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Abstract

With the projection of the Earth’s population reaching eight billion in coming years and 
nine billion by 2050 which means increasing demand for food. Wheat (Triticum aestivum L.) 
 is the main important and strategic cereal crop for feeding the majority of world’s popu-
lations. Scientific forecasts predict that wheat production in the future will be affected by 
climate change and will decrease on the global level. To reduce these risks, the impact of 
climate change mitigation strategies and management systems for crop adaptation to cli-
mate change conditions should be considered. Demand for increases in food production 
will have to occur on less available arable land, which can only be accomplished by inten-
sifying production. Chemical fertilisers are responsible for 40–60% of the world’s food 
production. Because nonlegume plants generally require 20–50 g of nitrogen to produce 
1 kg dry biomass, the natural supply of soil nitrogen usually restricts plants yield in most 
agricultural cropping system. The goal of ecological intensification is to increase yield per 
unit of land, intensify production, while meeting acceptable standards of environmental 
quality. This chapter discusses some aspects of connection between nitrogen supply and 
different abiotic conditions.

Keywords: wheat, nitrogen, drought, salinisation, climate

1. Introduction

The global wheat consumption has escalated at a faster rate than all other cereals. This growth 

is accounted for by the increase in developing countries, mainly in China and India, and 

based on the future projection, the growth of wheat consumption will continue [1]. In these 

two countries, the use of production inputs, primarily nitrogen fertiliser and irrigation water, 

has risen dramatically as well. Wheat is an important staple crop, providing 20% of all calories 
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consumed by people worldwide. It is the leading source of non-animal protein in human food 

and also makes a significant contribution to animal feed. Increasing global demand for wheat 
is also based on the ability to make several food products and the increasing consumption of 

these with industrialisation. In particular, the properties of the gluten protein fraction allow 

the processing of wheat to produce bread, other baked goods, noodles and pasta, and a range 

of functional ingredients [2].

Beside the food demand sustainable nutrient supply and climatic effect on plant productivity 
are two crucial topics of agricultural development. Applying adequate amount of nutrients 

based on genotype requirements is hard under potential conditions, especially under differ-

ent abiotic loads. Nitrogen (N) is an important nutrient, which determines the amount of yield 

and throughout the proteins the quality as well. The increased crop productivity has been 

associated with a 20-fold increase in the global use of nitrogen fertiliser during the 50 years [3],  

and this is expected to increase by threefold by the year 2050 [4]. Inadequate application 

of N—deficiency and excess—can cause environmental and ecological problems. Climatic 
factors can improve and deteriorate crop nutrient use efficiency and yield. Drought occurs in 
all climatic regions and drought-induced crop yield reduction is among the greatest losses in 

agriculture. About 32% of wheat production areas in developing countries experience serious 

drought stress in different growth stages [5]. Lobell et al. [6] published that climate trends 

were large enough in some countries to offset a significant portion of the increases in aver-

age yields that arose from technology, fertilisation, and other improving factors. High and 

low temperature [7–9], irrigation [10–12], salinisation [13, 14], agrotechnology [15–17], and 

other nutrients [18] also have an effect on N use of wheat. These effects are depending on 
the adaptation and acclimatisation strategies of different wheat genotypes, the current cli-
matic conditions and its combinations and biotic effects as well [19]. To know more about 

and improve nitrogen use efficiency of wheat means a way towards the sustainability. Wheat 
being the basic food plant and the global demand for qualitative perfect food is increasing we 

have no other alternatives, than step forward to smart-wheat, which will be able to survive  

unfavourable conditions.

2. Nitrogen requirement and NUE

Nitrogen is one of the nutrients plants need in high quantity [20], as it is a core constituent of 

a plant’s nucleic acid, proteins, enzymes, and cell wall and pigment system [21]. The avail-

ability of nitrogen for plants is complex, and depending on different processes in connection 
with nitrogen cycle in the environment (Figure 1). Through the different way of nutrition 
supply and agrotechnology processes, the agriculture has a main impact on global and local 

nitrogen cycle. Plants also can have an effect on your own nitrogen supply by connecting 
different bacteria or releasing different extracts, like nitrification inhibitors. Biological nitri-
fication inhibition (BNI) is the natural ability of certain plant species to release nitrification 
inhibitors from their roots that suppress nitrifier activity, thus reducing soil nitrification and 
N

2
O emission (Figure 1). Among the tropical pasture grasses, the BNI function is the strongest 

in Brachiaria sp. [22].
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Nitrogen availability and using capacity are crucial in plant life. The chlorophyll content of 

wheat leaves and leaf N is closely related as the photosynthetic machinery accounts for more 

than half of the N in a leaf [24]. Nitrogen influences carbohydrate source size by leaf growth 
and leaf area duration and also the photosynthetic rate per unit leaf area and thereby source 

activity. The availability of N is of agricultural concern because plant metabolism is differently 
affected by excess, optimal and deficient levels [25]. The concept of nitrogen-use efficiency 
(NUE) has been widely used to characterise plant responses to different levels of N availabil-
ity. Moll et al. [26] defined the most use of NUE, at least among breeders, which computes the 
grain dry mass divided by the total N available to a plant. It is divided into two components: 

NUE = NUpE × NUtE, where NUpE is the N-uptake efficiency calculated as the total amount 
of N in above-ground plant at harvest divided by the available N in soil, and NUtE is the utili-

sation efficiency calculated as the grain dry mass divided by the total amount of N in above-
ground plant at harvest. Based on several authors, establishment N remobilisation efficiency 
(NRE) is also a main component of NUE [27]. The NRE—the proportion of N in the crop or 

crop component at anthesis which is not present in the crop or crop component at harvest—is 

the ability of plants to translocate the N after anthesis from the shoot to the grains. Nitrogen is 

the most limiting nutrient for the production of wheat [28]. Cultivars with higher NRE tend to 

accelerate the senescence process and increase N levels in grains [29]. It is widely understood 

that N accumulated before anthesis provides the major source of grain N. In wheat, around 

50–95% of the grain N at harvest comes from the remobilisation of N stored in shoots and 

roots before anthesis [30–32]. In wheat between anthesis and maturity, the leaves had a higher 

Figure 1. Nitrogen cycle (adapted according to LaRuffa et al. [23]).
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NRE than the stem and the roots [33]. About 70–80% of nitrogen, which is needed for grain 

development in cereals, is gained from vegetative organs before flowering stage [34]. Nitrogen 

use efficiency (NUE) plays a fundamental role in sustainable grain production [35, 36].  

Based on several physiological parameters of doubled-haploid mapping wheat populations 

can lead to identification of specific loci that might be useful in marker-assisted breeding for 
increased N-use efficiency [35, 37, 38].

3. Temperature influence on nitrogen nutrition

Wheat growth can be impaired by heat stress at any developmental stage, and modelling sce-

narios predict even warmer temperatures in the future [39]. Production of wheat is affected 
markedly by high temperature [40, 41]. Elevated temperature alters uptake and allocation 

of N, thus intensifying N deficiency in plants [42]. Wheat shows enormous diversity in 

canopy architecture, and it has long been proposed that optimised light distribution could 

improve radiation use efficiency as well as light interception [43]. In heat tolerance, the activ-

ity of enzymes has crucial role. Rubisco’s affinity for CO
2
 decreases with temperatures [44]. 

Therefore, increasing affinity would simultaneously improve adaptation to warmer condi-
tions, the proof of concept coming from C

4
 species, in which it is achieved by concentrating 

CO
2
 [45]. High temperature not only degrades Rubisco but also accelerates its inactivation by 

addition of inhibitory sugars to its active site. Moreover, Rubisco has a relatively low turn-

over number as compared with the other Calvin cycle enzymes. Activity of Rubisco is mainly 

regulated by a catalytic chaperone—Rubisco activase—which catalyses removal of inhibitory 

sugars from its active site, switching the enzyme to active mode [46]. Among cereals wheat’s 

Rubisco has one of the best CO
2
 affinities. Models where wheat’s substrate specificity fac-

tor of Rubisco is replaced from L. gibertii predicted increases of 12% in net assimilation [47]. 

Combined stress of high temperature and low nitrogen affected both the abundance and 
mode of regulation of Rubisco, which catalyses CO

2
 fixation and is one of the primary deter-

minants of photosynthetic rate [48].

4. Effect of drought on wheat nutrition

According to the most recent assessment report of the Inter-governmental Panel on Climate 

Change, published in 2014, levels of anthropogenic emissions of greenhouse gases are now 

at their highest in history [49]. Agricultural production and its effect on land use are major 
sources of these emissions by sharing methane and nitrous oxide gases. Greenhouse gases 

causing air temperatures increase, thus more moisture evaporates from land and water bod-

ies. Warmer temperatures also increase evaporation and evapotranspiration in plants, soils, 

and on other hand, they will also escalate the water stress frequency and intensity with a rise 

from 1 to 30% in acute drought land area by 2100 [50].

Under dry conditions in the field, 75–100% of the grain yield could be attributed to stored 
assimilates, compared with 37–39% under high-rainfall conditions. Drought stress severely 
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influenced plant water status by reducing the water potential and the relative water content 
in wheat [51]. Optimal nutrition levels have also alleviated drought stress damage by sustain-

ing metabolic activities under reduced tissue water potential [52]. Nitrogen supply also has a 

crucial role in combating drought [53]. Efficiency of nitrogen supply declined with increasing 
of drought stress [54]. Morgan [55], Arun et al. [56] and Binghua et al. [57] who showed that 

with an application of nitrogen, plants show positive influence in terms of growth and devel-
opment under drought stress. Although Li et al. [58] mentioned that different grass species 
under drought stress did not modify physiological functions under varying N application. 

Water limitation reduces diffusive conductivity which in turn affects other physiological pro-

cess such as energy and N metabolism. It is concluded that N uptake and its diffusion depend 
on environmental condition especially to water supply as also indicated by Abreau et al. [59]. 

Under water deficiency, roots are unable to get optimal amounts of nitrogen from soil, which 
has general negative effects on plant metabolisms [60]. The main effect of water restriction is 
certainly a reduction in N demand due to the marked sensitivity of leaf area expansion [61]. 

Fewer results have about light reaction affected by genotypic and nitrogen supply variations, 
mainly under stress conditions. By measuring the yield of chlorophyll fluorescence (Chl-fl), 
information about changes in the efficiency of photochemistry and heat dissipation can be 
obtained [62]. Under extreme drought stress when the stomatal resistance just around 0.1 mol 

H
2
O m−2 s−1, poor performance of photosystem II (F

v
/F

m
) and downregulated activities of CO

2
 

assimilating enzymes such as Rubisco become the dominant limitations to reduced photo-

synthesis [63]. The optimal photochemical activity (F
v
/F

m
) values were sensitive for the inves-

tigated two environmental factors, and genotype differences were established in tolerance 
[64]. Chl-fl parameter’s sensitivity for detecting nitrogen deficiency is different, but some of 
them are really applicable for describing nitrogen lack [65]. Previous drought stress stud-

ies have reported that photosynthetic rate of the leaf under drought stress is closely related 

to the leaf chlorophyll contents, N concentrations and stay-green characteristics of the leaf, 

which in turn increases the grain yield by increasing the photosynthetic process [66]. Palta 

et al. [67] and Hosenlou et al. [54] reported induction of N remobilisation under drought 

stress. Application of the high amounts of N under drought resulted to the lowest NUE [68]. 

Critical, sufficient concentration of nitrogen in leaf is 15–40 mg g−1 DM [69]. Based on Pepó 

[16] and Zsombik and Seres [70] results, the dry weight production was mainly influenced by 
environmental factors and modified by fertilisers and genotypes. Water deprivation means 
higher strain than nitrogen luck with genotype difference based on dry weight value [65]. 

Plant responses to drought stress vary at different growth stages of the crop [71]. In wheat, 

tillering capacity of the crop is a major constituent of the final grain yield [72], but has been 

reported to be highly vulnerable to drought stress [73].

5. Salinisation and impact to wheat production

Salinisation or increased concentration of dissolved cations/anions in soil solution and/or 

water resources (e.g. capillary rising of saline groundwater, salinised waters used for irriga-

tion) [74] across the (agro)ecosystems is the principal cause of most widespread abiotic con-

straint to glycophytes (i.e. the majority of cultivated crops, including wheat) known as salt 
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stress. Salt stress encompasses wide range of physiological dysfunctions as a consequence of 

primary salinity effects, that is, osmotic and ionic disorder. Primary salinity effects, depend-

ing on the salinity level/duration, crop/genotype type, development stage, and so on, very 

often cause different secondary salinity-induced effects such as reduced cell expansion and 
assimilate production (i.e. growth and yield reduction), production of reactive oxygen metab-

olites and even plant mortality [75]. The general salinity effects are quite visible and assume 
reduce biomass growth (shoot/root height and weight, leaf area) and changes in root and 

shoots colour (e.g. presence of leaf tip burns, scorching/firing of leaves) [76]. The extent to 

which growth and yield will be reduced under salt stress mostly depends on the salinity level 

and plant (crop) species (Figure 2).

Electrical conductivity (EC) is commonly used as an expression of the total dissolved salt 

concentration in an aqueous sample (e.g. water, soil solution) and usually express soil salin-

ity level based on measured EC of saturated soil paste extracts (EC
e
) (e.g. Rhoades et al. [77]). 

Therefore, ECe threshold level (i.e. ECt), as a numeric value at which crop growth and yield 

start to decline (more or less intensive under certain slope) can be very useful for categori-

sation of plants from salt tolerant (halophytes) to salt-sensitive (glycophytes) (Figure 2). In 

general, wheat is categorised as moderately tolerant to soil salinity (e.g. a threshold EC of 

6.0 dS/m) [78] although existing significant differences among genotypes that it is difficult 
to make a categorical statement [79]. The relative effects of salt stress on wheat vegetative 

Figure 2. Simplified presence of salt tolerance in some cereals (adapted according to Maas [81]). ECt represents the 

threshold in soil EC that is expected to cause the initial significant reduction in the maximum expected yield, whereas 
the slope is the percentage of yield expected to be reduced for each soil salinity unit above the ECt [82].
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growth parameters and grain yield can vary significantly among genotypes (Figure 2) and 

with the developmental stage at which salt stress occurs [75] as well under specific environ-

mental conditions given that the interaction of crop (genotype) and environment is not com-

pletely understood but is likely to be significant [80].

5.1. Salinisation and wider (agro)ecological impact

Environmental salinisation process represents an increasing environmental issue especially 

in intensive agroecosystems such as (fert)irrigated areas [83] but also in less intensive rain 

feed (semi)arid regions [84]. Salt-affected areas are often overlapping with numerous other 
physical, chemical and/or biological pedosphere constrains such as sandy soils with low 

water retention capacity, non-structured/dispersed (waterlogged) soils, organically depleted 

soils with diminished microbial activity/diversity and excessive alkalinity, specific ionic (Al, 
B) toxicity, and many other [84, 85] (Figure 2). Saline or alkaline (sodic) soils due to increased 

concentration of particular slats (Na+, Cl−, Ca2+, Mg2+ etc) and ionic interrelations (e.g. Na+/Ca2+; 

Na+/Mg2+) can be recognised and visually by crystallised (precipitated) salts on the soil surface 

(forming a brighter salt forms on the soil surface; Figure 3a) or at later (developed) stages by 

topsoil crusting, as a consequence of dispersed clay minerals and soil aggregates (Figure 3b).

A constitute of structurally dispersed soils (e.g. clay particles, minerals, organics) undergo 

leaching through the soil profile, accumulating and blocking deeper macro/micro pores, espe-

cially in textured-heavier soil layers, and finally causing waterlogging (e.g. Burrow et al. [86]. 

Thus, salt-affected soils (profiles) depleted in adsorption matrices (organic matter and clay 
content notably) might be more prone to mobility and transfer of certain pollutants (e.g. toxic 

trace elements) on the soil/crop/groundwater routes, although certain genotypic differences 
have to be considered.

For instance, it was shown that raised soil solution salinity can significantly impact mobility 
of toxic Cd in the rhizosphere and enhance its uptake and root/shoot accumulation in dif-

ferent wheat cultivars [87, 88]. Also, sublimating the results of studies conducted by Norvell 

et al. [89], Khoshgoftarmanesh et al. [88] and Ozkutlu et al. [90] their outcomes suggest that 

Figure 3. Topsoil (a) crystallisation of soluble salts (dotted brighter areas) in a wheat paddock, depleted with soil organic 
matter, and (b) crusting in an adjacent saline plot with disturbed soil structure (Esperance area, Western Australia).
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durum vs. bread wheat genotypes could be more effective, not only in Cd root extraction, but 
also in Cd root to shoot (leaf/grain) translocation and deposition under excessive Cl salinity. 

Such genotypic differences should be considered also in wheat breeding programs related to 
salt resistance (next section).

5.2. Sustainable management practices and perspectives for wheat cropping under 
salinised conditions

Some of the widely used and most promising perspectives and strategies against soil salinity are 

listed in Table 1, and some of them are explained in the next section in more detail. Beside exces-

sive ECe in saline soils, it is of great importance and interrelated concentrations of particular 

ions (notably portion of exchangeable Na+; ESP) as well as soil pH reaction. According to some 

of chemical parameters, salt-affected soils generally can be categorised as: saline (ECe > 4 dS/m, 
ESP < 15 and pH <8.5), saline-sodic (ECe > 4 dS/m, ESP > 15 and pH <8.5) and sodic/alkaline 
(ECe >4 dS/m, ESP >15 and pH >8.5), and usually require specific strategy for reclamation often 
with low benefit/cost ratio for crops (Ondrasek et al. [85] and references therein). Sustainable 

agricultural management in saline/sodic conditions usually is combination of certain preven-

tive actions (aiming to control salinity/alkalinity level) and/or remediate of saline/alkaline areas. 

For instance, saline soils might be easier for reclamation than sodic soils because the former 

often requires only salt leaching while the latter requires addition and certain Ca-/Mg-based soil 
amendments (e.g. gypsum) to replace excess ESP in addition to leaching (e.g. [91]).

Perspective Description

Species/varieties selection Cropping of more salt resistant wheat varieties (genotypes), although genotypic 

differences related to efficiency of mineral uptake and accumulation (e.g. trace 
elements) should be considered (explained above)

Amelioration of soil water 

management

Implementation of subsurface drainage system may be useful approach for: (i) 

prevention of salt accumulation in sub/surface horizons as a consequence of seasonal 

sea water intrusion and/or capillary rising and/or (ii) salt leaching from the surface soil 

layers (e.g. [109]). Implementation of irrigation can decline vegetative growth of wheat 

cropped on salt-affected soils but without evident yield reductions (e.g. [75])

Soil amelioration by 

microbes

It was shown that exploitation of certain microbial populations can be a promising 

alternative to alleviate crops stress under excessive root zone salinity [96]. Thus for 

instance, inoculation of wheat seeds prior sowing by salt-tolerant microbe colonies 

might be beneficial strategy for wheat cropping in salt-affected environment (e.g. [97])

Application of inorganic 

amendments

Addition of natural or synthetic Ca-/Mg-/Zn based sources can ameliorate soil salinity/

sodicity [110] and related pedosphere constrains (e.g. Zn-deficiency; see above)

Conservation and 

increasing of soil organic 

matter

Over conservation land management (e.g. reduced/minimal/no tillage) is possible to 

preserve and/or enhance soil–plant water relations, soil organic matter content and 
rhizosphere biodiversity across the saline paddocks (e.g. [85])

Genetic improvement Genetic improvement of wheat genomes for salt-tolerance has a great potential of 

acquiring some halophytic traits such as Na+ and/or Cl− exclusion by crossing cultivars 

of Triticum aestivum L. with genetically related (non)halophytes (e.g. [80])

Table 1. Some perspectives for improving wheat cropping in salt-affected agroecosystems.

Global Wheat Production38



Application of (in)organic soil amendments, such as mineral/organic fertilisers, lime, gyp-

sum phospho-gypsum, and so on to salt-affected pedosphere has multi-beneficial impact [75].  

Introduction of Ca-/Mg-enriched amendments enhances to maintain soil micro-aggregate 

structure in the soil profile, and consequently improves physical pedovariables such as 
improved flocculation, reduced spontaneous dispersion (air-dry aggregates) and dispersion of 
remoulded aggregates, increased hydraulic conductivity and soil aeration [92]. Furthermore, 

it was confirmed that soil salinity/alkalinity is frequently associated with microelement Zn 
deficiency, and that under such conditions, application of certain inorganic Zn-based fertilis-

ers is able to improve salt tolerance but also and nutritional value of wheat. Namely, ~40% of 

the soils used for wheat production in Iran are Zn-deficient [93] and comparing to some other 

widely cropped cereals, wheat genotypes are especially very sensitive to Zn deficiency which 
markedly reduce wheat grain yield [94]. However, one of the biggest issues with soil amend-

ments (Ca-/Mg-/Zn-based) application and their beneficial impact to crops in saline condi-
tions is often lacking of their dissolution (i.e. phytoavailability of specific element/substance) 
due to (semi)arid conditions and/or not implemented irrigation practice.

Another promising strategy to enhance wheat salt tolerance might be introduction of salt 

more tolerant root-associated microbes that enhance plant growth under excessive salinity. 

Namely, it was widely discussed how spatial rhizosphere adaptation of plants is also driven 

by genetic differentiation in closely associated microbe populations such as: (i) arbuscular 
mycorrhizal fungi (whose hyphal networks ramify throughout the soil and within the plant 

cells) then (ii) ectomycorrhizal fungi (over a fungal layer around the root system and root inter-

cellular spaces) and (iii) root-associated plant growth-promoting rhizobacteria (see reviews 

by Rodriguez and Redman [95]; Dodd and Perez-Alfocea [96]). Alleviation of salt stress on 

yield and mineral nutrition (e.g. increased K/Na ratio) exploiting the arbuscular mycorrhizal 

fungi was confirmed in certain wheat varieties under field saline conditions [97]. For instance, 

the mycorrhizal colonisation enhanced grain wheat yield up to >31% in Kavir (spring culti-
var), up to >32% in Roshan (spring and semi-early maturing cultivar) and even up to >38% in 
Tabasi (mutated salt tolerant line) [97]. Furthermore, Sadeghi et al. [76] applying the isolate of 

Streptomyces in cultivated soil with wheat (cul. Chamran) observed: (i) increased the growth/

development and shoot concentration of N, P, Fe and Mn in both saline and non-saline con-

ditions and (ii) significant increases in germination rate, percentage and uniformity, shoot 
length and dry weight of salt-exposed plant (vs. non saline control). Also, studying the effect 
of inoculation of the five halotolerant bacterial strains in alleviation of NaCl-induced stress 
(80–320 mM) in wheat (var. HD 2733) Ramadoss et al. [98] observed an increase in root elon-

gation (by >90%) and root dry weight (by >17%) in comparison with control (uninoculated) 
plants. Such beneficial effects of salt-tolerant microbes to (wheat) crops exposed to salinity are 
explained by improved plant water relations (e.g. due to enhanced accumulation of specific 
osmolytes), then regulating plant homeostasis and improved phytonutrients (e.g. N, P, K, Zn, 

Cu, Mn, Fe) uptake as well by enhanced germination rate [96, 97, 99].

Breeding programs to salt tolerance (as relatively long-term approach) are expecting that 

might have crucial role in (wheat) cropping under saline conditions in the near future (see 

down). Relatively little work has been done on breeding programs of wheat cultivars for 
saline conditions [80] given on polygenic character of salt tolerance, but continuous progress  
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is evident. Namely, hexaploid bread wheat (Triticum aestivum L.) has one of the most complex 

(ABD) genomes (e.g. six copies of each chromosome, numerous of near-identical sequences 

scattered throughout, overall haploid size of >15 billion bases) [100], thus making wheat 

highly challenging for genome sequencing and detection of salt-tolerant genes and quan-

titative trait loci. Also, the huge amount of repetitive sequences poses a big challenge for 

sequencing the wheat genome [101]. For instance, first assembly of the wheat genome from 
2012 was represented by only ~33% (5.42 billion bases) [102], another assembly from 2014 

by ~66% (10.2 billion bases) [103] whereas assemblies from 2017 were extended to 78% (12.7 

billion bases) [104] and recent assembly was almost completed with >15.3 billion bases [100]. 

Hence, the genomic complexity and its uncomplete assembly makes the wheat crop addition-

ally extremely difficult for improvement to salt tolerance over conventional (e.g. traditional 
breeding) and/or modern genetic (e.g. molecular and transgenic breeding) approaches.

Genetic improvement of wheat for salt-tolerance has also a great potential of acquiring some 

halophytic traits (genes) such as Na+/Cl− exclusion and/or compartmentation by crossing 

wheat genotypes with genetically related halophytic plant species (e.g. Lophopyrum elonga-

tum) [105]. In wheat salt resistance is associated with low rates of the root-to-shoot transport 

of Na+ with high selectivity for K+ over Na+ [106]. Bread wheat genotypes have a low rate of 

Na+ accumulation and enhanced K+/Na+ discrimination which is controlled by a locus (Kna1) 

on chromosome 4D [107]. Contrary, durum wheat (tetraploid, AB genomes) have higher rates 

of Na+ accumulation and weaker K+/Na + discrimination [80] and is consequently less salt 

resistant vs. bread wheat (Figure 2). It was confirmed that salt−/draught-tolerant genes and 
quantitative trait loci identified in T. dicoccoides and H. spontaneum have great potential in 

wheat improvement also [108]. Finally, improvement in salt resistance of modern wheat gen-

otypes will be generated from introducing new gene(s) by (i) crossing with new donor germ-

plasm or (ii) transformation with single genes, and after the progeny has to be back-crossed 

into adapted cultivars before the donor genes are ready for cultivation [80].

6. Conclusion

Sustainable plant production has three main goals: environmental health, economic profitability, 
and social and economic equity. It needs to achieve higher and higher amount of quality food 

by using less stock and energy under actual environmental conditions. Nitrogen is one of the 

most important nutrients for plants because of the yield quality and quantity as well. Applying 

adequate amount of nutrients based on genotype requirements is hard under potential condi-

tions, especially under different abiotic loads. About 70% of all fertilisers are used on wheat and 
rice. Wheat is an important staple crop and crucial source of non-animal protein in human food 

and also makes a significant contribution to animal feed. The problem is that the utilisation effi-

ciency of nitrogenous fertilisers under field conditions is relatively low, thus the production may 
become dangerous for the environment, economically inadequate and can result in poor quality. 

Finding of ‘smart’ wheat genotypes with high NUE does not mean a solution for the problem of 

being sustainable. Several environmental conditions have effect on NUE and/or the components 
of NUE, thus we need more knowledge to locate the final answer our global challenge.
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