyperplane coefficients,

taking one at a time and looking for its optimal value.

• Random vector perturbation: When the sequential perturbation reaches a local optimum, a

random vector is added to the current hyperplane with the aim of looking elsewhere in

the solutions space.

Finally, this procedure returns as the best hyperplane to the one selected between the best-

perturbed hyperplane and the best axis-parallel hyperplane. OC1 uses several criteria to

evaluate the quality of the candidate hyperplanes such as information gain [52] and three

criteria introduced by Heath [19]: max minority, minority sum, and sum of impurities. Induced

DT is pruned by removing sub-trees whose impurity value is less than a predefined threshold

value. An improved OC1 version [53] uses the elements defined in the CART method [54]: the

Gini index and the twoing rule as splitting criteria and the cost-complexity pruning method.

On the other hand, the OC1-GA method is an OC1 variant encoding the hyperplane coeffi-

cients in a real-valued chromosome. First, the axis-parallel hyperplane that best splits the

training instances is obtained. This hyperplane is copied to 10% of the initial population and

the remaining hyperplanes are randomly created. Then, OC1-GA evolves this population to

find a near-optimal hyperplane evaluating its quality through the twoing rule. Oblique DT is

then induced in a recursive partitioning strategy, and it is pruned using the cost-complexity

pruning method.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

55

The DE implementation to find a near-optimal hyperplane at each internal node of an oblique

DT is shown in the Algorithm 1. First, the axis-parallel hyperplane that best splits a set of

training instances is obtained (line 1). It is copied to 10% of the initial population, as is

proposed in [31], and the remaining hyperplanes are randomly created (line 2). Each random

hyperplane is constructed considering that almost two instances with different class labels are

separated by the hyperplane. Next, this population is evolved through several generations

using the DE operators (lines 3–19), and the best hyperplane in the population is selected (line

20). Finally, the OC1-DE algorithm returns the hyperplane selected between the best axis-

parallel hyperplane and the best oblique hyperplane produced by DE (line 21).

The hyperplane returned by the OC1-DE is used as the test condition of a new internal node

that is added in an oblique DT. This hyperplane is used to split the training instances into two

subsets. The OC1-DE method is recursively applied using each subset until a leaf node is

created as all instances in the subset have the same class label or a threshold value of unclas-

sified instances is reached. The quality of the hyperplane is obtained using the twoing rule.

Finally, a pruning procedure is applied in order to reduce the overfitting of DT produced and

to improve its predictive power.

4.2. DE-ODT method to induce oblique decision trees

The DE-ODT method implements a global search strategy in which the DE algorithm is

applied to find a near-optimal oblique DT, where each real-valued chromosome encodes only

a feasible oblique DT.

Artificial Intelligence - Emerging Trends and Applications56

4.2.1. Linear representation of oblique decision trees

In the DE-ODT method, each chromosome represents the internal nodes of a complete binary

oblique DT stored in a fixed-length real-valued vector (Figure 5). This vector encodes the set of

hyperplanes used as test conditions of the oblique DT. Vector size is determined using both the

number of attributes and the number of class labels of the training set whose model is induced.

Since each internal node of an oblique DT has a hyperplane as its test condition, the size of the

real-valued vector xi used to encode each i-th candidate solution in the population is fixed as

ne dþ 1ð Þ, where ne is the estimated number of internal nodes of a complete binary oblique DT.

Considering that: (1) an oblique DT is more compact than its univariate version and since

(2) the DT size is related to the structure of the training set, the DE-ODTmethod determines the

value of ne based on both the number of attributes and the number of class labels (s) in it.

If the number of internal nodes of a complete binary DT with height H is 2H�1 � 1 and the

number of leaf nodes of the same DT is 2H�1, two heights can be obtained: Hi ¼ log2 dþ 1ð Þ
�

þ1e, and Hl ¼ log2 sð Þ þ 1
� �

. Using these equations, ne is determined as follows:

ne ¼ 2max Hi;Hlð Þ�1 � 1, (2)

and, the size of the real-valued parameter vector representing a sequence of ne hyperplanes for

a training set with d attributes is computed as follows:

n ¼ ne dþ 1ð Þ: (3)

As an example, if a hypothetical dataset with three numerical attributes and three class labels

is used to induce an oblique DT, then d ¼ 3 and s ¼ 3. In this case, Hi ¼ log2 4ð Þ þ 1
� �

¼ 3 and

Hl ¼ log2 3ð Þ þ 1
� �

¼ 3. Finally, ne ¼ 2max 3;3f g � 1 ¼ 7. This implies that the oblique DT could

have seven internal nodes. Finally, one chromosome representing a candidate solution in the

evolutionary process of this problem has 28 real-valued parameters.

Figure 5. Linear encoding scheme for the internal nodes of a complete binary oblique tree.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

57

4.2.2. Induction of feasible oblique decision trees

The DE-ODTmethod applies the following steps to map an oblique DT from a chromosome xi

of the population:

1. Hyperplanes construction: xi is used to build the vector wi representing the sequence of

candidate hyperplanes utilized in the internal nodes of a partial DT. Since the values of xi

represent the hyperplane coefficients contained in these nodes, the following criterion

applies: Values xi1;…; xidþ1

� �

are assigned to the hyperplane h1, the values xidþ2;…; xi2dþ2

� �

are assigned to the hyperplane h2, and so on. For each j∈ 1;…; nef g, and for each

k∈ 1;…; dþ 1f g, the k-th coefficient of hj is designed as follows

h
j
k ¼ xi j�1ð Þ dþ1ð Þþk: (4)

These hyperplanes are assigned to the elements of wi: h1 is assigned to wi
1, h

2 is assigned to

wi
2, and so on. Figure 6 shows an example of the construction of a set of hyperplanes from

one chromosome for the hypothetical dataset previously described. Once wi is completed,

it is used to create a partial DTwith only internal nodes.

2. Partial oblique decision tree construction: wi is used to create the partial tree (pTi). First,

the element in the initial location of wi is used as the root node of pTi. Next, the remaining

elements of wi are inserted in pTi as successor nodes of those previously added so that each

new level of the tree is completed before placing new nodes at the next level, in a similar

way to the breadth-first search strategy. Figure 7 shows an example of the construction of a

partial oblique DT from wi. In this figure, it can be observed that wi
1 is selected as the tree

root node, wi
2 and wi

3 are placed as the successor nodes of wi
1, w

i
4 and wi

5 are designed as the

successor nodes of wi
2, and so on.

3. Oblique decision tree completion: The final stage of the mapping scheme adds leaf nodes

in pTi using the training set. In this stage, one instance set is assigned to a node (the

Figure 6. Construction of a set of hyperplanes from xi.

Artificial Intelligence - Emerging Trends and Applications58

complete training set for the root node of the tree), and it is labeled as an internal node. To

evaluate each instance in this set using the hyperplane associated to the internal node, two

instances subsets are created, and they are assigned to the successor nodes of this node.

This assignment is repeated for each node of the partial DT. If the internal node is located

at the end of a branch of the DT, then two leaf nodes are created, and they are designated as

successor nodes of this node. The instances subsets created are assigned to these leaf nodes.

On the other hand, if all instances in the set assigned to the internal node have the same

class label, it is labeled as a leaf node and its successor nodes are removed, if they exist.

Figure 8 shows an example of this tree-completion procedure. Figure 8 shows that all the

instances assigned to w3 and w5 have the same class label, so they are designated as leaf

nodes, and the successor nodes of w3 are removed from the tree. On the other hand, since

w4 is the ending node of a branch, its instance set is split using its hyperplane, the instances

subsets produced are assigned to two new leaf nodes, and their majoritarian classes are

assigned as their class labels. It can be observed that this tree has three internal nodes and

four leaf nodes.

4.2.3. General structure of the DE-ODT method

The Algorithm 2 shows the structure of the DE-ODT method described in this chapter. This

procedure requires to identify the training set used to induce an oblique DT, as well as the

three control parameters applied by the DE algorithm (CR, F, and NP) and the threshold value

(τ) used to determine if a node is labeled as a leaf node. First, the DE-ODT method gets the

attributes vector (a), the vector of class labels (c), and the instance set (ι) from the dataset whose

Figure 7. Construction of a partial oblique DTwith only internal nodes.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

59

model must be built (line 1). Next, the value of d and n are computed (lines 2–4). Then, the DE

algorithm evolves a population of real-valued chromosomes encoding oblique DTs. DE selects

the best candidate solution xbest in the last population as the result of its evolutionary process

(line 5). After that, a near-optimal oblique DT is constructed applying the procedures described

in the previous paragraphs (lines 6–8). Since the DE-ODTmethod uses an a priori definition of

the size of the chromosome, it is possible that some leaf nodes in the DT do not meet the

following conditions: that the size of its instances subset is less than τ or that all the instances in

the subset belong to the same class. The DE-ODT method refines the DT by replacing

nonoptimal leaf nodes with sub-trees (line 9). Finally, the oblique DT is pruned to reduce the

possible overfitting generated by applying this refinement (line 10).

This procedure allows inducing feasible oblique DTs with a different number of nodes,

although they are represented with a fixed-length parameter vector.

5. Experimental study

In this chapter, the experimental study carried out to analyze the performance of the DE-based

methods for DTI is detailed. First, a description of the datasets used in this study, as well as the

Figure 8. Completion of an oblique DT using pTi and the training instances.

Artificial Intelligence - Emerging Trends and Applications60

definition of the parameters of each method, are given. Then, both the model validation tech-

nique used in the experiments and the statistical tests applied to evaluate the results obtained are

outlined. Finally, a discussion about the performance of the DE-based methods is provided.

5.1. Experimental setup

A benchmark of 20 datasets chosen from the UCI machine learning repository [55] is used to

carry out the experimental study. These datasets have been selected as their attributes are

numerical, their instances are classified into two or more classes, and most of them are

imbalanced datasets. Table 1 shows the description of these datasets. To ensure that the

comparison of the results achieved by the DE variants with those produced by other

approaches is not affected by the treatment of the data, all datasets used in this study do not

have missing values. Also, the data are not preprocessed, filtered, or normalized, that is, they

are used as they are obtained from the UCI repository.

The DE-based methods are implemented in the Java language using the JMetal library [56].

The mutation scale factor is linearly decreased from 0:5 to 0:1 as the evolutionary process

progresses, and the crossover rate is fixed at 0:9. The decrement in the F value allows more

exploration of search space at the beginning of the evolutionary process, and with the passage

of the generations, it tries to make a better exploitation of promising areas of this space [57].

The population size is adjusted to 5n, with 250 and 500 chromosomes as lower and upper

bound, respectively. These bounds are used to ensure that the population is not so small as not

to allow a reasonable exploration of the search space and is not so large as to impact the

runtime of the algorithm. Furthermore, the fitness function used in the DE-ODT method

computes the training accuracy of each DT in population, and the twoing rule is used as fitness

value in the OC1-DE method. The best oblique DT induced by these methods is pruned using

the error-based pruning (EBP) approach [58]. Finally, the threshold value used to determine

Dataset Instances Attributes Classes Class distribution Dataset Instances Attributes Classes Class distribution

Glass 214 9 7 70∣76∣17∣0∣13∣9∣29 Diabetes 768 8 2 500∣268

Balance-scale 625 4 3 288∣49∣288 Heart-

statlog

270 13 2 150∣120

Iris 150 4 3 50 instances per

class

Australian 690 14 2 307∣383

Ionosphere 351 34 2 126∣225 Wine 178 13 3 59∣71∣48

Sonar 208 60 2 97∣111 Vehicle 846 18 4 212∣217∣218∣199

Liver-

disorder

345 6 2 145∣200 Page-

blocks

5473 10 5 4913∣329∣28∣88∣115

Blood-t 748 4 2 570∣178 Breast-

tissue-6

106 9 6 22∣21∣14∣15∣16∣18

Movement-

libras

360 90 15 24 instances per

class

Parkinsons 195 22 2 48∣147

Seeds 210 6 3 70 instances per

class

Segment 2310 19 7 330 instances per

class

Ecoli 336 7 8 143∣77∣52∣35∣20∣5∣2∣2 Spambase 4601 57 2 1813∣2788

Table 1. Description of datasets used in the experiments.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

61

whether a node should be labeled as one leaf node is set to be two instances, and the DT size is

defined as the number of leaf nodes of the oblique DT.

In this study, a repeated stratified 10-fold cross-validation (CV) procedure is used to estimate

the predictive performance of the DE-based methods, and the Friedman test [59] is applied to

carry out a statistical analysis of the results produced by these methods as compared to them

with those obtained by other classification methods. This nonparametric statistical test evalu-

ates the statistical significance of the experimental results through computing the p-value

without making any assumptions about the distribution of the analyzed data. This p-value is

used to accept or to reject the null hypothesis H0 of the experiment which holds that the

performance of the compared algorithms does not present significant differences. If the p-value

does not exceed a predefined significance level, H0 is rejected and the Bergmann-Hommel

(BH) post hoc test [60] is conducted to detect the differences between all existing pairs of

algorithms. These statistical tests are applied using the scmamp R library [61].

Dataset J48 sCART OC1-DE DE-ODT

Glass 67.62 (4) 71.26 (2) 71.31 (1) 68.97 (3)

Diabetes 74.49 (3) 74.56 (2) 73.37 (4) 75.79 (1)

Balance-scale 77.82 (4) 78.74 (3) 93.92 (1) 91.97 (2)

Heart-statlog 78.15 (2) 78.07 (3) 74.11 (4) 81.11 (1)

Iris 94.73 (3) 94.20 (4) 96.73 (2) 97.17 (1)

Australian 84.35 (4) 85.19 (2.5) 85.19 (2.5) 85.61 (1)

Ionosphere 89.74 (3) 88.86 (4) 91.11 (2) 92.28 (1)

Wine 93.20 (1) 89.49 (4) 92.58 (2) 91.88 (3)

Sonar 73.61 (3) 70.67 (4) 77.65 (2) 79.34 (1)

Vehicle 72.28 (2) 69.91 (4) 72.32 (1) 71.33 (3)

Liver-disorders 65.83 (4) 66.64 (3) 67.63 (2) 71.16 (1)

Page-blocks 96.99 (2) 96.76 (4) 96.88 (3) 97.07 (1)

Blood-t 78.20 (2) 77.86 (3) 76.35 (4) 78.70 (1)

Breast-tissue-6 34.81 (3) 32.45 (4) 34.91 (2) 38.85 (1)

Movement-libras 69.31 (2) 65.64 (3) 75.11 (1) 55.63 (4)

Parkinsons 84.72 (4) 86.31 (3) 87.95 (1) 86.43 (2)

Seeds 90.90 (3.5) 90.90 (3.5) 93.76 (1) 91.79 (2)

Segment 96.79 (1) 95.83 (3) 95.93 (2) 94.78 (4)

Ecoli 82.83 (4) 83.15 (3) 83.51 (2) 84.72 (1)

Spambase 92.68 (2) 92.35 (3) 92.19 (4) 93.94 (1)

Average ranking 2.825 3.250 2.175 1.750

Table 2. Average accuracies obtained by the DTI algorithms and the DE-based methods.

Artificial Intelligence - Emerging Trends and Applications62

The results obtained with the DE-based methods are compared with those achieved by several

supervised learning methods available on the WEKA data mining software [62]. First, the

accuracy and the size of the DTs got by these algorithms are compared with those obtained

by the J48 method [63] and by the SimpleCART (sCART) [54] procedure. Next, the accuracy of

the DTs constructed with the DE-based procedures is compared with those achieved using the

following classification methods: Naïve Bayes (NB) [64], multilayer perceptron (MLP) [65],

radial basis function neural network (RBF-NN) [66], and random forest (RF) [67].

5.2. Comparison with DTI methods

Table 2 and Figure 9 show the average accuracies of the DTs induced by the DTI algorithms as

well as those achieved by the OC1-DE method. In Table 2, the best result for each dataset is

highlighted with bold numbers, and the numbers in parentheses refer to the ranking reached

by each method for each dataset. The last row in this table indicates the average ranking of

each method. It is observed that the DE-based methods produce better results than those

generated by the other DTI algorithms.

A statistical test of the experimental results is conducted to evaluate the performance of the

DE-based methods. First, the Friedman test is run and its resulting statistic value is 16.197 for

four methods and 20 datasets, which has a p-value of 1:033� 10�3. When evaluating this

p-value with a significance level of 5%, H0 is rejected. Next, the BH post hoc test is applied to

Figure 9. Graphical comparison of the average accuracies obtained by the DTI algorithms and the DE-based methods.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

63

Method AR OC1-DE DE-ODT

Unadjusted BH Unadjusted BH

J48 2.825 1.1134e-01 1.1134e-01 8.4584e-03 2.5375e-02

sCART 3.250 8.4584e-03 2.5375e-02 2.3856e-04 1.4131e-03

OC1-DE 2.175 — — 2.9786e-01 5.9572e-01

DE-ODT 1.750 2.9786e-01 5.9572e-01 — —

Table 3. The p-values for multiple comparisons among DTI algorithms and the DE-based methods.

Figure 10. The p-value graph of the DTI algorithms and the DE-based methods.

Dataset J48 sCART OC1-DE DE-ODT

Glass 23.58 (4) 8.00 (1) 21.61 (3) 11.08 (2)

Diabetes 22.20 (3) 3.00 (1) 41.55 (4) 14.77 (2)

Balance-scale 41.60 (4) 13.00 (2) 15.24 (3) 5.01 (1)

Heart-statlog 17.82 (4) 16.00 (2) 17.43 (3) 7.23 (1)

Iris 4.64 (3) 5.00 (4) 3.00 (1) 3.37 (2)

Australian 25.75 (4) 5.00 (1) 21.90 (3) 15.64 (2)

Ionosphere 13.87 (4) 3.00 (1) 7.20 (2) 7.73 (3)

Wine 5.30 (3) 5.00 (2) 5.48 (4) 4.71 (1)

Sonar 14.45 (4) 10.00 (2) 10.24 (3) 6.13 (1)

Vehicle 69.50 (3) 80.00 (4) 56.74 (2) 44.25 (1)

Liver-disorders 25.51 (4) 3.00 (1) 22.65 (3) 6.60 (2)

Page-blocks 42.91 (4) 22.00 (1) 38.70 (3) 24.56 (2)

Blood-t 6.50 (1) 10.00 (3) 22.39 (4) 8.46 (2)

Breast-tissue-6 22.45 (4) 8.00 (1) 14.09 (3) 8.97 (2)

Movement-libras 47.52 (4) 30.00 (3) 27.46 (1) 29.07 (2)

Parkinsons 10.24 (4) 7.00 (2) 7.11 (3) 4.85 (1)

Seeds 7.42 (4) 6.00 (3) 4.78 (2) 3.17 (1)

Segment 41.21 (4) 41.00 (3) 30.53 (2) 27.91 (1)

Ecoli 18.59 (4) 15.00 (3) 12.57 (2) 7.06 (1)

Spambase 103.37 (4) 75.00 (3) 74.42 (2) 31.70 (1)

Average ranking 3.65 2.15 2.65 1.55

Table 4. Average DT sizes obtained by the DTI methods.

Artificial Intelligence - Emerging Trends and Applications64

find all the possible hypotheses which cannot be rejected. Table 3 shows both the average rank

(AR) of the results yielded by each method and the p-values computed by comparing the

average accuracies achieved by the DE-based procedures versus those obtained by the other

DTI methods. The p-values highlighted with bold numbers indicate that H0 is rejected for this

pair of methods since they show different performance. Unadjusted p-values are calculated

with the average ranks of the two methods being compared, as is described by Demšar in [68].

These values are used by the BH post hoc test to compute the corresponding adjusted p-values.

Table 3 shows that the DE-ODTmethod has a better performance than the other DTI methods

since it has the lowest average rank (1.750), and its results are statistically different than these

methods. Figure 10 shows a graph where the nodes represent the compared methods and the

edges joining two nodes indicate that the performance of these methods does not present

significant differences. The values shown in the edges are the p-values computed by the BH

post hoc test. This figure is based on that obtained using the scmamp library, and in it is

observed that the DE-based methods are not statistically different between them, and that the

DE-ODTmethod is statistically different with the DTI methods. This statistical results indicate

that the DE-ODT method is the better DTI method to build oblique DT.

On the other hand, the average sizes of the DTs constructed by the DE-based algorithms and

also of those induced by the J48 and the sCART methods are shown in Table 4 and Figure 11.

Similar to Table 2, the best result for each dataset in Table 4 is highlighted with bold numbers,

and the numbers in parentheses refer to the ranking reached by each method for each dataset.

These results indicate that the DE-ODT method produces the most compact DTs. Also, it is

observed that the size of the DTs built for the OC1-DE method has less complexity than those

yielded by the J48 method.

Figure 11. Average DT sizes of several DTI methods.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

65

Dataset NB MLP RBF-NN RF OC1-DE DE-ODT

Glass 49.44 (6) 67.29 (4) 65.09 (5) 79.95 (1) 71.31 (2) 68.97 (3)

Diabetes 75.76 (3) 74.75 (4) 74.04 (5) 76.18 (1) 73.37 (6) 75.79 (2)

Balance-scale 90.53 (4) 90.69 (3) 86.34 (5) 81.71 (6) 93.92 (1) 91.97 (2)

Heart-statlog 83.59 (1) 79.41 (5) 83.11 (2) 82.41 (3) 74.11 (6) 81.11 (4)

Iris 95.53 (5) 96.93 (2) 96.00 (4) 94.73 (6) 96.73 (3) 97.17 (1)

Australian 77.19 (6) 83.42 (4) 82.55 (5) 86.77 (1) 85.19 (3) 85.61 (2)

Ionosphere 82.17 (6) 91.05 (5) 91.71 (3) 93.39 (1) 91.11 (4) 92.28 (2)

Wine 97.47 (4) 98.03 (1.5) 97.70 (3) 98.03 (1.5) 92.58 (5) 91.88 (6)

Sonar 67.69 (6) 81.59 (2) 72.60 (5) 84.47 (1) 77.65 (4) 79.34 (3)

Vehicle 44.68 (6) 81.11 (1) 65.35 (5) 75.14 (2) 72.32 (3) 71.33 (4)

Liver-disorders 54.87 (6) 68.72 (3) 65.04 (5) 72.99 (1) 67.63 (4) 71.16 (2)

Page-blocks 90.01 (6) 96.28 (4) 94.91 (5) 97.54 (1) 96.88 (3) 97.07 (2)

Blood-t 75.28 (5) 78.46 (2) 78.22 (3) 73.62 (6) 76.35 (4) 78.70 (1)

Breast-tissue-6 46.42 (1) 35.47 (5) 41.13 (3) 45.19 (2) 34.91 (6) 38.85 (4)

Movement-libras 64.14 (5) 80.50 (2) 75.50 (3) 82.89 (1) 75.11 (4) 55.63 (6)

Parkinsons 70.10 (6) 91.44 (1) 81.49 (5) 91.38 (2) 87.95 (3) 86.43 (4)

Seeds 90.52 (6) 95.24 (1) 91.67 (5) 93.57 (3) 93.76 (2) 91.79 (4)

Segment 80.17 (6) 96.21 (2) 87.31 (5) 98.07 (1) 95.93 (3) 94.78 (4)

Ecoli 85.51 (2) 84.85 (3) 83.30 (6) 86.25 (1) 83.51 (5) 84.72 (4)

Spambase 79.56 (6) 91.19 (4) 81.31 (5) 95.65 (1) 92.19 (3) 93.94 (2)

Average ranking 4.800 2.925 4.350 2.125 3.700 3.100

Table 5. Average accuracies obtained by several classification methods.

Figure 12. Graphical comparison of the average accuracies obtained by several classification methods.

Artificial Intelligence - Emerging Trends and Applications66

5.3. Comparison with other classification methods

Table 5 and Figure 12 show the average accuracies got by several classification methods as

well as those obtained by the DE-based methods. In this table, we can observe that the RF

algorithm and the MLP method construct more accurate classifiers than the others, and also

that the DE-based procedures induce DTs with better accuracy than the models built by both

the RBF-NN algorithm and the NB method.

The Friedman statistics computed by analyzing the results got by these six methods with 20

datasets is 27.661, and the corresponding p-value is 4:24� 10�5 so that H0 is rejected. The BH

post hoc test is then applied to find all possible hypotheses that cannot be refused. Table 6

shows the results of these tests, and Figure 13 shows the graph corresponding to these p-values.

The value highlighted with bold in Table 6 indicates that the DE-ODT method is statistically

different with the NB method, only.

Method AR OC1-DE DE-ODT

Unadjusted BH Unadjusted BH

NB 4.800 6.2979e-02 3.7787e-01 4.0591e-03 2.8414e-02

MLP 2.925 1.9019e-01 7.6079e-01 7.6737e-01 8.9374e-01

RBF-NN 4.350 2.7118e-01 7.7679e-01 3.4610e-03 1.3844e-01

RF 2.125 7.7623e-03 5.4336e-03 0.9342e-02 3.9736e-01

OC1-DE 3.700 — — 3.1049e-01 7.6079e-01

DE-ODT 3.100 3.1049e-01 7.6079e-01 — —

Table 6. The p-values for multiple comparisons among several classification methods.

Figure 13. The p-value graph of the classification methods.

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

67

The p-values obtained by the BH post hoc test point out that the RF method is statistically

different only with the RBF-NN algorithm and the NB method, and that both the MLP method

and the DE-ODT procedure are statistically different with the NB method. The comparison

between the remaining pairs of algorithms indicates that they have a similar performance. The

RF method is the best ranked in this comparison, and the AR of the DE-ODT procedure places

it as the third best classification method.

6. Conclusions

In this chapter, two DE-based methods to induce oblique DTs are described. The OC1-DE

method implements a recursive partitioning strategy to find a near-optimal hyperplane which

is used as test condition of an oblique DT. On the other hand, in the DE-ODTmethod, a global

search in the space of oblique DTs is conducted with the aim of finding a near-optimal tree. The

DE-ODTmethod estimates the size of the chromosome encoding a complete tree based on both

the number of attributes and the number of classes of the dataset whose model is constructed.

This method also defines a scheme to map feasible oblique DTs from this chromosome.

The experimental results obtained indicate that these DE-based methods are better DTI

methods, since they build more accurate and compact oblique DTs than those induced by the

J48 and the sCART procedures. The DE-ODTmethod is better than the OC1-DE since its search

procedure uses intelligent search procedures combining their exploration and exploitation

skills, thus providing a better way to discover the relationships between the attributes used in

the training set, and although the search process is only guided by the accuracy of the DT, the

models constructed are more compact than those produced by the methods that implement a

recursive partitioning strategy. Among the other compared methods, the results got by the

OC1-DE method are better than those obtained by the other methods, since it uses a linear

combination of attributes in each test condition of the tree, and it produce better hyperplanes

than the axis-parallel hyperplanes.

Even though the results yielded by the DE-based variants are not better than those produced

by the RF algorithm and the MLP-based classifier, they are statistically equivalent. An advan-

tage of these methods is that it constructs models whose decisions and operations are easily

understood, and although the RF method also builds DTs, its voting scheme makes it very

difficult to trace the way in which the model takes its decisions.

In this chapter, an analysis of the run time of the algorithms is not performed, since it is known

that MHs consume more computational time than other approaches because they work with a

group of candidate solutions, unlike the traditional methods where only one DT is induced

from the training set. It is important to mention that for many practical applications, the

construction of the model is conducted in one offline procedure, so the time of its construction

is not a parameter that usually impacts the efficiency of the built model.

Artificial Intelligence - Emerging Trends and Applications68

Author details

Rafael Rivera-Lopez1 and Juana Canul-Reich2*

*Address all correspondence to: juana.canul@ujat.mx

1 Departamento de Sistemas y Computación, Instituto Tecnológico de Veracruz, Veracruz,

VER, México

2 División Académica de Informática y Sistemas, Universidad Juárez Autónoma de Tabasco,

Cunduacán, TAB, México

References

[1] Frawley WJ, Piatetsky-Shapiro G, Matheus CJ. Knowledge discovery in databases: An

overview. AI Magazine. 1992;13(3):57

[2] Stiglic G, Kocbek S, Pernek I, Kokol P. Comprehensive decision tree models in bioinfor-

matics. PLoS One. 2012;7(3):1-13

[3] Huysmans J, Dejaeger K, Mues C, Vanthienen J, Baesens B. An empirical evaluation of the

comprehensibility of decision table, tree and rule based predictive models. Decision Sup-

port Systems. 2011;51(1):141-154

[4] Nettleton DF, Orriols-Puig A, Fornells A. A study of the effect of different types of noise on

the precision of supervised learning techniques. Artificial Intelligence Review. 2010;33(4):

275-306

[5] Du KL, SwamyMNS. Search andOptimization byMetaheuristics. Switzerland: Springer; 2016

[6] Storn R, Price K. Differential evolution – A simple and efficient heuristic for global opti-

mization over continuous spaces. Journal of Global Optimization. 1997;11(4):341-359

[7] Galea M, Shen Q, Levine J. Evolutionary approaches to fuzzy modelling for classification.

The Knowledge Engineering Review. 2004;19(1):27-59

[8] Espejo PG, Ventura S, Herrera F. A survey on the application of genetic programming to

classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews). 2010;40(2):121-144

[9] Kokol P, Pohorec S, Štiglic G, Podgorelec V. Evolutionary design of decision trees for

medical application. Data Mining and Knowledge Discovery. 2012;2(3):237-254

[10] Barros RC, Basgalupp MP, Carvalho ACPLF, Freitas AA. A survey of evolutionary algo-

rithms for decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews). 2012;42(3):291-312

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

69

[11] Kolçe E, Frasheri N. The use of heuristics in decision tree learning optimization. Interna-

tional Journal of Computer Engineering in Research Trends. 2014;1(3):127-130

[12] Alurkar AA, Ranade SB, Joshi SV, Ranade SS, Sonewar PA,Mahalle PN, Deshpande AV. A

proposed data science approach for email spam classification using machine learning

techniques. In: 2017 Internet of Things Business Models, Users, and Networks; November

2017; pp. 1-5

[13] Mishan MT, Kushan AL, Fadzil AFA, Amir ALB, Anuar NB. An analysis on business

intelligence predicting business profitability model using naive Bayes neural network

algorithm. In: 2017 7th IEEE International Conference on System Engineering and Tech-

nology (ICSET). Shah Alam, Malasya: IEEE; 2017; pp. 59-64

[14] Lippmann RP. An introduction to computing with neural nets. ASSPMagazine. 1987;4(2):

4-22

[15] Abe S. Support Vector Machines for Pattern Classification. London, UK: Springer; 2005

[16] Murthy SK. On Growing Better Decision Trees from Data. PhD thesis, The Johns Hopkins

University; 1997

[17] Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics.

1936;7(2):179-188

[18] Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. San

Francisco, CA, USA: Morgan Kaufmann; 2005

[19] Heath DG. A Geometric Framework for Machine Learning [PhD thesis]. Johns Hopkins

University; 1993

[20] Birattari M. Tuning Metaheuristics: A Machine Learning Perspective, Volume 197 of

Studies in Computational Intelligence. Berlin Heildelberg: Springer; 2009

[21] Boussaïd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Information

Sciences. 2013;237:82-117

[22] Talbi EG. Metaheuristics: From Design to Implementation. Hoboken, NY, USA:Wiley; 2006

[23] Li J, Ding L, Li B. Differential evolution-based parameters optimisation and feature selec-

tion for support vector machine. International Journal of Computational Science and

Engineering. 2016;13(4):355-363

[24] Leema N, Nehemiah HK, Kannan A. Neural network classifier optimization using differ-

ential evolution with global information and back propagation algorithm for clinical

datasets. Applied Soft Computing. 2016;49:834-844

[25] Geetha K, Baboo SS. An empirical model for thyroid disease classification using evolu-

tionarymultivariate Bayesian prediction method. Global Journal of Computer Science and

Technology. 2016;16(1):1-9

[26] García S, Derrac J, Triguero I, Carmona CJ, Herrera F. Evolutionary-based selection of

generalized instances for imbalanced classification. Knowledge-Based Systems. 2012;

25(1):3-12

Artificial Intelligence - Emerging Trends and Applications70

[27] Tušar T. Optimizing accuracy and size of decision trees. In: Proceedings of the 16th Interna-

tional Electrotechnical and Computer Science Conference (ERK-2007), Portorož; Slovenia,

2007; pp. 81-84

[28] Neri F, Tirronen V. Recent advances in differential evolution: A survey and experimental

analysis. Artificial Intelligence Review. 2010;33(1–2):61-106

[29] Heath DG, Kasif S, Salzberg S. Induction of oblique decision trees. In: Bajcsy R, editor.

Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93);

Chambéry; France, 1993. pp. 1002-1007

[30] Murthy SK, Kasif S, Salzberg S, Beigel R. OC1: A randomized algorithm for building

oblique decision trees. In: AAAI’93. Vol 93. AAAI press; 1993. pp. 322-327

[31] Cantú-Paz E, Kamath C. Inducing oblique decision trees with evolutionary algorithms.

IEEE Transactions on Evolutionary Computation. 2003;7(1):54-68

[32] Li XB, Sweigart JR, Teng JTC, Donohue JM, Thombs L, Wang SM. Multivariate decision

trees using linear discriminants and tabu search. IEEE Transactions on Systems, Man, and

Cybernetics – Part A: Systems and Humans. 2003;33(2):194-205

[33] Orsenigo C, Vercellis C. Discrete support vector decision trees via tabu search. Computa-

tional Statistics & Data Analysis. 2004;47(2):311-322

[34] Zhang K, Xu Z, Buckles BP. Oblique decision tree induction using multimembered evolu-

tion strategies. In: Dasarathy BV, editor. Proceeding of Data Mining, Intrusion Detection,

Information Assurance, and Data Networks Security, SPIE 2005. Vol. 5812. Orlando:,

Florida SPIE; 2005. pp. 263-270

[35] Chai BB, Zhuang X, Zhao Y, Sklansky J. Binary linear decision tree with genetic algorithm.

In: Proceedings of the 13th International Conference on Pattern Recognition (ICPR’96).

Track D: Parallel and Connectionist Systems. Vol. IV. Vienna: IEEE; 1996. pp. 530-534

[36] Struharik R, Vranjkovic V, Dautovic S, Novak L. Inducing oblique decision trees. In: Pro-

ceedings of the 12th International Symposium on Intelligent Systems and Informatics

(SISY–2014), Subotica, Serbia: IEEE; 2014. pp. 257-262

[37] Krȩtowski M. An evolutionary algorithm for oblique decision tree induction. In:

Rutkowski L, Siekmann J, Tadeusiewicz R, Zadeh LA, editors. Proceedings of the 7th

International Conference on Artificial Intelligence and Soft Computing (ICAISC 2004).

LNAI. Vol. 3070. Zakopane, Poland: Springer; 2004. pp. 432-437

[38] Pangilinan JM, Janssens GK. Pareto-optimality of oblique decision trees from evolutionary

algorithms. Journal of Global Optimization. 2011;51(2):301-311

[39] Rivera-Lopez R, Canul-Reich J, Gámez JA, Puerta JM. OC1-DE: A differential evolution

based approach for inducing oblique decision trees. In: Rutkowski L, Korytkowski M,

Scherer R, Tadeusiewicz R, Zadeh LA, Zurada JM, editors. Proceedings of the 16th Inter-

national Conference in Artificial Intelligence and Soft Computing (ICAISC 2017). LNCS.

Vol 10245. Zakopane, Poland: Springer; 2017. pp. 427-438

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

71

[40] Dumitrescu D, András J. Generalized decision trees built with evolutionary techniques.

Studies in Informatics and Control. 2005;14(1):15-22

[41] Vukobratovic B, Struharik R. Evolving full oblique decision trees. In: Proceedings of the

16th IEEE International Symposium on Computational Intelligence and Informatics

(CINTI 2015). Budapest, Hungary: IEEE; 2015. pp 95-100

[42] Krȩtowski M, Grześ M. Global induction of oblique decision trees: An evolutionary

approach. In: Kłopotek MA et al editors. IIPWM’05, Volume 31 of ASC. Berlin Heildelberg:

Springer; 2005. pp. 309-318

[43] Krȩtowski M, Grześ M. Evolutionary learning of linear trees with embedded feature

selection. In: Rutkowski L et al editors. ICAISC 2006. LNAI. Volume 4029 of LNAI-

Springer; 2006. pp. 400-409

[44] Gray JB, Fan G. Classification tree analysis using TARGET. Computational Statistics &

Data Analysis. 2008;52(3):1362-1372

[45] Liu KH, Xu CG. A genetic programming-based approach to the classification of multiclass

microarray datasets. Bioinformatics. 2009;25(3):331-337

[46] Bot MCJ, Langdon WB. Application of genetic programming to induction of linear classi-

fication trees. In: Poli R et al., editors. EuroGP 2000. LNCS. Vol. 1802. Berlin Heildelberg:

Springer; 2000. pp. 247-258

[47] Bot MCJ, Langdon WB. Improving induction of linear classification trees with genetic

programming. In: Whitley LD et al., editors. GECCO-2000. San Francisco, CA, USA: Mor-

gan Kaufmann; 2000. pp. 403-410

[48] Agapitos A, O’Neill M, Brabazon A, Theodoridis T. Maximum margin decision surfaces

for increased generalisation in evolutionary decision tree learning. In: Silva S et al editors.

EuroGP 2011. LNCS. Volume 6621. Berlin Heildelberg: Springer; 2011. pp. 61-72

[49] Lopes RA, Freitas ARR, Silva RCP, Guimarães FG. Differential evolution and perceptron

decision trees for classification tasks. In: Yin H, Costa JAF, Barreto G, editors. Proceedings

of the 13th International Conference Intelligent Data Engineering and Automated Learn-

ing (IDEAL 2012). LNCS. Vol. 7435. Natal, Brazil: Springer; 2012. pp. 550-557

[50] Freitas ARR, Silva RCP, Guimarães FG. Differential evolution and perceptron decision

trees for fault detection in power transformers. In: Snášel V et al, editors. SOCOModels in

Industrial & Environmental Applications. AISC. Volume 188. Berlin Heildelberg:

Springer; 2013. pp. 143-152

[51] Rivera-Lopez R, Canul-Reich J. A global search approach for inducing oblique decision

trees using differential evolution. In: Mouhoub M, Langlais P, editors. Proceedings of the

30th Canadian Conference on Artificial Intelligence (AI 2017), volume 10233 of LNCS.

Edmonton, Canada: Springer; 2017. pp. 27-38

[52] Quinlan JR. Induction of decision trees. Machine Learning. 1986;1(1):81-106

Artificial Intelligence - Emerging Trends and Applications72

[53] Murthy SK, Kasif S, Salzberg S. A system for induction of oblique decision trees. Journal of

Artificial Intelligence Research. 1994;2(1):1-32

[54] Breiman L, Friedman J, Olshen R, Stone C. Classification and Regression Trees. Boca

Raton, FL, USA: Chapman and Hall; 1984

[55] Lichman M. UCI Machine Learning Repository. University of California, Irvine, School of

Information and Computer Sciences; 2013

[56] Durillo JJ, Nebro AJ. jMetal: A Java framework for multi-objective optimization. Advances

in Engineering Software. 2011;42(10):760-771

[57] Das S, Konar A, Chakraborty UK. Two improved differential evolution schemes for faster

global search. In: Beyer HG, editor. Proceedings of the 7thAnnual Conference onGenetic and

Evolutionary Computation (GECCO’05), Washington, DC, USA: ACM; 2005. pp. 991-998

[58] Quinlan JR. C4.5: Programs for Machine Learning. San Mateo, CA, USA: Morgan Kaufm-

ann; 1993

[59] Friedman M. The use of ranks to avoid the assumption of normality implicit in the

analysis of variance. Journal of the American Statistical Association. 1937;32(200):675-701

[60] Hommel G. A stagewise rejective multiple test procedure based on a modified Bonferroni

test. Biometrika. 1988;75(2):383-386

[61] Calvo B, Guzmán-Santafé R. scmamp: Statistical comparison of multiple algorithms in

multiple problems. The R Journal. 2016;8(1):248-256

[62] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data

mining software: An update. SIGKDD Explorations Newsletter. 2009;11(1):10-18

[63] Witten IH, Frank E, Trigg LE, Hall MA, Holmes G, Weka SJC. Practical machine learning

tools and techniques with Java implementations. Technical Report 11, Department of

Computer Science. New Zeland: Waikato; 1999

[64] John GH Langley P. Estimating Continuous Distributions in Bayesian Classifiers. In:

Besnard P, Hanks S, editors. Proceedings of the 11th Conference on Uncertainty in Artifi-

cial Intelligence (UAI’95), San Francisco, CA, USA: Morgan Kaufmann; 1995. pp. 338-345

[65] Murtagh F. Multilayer perceptrons for classification and regression. Neurocomputing.

1991;2(5):183-197

[66] Frank E. Fully supervised training of Gaussian radial basis function networks in WEKA.

Technical Report 04, Department of Computer Science. New Zeland: Waikato; 2014

[67] Breiman L. Random forests. Machine Learning. 2001;45(1):5-32

[68] Demšar J. Statistical comparisons of classifiers over multiple data sets. The Journal of

Machine Learning Research. 2006;7:1-30

Differential Evolution Algorithm in the Construction of Interpretable Classification Models
http://dx.doi.org/10.5772/intechopen.75694

73

