
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 7

Models for Testing Modifiable Systems

Alexey Markov, Alexander Barabanov and
Valentin Tsirlov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75126

Abstract

The work describes reliability and security growth models for modifiable software sys-
tems as a result of revisions and tests performed for specified input data areas. The work
shows that the known reliability growth models are of monotonically increasing type,
which is not in line with current multi-version team technologies of software development
that are primarily based on the open-source code. The authors suggest new non-
monotonically increasing models of software reliability evaluation and planning that
allow taking into account the effect of decreased reliability resulting from updates or
wavefront errors. The work describes the elaborated bigeminal and generic reliability
evaluation model as well as the models and test planning procedures. The work includes
calculated expressions for the evaluation of the model accuracy and shows that the
developed models are adequate to real data. An example is given of transition from
probability models to fuzzy models in case of incomplete basic data. The work provides
general recommendations for selection of software tool testing models.

Keywords: modifiable systems, program tests, software reliability, software security,
test planning, reliability growth models, debugging models, nonmonotone models,
open-source reliability

1. Introduction

According to the ISO/IEC 17000 standards, the main procedures of software compliance evalua-

tion include acceptance tests, certifications tests, and follow-up inspection control.

For the purpose of certification tests, the software to be assessed for compliance is submitted in

a complete form, usually upon the final completion of acceptance testing. At the same time,

during preliminary and acceptance tests, the assessed software is revised in order to correct

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

detected errors of different types. Considering all this, at the stage of certification, the informa-

tion systems and software products can be regarded as non-modifiable, while at the stage of

acceptance tests, they are defined as modifiable systems. This defines the difference in

approaches to developing the mathematical test models.

2. Non-monotonic models of software reliability and security evaluation

In the course of preliminary acceptance testing and trial operation of information systems, it is

important to define the moment when the testing can be considered complete and the system

can undergo commissioning procedures. As for high-security software (including software

intended for processing of confidential information or software used in critical system appli-

cations), current regulatory documents require that the test results be formalized1. In these

cases, the test completion criteria (documented in test certificates), besides the very fact that the

specified requirements are met, also include the values of test confidence parameters and

parameters of the achieved level of reliability or correctness considering the specified evalua-

tion accuracy. For these purposes it is reasonable to use mathematical models [1, 2] that are

classified in this work in the following way (Figure 1):

• Debugging models that allow assessing the software reliability parameters depending on

the results of program runs on specified data areas and subsequent program modifications

• Time reliability growth models that allow assessing the software reliability parameters

depending on the time of test considering the corrected program errors

Figure 1. The classification of mathematical models of tests.

1

ISO/IEC 15408–3:2008. IT—Security techniques—Evaluation criteria for IT security—Part 3.

Probabilistic Modeling in System Engineering148

• Test confidence models that allow assessing confidence parameters of the test procedure

• Program complexity models based on the relationship between the software complexity

metrics and program quality, reliability, and safety parameters

It should be noted that the latter three classes of test models are rather well developed2 [3–14].

For example, today, about 200 time models are known, mainly, NHPP models (e.g., [15–21]).

At the same time, debugging models (also known as reliability growth models based on input

data areas and revisions) are usually related only to Nelson’s model and its modifications [22]

developed at the dawn of the programming theory and do not reflect peculiarities of the

modern team software development methods.

The early stage of testing is the typical scope of application for the debugging models. This is

due to the fact that this period of a software system lifecycle is characterized by active

modification of the programs aimed at correcting the detected errors. The models described

in the literature reflect monotonic (typically, exponential, or logistic) growth of software oper-

ation reliability, which is not always true, as, for instance, in the case of implementation of the

open-source software, multi-version or multiple replica software developed at different times

by absolutely different teams of developers with diverse qualification, different styles, using

various technologies and development systems, etc. This chapter is devoted to justification of

new non-monotonic models and calculation of expressions of their parameters. We shall

assume that the software reliability is a set of properties that characterize the ability of the

program to maintain the specified level of availability in specified conditions during the

specified period of time.3 It is important to note that if the level of availability is restricted by

security and vulnerability defects, the term reliability shall be equal to the term information

security.

Definition of the software reliability is fundamentally different from that of the hardware,

mainly, due to the fact that the software is not prone to aging in time. Two characteristics of

the software reliability can be mentioned:

1. As a characteristic, reliability can alter only as the result of the software modification (i.e.,

when the tested object is changed), and the level of reliability can either increase or

decrease.

2. Values of the software reliability parameters are valid for those input data classes that were

used for their calculation.

A number of debugging models were described in the literature, namely, Nelson’s model,

matrix model, LaPadula model, and other models [2, 5, 12, 13, 22], that reflect the stepwise

monotonic growth of reliability and thus do not take into account the possibility of obvious

reliability decrease, for example, due to introduction of global wavefront errors or addition of

new functionality. Experience gathered by the test laboratory shows that application of such

mathematical models either gives unreliable results or significantly increases the time required

2

IEEE Std. 1633–2008 (R2016). Recommended Practice on Software Reliability.
3

GOST 28806–90. Software quality. Terms and definitions.

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

149

to assess the software reliability [23]. That is why it is necessary to substantiate a non-

monotonic software reliability model and obtain calculated values of its parameters which are

also required to assess its reliability.

According to the abovementioned first property of the software reliability, the process of

software modification can be represented in the form of random transitions from one reliability

state to another. The moments of transition are modifications of the tested object, which can be

described as any changes of the program aimed at correcting the detected errors or developing

the program.

We shall define the main software reliability indicator as the level of the program reliability,

which represents the probability of its error-free starting for a set of basic data from the specified

range. Considering the above said, we have the following software reliability change model:

Pu ¼ P0 þ

Xu

j¼1

∆Pj, (1)

where P0 is the initial level of reliability (0 ≤P0 < 1), u is the number of completed revisions of

the software, and ∆Pj is increment of reliability after j revision.

The process of software reliability change can be graphically presented as a stepwise reliability

growth function (Figure 2).

Figure 2. Change of the reliability level as a result of revisions.

Probabilistic Modeling in System Engineering150

If we view software as a modifiable system, the change of the software reliability level after j

number of revisions can be represented using the following linear operator:

∆Pj ¼ Aj 1� Pj�1

� �

� BjPj�1, (2)

where Pj�1 is the probability of error-free operation of the software after (j-1) revision,

1� Pj�1

� �

is the probability of detection of software errors after (j-1) revision, Aj is the revision

efficiency factor that characterizes the decreased probability of error as the result of j revision,

and Bj is the revision negativeness factor that characterizes reliability decreases due to j

revision.

Proceeding to the recurrent expression and considering the maximum level of reliability to be

equal to P∞ ¼
Aj

AjþBj
, we can obtain the software reliability evaluation model:

Pu ¼ P∞ � P∞ � P0ð Þ
Y

u

j¼1

1� Aj=P∞

� �

, (3)

where P0 is the initial level of reliability, P∞ is the maximum level of reliability (0 ≤P0 < P∞ ≤ 1),

and u is the number of completed revisions.

The obtained expression (Eq. (3)) takes into account the possibility of uneven reliability growth

of the tested object and the general trend of ∆Pj growth decrease when the level of reliability Pj

increases. However, when the model is presented in this way, it is generally monotonic since it

does not take into account the different effects produced by fundamentally different types of

modifications, for instance, changes of the software in order to correct errors or introduce new

functional elements. Besides, the model does not reflect the degree of modification complexity

and, consequently, probability of wavefront errors. Obviously, the model represented in this

form can be regarded as a monotonic reliability growth model [23].

2.1. Bigeminal model of software reliability and security evaluation

In order to overcome the drawback described in the previous section, we offer a bigeminal

reliability evaluation model based on metrics of the source code modification kij, for example,

for error correction and software updates. This metric has no limits (i.e., the complexity metric

that is most suitable for the software system and development system can be used4), which

ensures comprehensive description of the considered process. Thus, if the revision efficiency

factor Aj ¼
P2

i¼0 aikij, we can obtain the main calculated expression of the bigeminal reliability

evaluation model:

Pu ¼ P∞ � P∞ � P0ð Þ
Y

u

j¼1

1�
X

2

i¼1

aikij=P∞

 !

, (4)

4

IEEE Std. 1061–1998 (R2009). Standard for a Software Quality Metrics Methodology.

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

151

where u is the number of completed revisions of the software, a1 is the efficiency factor of the

software revisions aimed at error correction, a2 is the efficiency factor of the software revisions

aimed at introduction of new functions, and kij is the scope of j revision with the purpose of

correction or update.

The bigeminal model (Eq. (4)) depends on four parameters (P0, P∞, a1, a2Þ that can be easily

calculated with the use, for instance, of the maximum likelihood method.

2.2. Generic model of software reliability and security evaluation model

Though the bigeminal model has the advantage of being mathematically simple, it does not

take into account peculiarities of various types of software modifications relating to new

functionality, correction of global and local errors, elimination of vulnerabilities, issues of

integration and upgrade or degradation of the operating system, optimization, etc.

In order to address these issues and increase the model accuracy, we should introduce classi-

fication of modifications (including corrected errors) taking the following calculated expres-

sion for the revision efficiency factor:

Aj ¼
Xe

i¼0

aikij, (5)

where e is the number of software modification classes.

Considering all this, we can obtain a generic non-monotonic reliability evaluation model:

Pu ¼ P
∞
� P

∞
� P0ð Þ

Yu

j¼1

1�

Pe
i¼1 aikij

P∞

� �
, (6)

where e is the number of software modification classes.

This model depends on (e + 2) parameters. The following section includes an example of the

model parameter calculation using the maximum likelihood method.

2.3. Calculated expressions of reliability and security evaluation model parameters

The maximum likelihood method can be used to calculate parameters of the bigeminal (Eq. (4))

and generic (Eq. (6)) models. The following data obtained during the software tests can be used

as the initial statistics: the set of tests nj
� �

, the set of failed tests (failures) bmj

� �
between

revisions, and the set of revision complexity metrics kij
� �

. In this case, if the software runs are

considered independent, the function of maximum likelihood represents the probability of

obtaining the total sample (ni, bmj, j ¼ 1, u) of the number of failures in the performed series of

software runs:

Probabilistic Modeling in System Engineering152

Lu ¼
Yu

j¼1

C
nj
mj
P
ni�bmj

j 1� Pj

� �
cmj , (7)

where C
nj
mj =

nj!

bmj ! nj�bmj

� �, u is the number of the last software revision, Pj is the probability of

success of each of the nj runs of j series, andcmj is the number of failures in nj runs.

For the sake of convenience, we can take the logarithm of the function Lu and modify the

function in the following way:

ln Luð Þ ¼
Xu

J¼1

cmj ln 1� P∞ þ P∞ � P0ð Þ
Yj

l¼1

1�
Xe

i¼1

aikij

P
∞

� � !

þ nj �cmj

� �
ln P∞ þ P∞ � P0ð Þ

Yj

l¼1

1�
Xe

i¼1

aikij

P
∞

� � ! !
:

(8)

The obtained reduced function is convex and is defined for a convex set; that is why in order to

find the maximum of the likelihood function, we can use, for example, the modified steepest

descent method with the variable increment parameter hr:

Prþ1
0 ¼ Pr

0 þ hr
∂ lnL Pr

0;P
r
∞

; ar1;…; are
� �

∂P0

� �
;

Prþ1
∞

¼ Pr
∞
þ hr

∂ lnL Prþ1
0 ;Pr

∞
; ar1;…; are

� �

∂P
∞

 !
;

arþ1
1 ¼ ar1 þ hr

∂ ln L Prþ1
0 ;Prþ1

∞
; ar1;…; are

� �

∂a1

 !
;

…

arþ1
e ¼ are þ hr

∂ ln L Prþ1
0 ;Prþ1

∞
; arþ1

1 ;…; are
� �

∂ae

 !
,

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

(9)

where r is the iteration number.

The following new calculated expressions of partial derivatives of the reduced maximum

likelihood function were obtained during this study:

dlnLj

dP0
¼
Xj

l¼0

wlal;

dlnLj

dP∞
¼
Xj

l¼0

wl
P0 � P∞

P∞
αlβl � αl

� �
þ 1

� �� �
;

dlnLj

dai
¼
Xj

l¼0

wj
P0 � P

∞

P
∞

αl γli

� �� �
,

8
>>>>>>>>>>><

>>>>>>>>>>>:

(10)

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

153

wherewj ¼
nj�mj

Pj
�

mj

1�Pj
;αj ¼

Qj
l¼1 1�

Pe

i¼1
aikli

P∞

� �
;βj ¼

Pj
l¼1

Pe

i¼1
aikli

1�
Pe

i¼1
aikli=P∞

,γji ¼
Pj

l¼1
�kli

1�
Pe

i¼1
aikli=P∞

.

Judging from the practical experience, the following accuracy is sufficient in order to define

evaluations P0,P∞,a1,…, ae:

Prþ1
0 � Pr

0 ≤ 0:001;

Prþ1
∞

� Pr
∞
≤ 0:001;

arþ1
i � ari ≤ 0:0001:

8
>><

>>:

Improving accuracy of parameters, ai (i ¼ 1, e) definition is related to their strong effect on the

function Pj of reliability evaluation. Zero-order approximations can be found using the statis-

tical modeling method for logical intervals:

0 ≤P0 ≤ 1�
M0

N0

� �
;

1�
M∞

N∞

� �
≤P∞ ≤ 1;

1

Kie
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M∞N0

N∞M0

s !
≤ ai ≤

1

Kmax
i e

,

8
>>>>>>>>><

>>>>>>>>>:

(11)

where M0 is the number of failures in the first N0 runs, M∞ is the number of failures in the last

N∞ runs, and Kmax
i is the maximum value of kij when j ¼ 1, u and Ki ¼

Pe
i¼1 kji.

Thus, if we assume thatcP0 , cP∞ , ba1 ,…, bae are random values distributed evenly on previously

specified intervals, we should perform a certain number of samples and select a set of param-

eters corresponding to the maximum likelihood function. This set shall be considered to be the

desired initial values. As the experience shows, during the initial stages of tests, the general

trend of software reliability increase due to modifications may not be present. This can lead to

unreliable results obtained with the use of the maximum likelihood method (an infinite num-

ber of iterations will be required to calculate the function maximum).

In order to overcome this drawback, the method of relative entropy minimization can be used:

Iu ¼
Xu

j¼1

mj

nj
ln

mj

njPj
þ
nj �mj

nj
ln

nj �mj

nj 1� Pj

� �
 !

, (12)

where mj is the number of failed runs of the total number nj of runs of j series and u is the

number of completed software revisions.

In order to check the necessary and sufficient condition for acceptability of the maximum

likelihood method, the following ratio can be used:

Pu
j¼1 j� 1ð Þ nj �mj

� �
Pu

j¼1 j� 1ð Þ
>

Pu
j¼1 nj �mj

� �

u
: (13)

Probabilistic Modeling in System Engineering154

2.4. Estimation of accuracy of software reliability and security evaluation model

Authors of the absolute majority of reliability growth models do not provide any analytical

assessment of their accuracy, which makes it difficult to select a specific model. This works

allows excluding this drawback. The accuracy of the software reliability estimation can be

characterized by the root-mean-square deviation. In order to obtain an accuracy estimation

model, it is convenient to use the linearization method [24]. In this case, the root-mean-square

deviation shall be defined according to the following equation:

σj ¼ ð ∂Pj=∂P0

� �2
δ2P0

þ…þ ∂Pj=∂ae
� �2

δ2ae þ 2
∂Pj

∂P0

� �

∂Pj

∂P∞

� �

δP0
δP∞ rP0P∞ þ…þ , (14)

where rxy is correlation factor of parameters x and y.

The following original calculated expressions were obtained in this work in order to get the

values of partial derivatives of the reliability growth function:

dPj

dP0
¼ αj;

dPv

dP
∞

¼
P0 � P

∞

P2
∞

αjβj � αj þ 1

 !

dPj

dai
¼

P0 � P∞
P∞

αjγji,

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(15)

where αj ¼
Q

j

l¼1

1�

Pe

i¼1
aikli

P∞

� �

, βj ¼
P

j

l¼1

Pe

i¼1
aikli

1�
Pe

i¼1
aikli=P∞

, and γji ¼
P

j

l¼1

�kli

1�
Pe

i¼1
aikli=P∞

.

Other parameters of the formula can be defined from the covariance matrix that includes

dispersions and correlation moments of the desired values:

K ¼

δ2P0
δP0

δP∞rP0P∞ …

δP0
δP∞ rP0P∞ δ2P∞ …

… … …

δP0
δae rP0ae δP∞δae rP∞ae …

δP0
δae rP0ae

δP∞ δae rP∞ae

…

δ2ae

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

: (16)

The following equation can be used for its formulation:

K ¼ �M
�1, (17)

whereM is matrix of the second partial derivatives of the likelihood function:

M ¼

∂
2 lnLu

∂ P2
0

∂
2 ln Lu
∂ P0P∞

…

… … …

∂
2 ln Lu
∂ P0ae

∂
2 lnLu
∂P

∞
ae

…

∂
2 lnLu
∂ P0ae

…

∂
2 lnLu
∂ a2e

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

: (18)

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

155

The following original calculated expressions were obtained in this work in order to get second

partial derivatives:

dlnLu
dP0

¼
X

u

j¼0

wjaj;

dlnLu
dP∞

¼
X

u

j¼1

wj
P0 � P∞

P∞
αjβj � αj

� �

þ 1

� �� �

dlnLu
dai

¼
X

u

j¼0

wj
P0 � P

∞

P
∞

αj γji

� �� �

,

;

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(19)

where wj ¼
nj�mj

Pj
�

mj

1�Pj
.

2.5. Software reliability and security evaluation algorithm

Figure 3 shows the algorithm of software reliability and security evaluation

2.6. Input data normalization of the developed models

Nonstandard situations occurring in the course of the information system operation may lead

to the disruption of specified input data, which, according to the second property of the

software reliability, results in the inadequacy of obtained values. This situation occurs when

invalid input data classes are used and the frequency of utilization of the input data classes

does not correspond to the frequency that was used during testing or specified in the technical

requirements. This may happen during trial operation aimed at performing accelerated tests of

the software, due to the change of environment and in other cases. This situation can be taken

into account by correcting the calculated reliability values. The correction can be done using

the method of multiple factor analysis. In this case, the program input classes are broken into n

equivalence classes. The function of reliability value dependence on frequency nj of application

of equivalency classes is calculated:

Pu ¼ β0 þ
X

n

i¼1

βixi þ
X

n

i 6¼j

βijxixj þ
X

n

i¼0

βiix
2
j…, (20)

where xi is the frequency of application of i-class of input data and βi is the significance ratio of

i-class of input data.

The study has shown that first-order polynomial is sufficient for correction:

Pu ¼ β0 þ
X

n

i 6¼j

βijxixj, (21)

where xi is the frequency of application of fig-class of input data and βi is the significance ratio

of i-class of input data.

Probabilistic Modeling in System Engineering156

Figure 3. Software reliability and security evaluation algorithm.

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

157

This model has two unknown parameters that can be easily found with the help of the least

squares methods.

2.7. Approbation of the non-monotonic software reliability and security evaluation model

The study has shown that the suggested non-monotonic models (Eqs. (4) and (6)) provide high

accuracy (σj < 0:001) when the number of revisions exceeds 10 and the number of runs exceeds

50. In order to control the model consistency with the basic data, the Mises criterion was used

(at threshold value of 0.01) [25]:

ω
2
nn∈ 0:26; 1:9½ �

bu 0:01ð Þ ¼ 2:1,
(22)

where ω2
n is the Mises criterion and bu is the threshold value.

Analysis of the effect of the software revision efficiency factor on the model (Eq. (6)) accuracy

has shown that the accuracy can increase by an order of magnitude on the condition that

revision classes are taken into account. Comparison of the suggested models with the well-

known debugging models has demonstrated a number of their advantages, namely:

• Taking into account the possible steep decrease of reliability due to upgrades

• Possibility of taking into account the revision complexity

• Absence of restrictions for tests and information acquisition

• Possibility of taking into account the software reliability values obtained during the

previous stages of development and implementation

• Absence of subjective factors, such as programmer’s qualification and the level of devel-

opment technology

• Ease of application since there is no need to calculate probability of all program paths as,

for example, in Nelson’s model and its modifications [22]

Thus, the study actually substantiates the method of test planning based on utilization of the

non-monotonic software reliability evaluation model using the results of runs and revisions.

Within the scope of the suggested method, we obtained calculated expressions of parameters

of the software reliability evaluation model and estimated accuracy and test planning. The

suggested generic non-monotonic model (Eq. (6)) allows considering probable moments of the

software reliability decrease typical, for instance, for open-source software development, mul-

tiple version software, etc. Accuracy of the generic model depends on how the task of software

revision classification is solved. The model can be integrated with software reliability values

obtained during the early stages of the software development. Simplification of the model

allows reducing it to exponential NHPP models of reliability growth used at the stages of

information system operation and upgrade [23].

The main advantage of the suggested non-monotonic models is the possibility to increase

accuracy by more than 10% (as the results of introducing revision categories), which is equal

Probabilistic Modeling in System Engineering158

to 5–15% reduction of the required number of software runs during test procedures. It should

be noted that debugging models provide low accuracy at low statistics; however, this draw-

back can be avoided by using appropriate accuracy increase techniques, including Wald’s

method.

The suggested method and models can be also recommended to estimate the parameters of

various modifiable and learning systems.

3. Test planning and software revision models

In the course of the software reliability management, it is necessary to plan the cost of testing in

order to achieve the required level of the software reliability. Thus, it is useful to evaluate the

trends relevant to the software development and implementation and predict the number of

remaining errors and complexity of their correction.

The models (Eqs. (3), (4), (6)) described above can be used to calculate a number of planning

indicators. Unfortunately, statistical models of reliability evaluation do not allow predicting

the frequency of corrections of a specific type but only use this information. Specific revisions

that depend on operating conditions, the achieved level of reliability, requirements for the

software reliability, developers’ qualification and experience and, consequently, their content

may differ. In order to consider the revision types, it is reasonable to use the theory of multiple

factor analysis. Since the change of the number of specific corrections is considered within the

scope of revisions, the software modification complexity function can be approximated using,

for example, a quadratic polynomial in one variable:

kj ¼ κ0 þ κ1jþ κ2j
2, (23)

where κ0, κ1, and κ2 are the polynomial parameters (j ¼ 1, u).

It is easy to demonstrate that the polynomial parameters have the following form:

κ0 ¼
30ð

Xu

j¼1
bkj �

2

u u� 1ð Þ

Xu

j¼1
bkj j2�β2 2þ3u�3u2�2u3ð Þ

10 u�1ð Þ ;

κ1 ¼
6ð
Xu

j¼1
bkj �

2

uþ 1

Xu

j¼1
bkj j�β2 1�u2ð Þu

u 1�uð Þ ;

κ2 ¼

Xu

j¼1
bkj
u2 þ 3u� 2

2
� u

Xu

j¼1
bkj j�

2

u� 1

Xu

j¼1
bkj j2

u� 4�u2ð Þ
:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(24)

Then, assuming that the estimation Pu of the model parameters and the achieved software

reliability level was obtained based on the available test data, we have the following calculated

expression of the reliability-level prediction model:

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

159

Prq ¼ P∞ � P∞ � Puð Þ
Yuþj

i¼uþ1
1�

Pe
i¼1 aikij

P∞

� �

, (25)

where Prq is the required level of the software reliability, u is the number of the last revision,

and j is the quantity of planned revisions.

The quantity of revisions required to achieve the desired level of reliability can be calculated

using the cyclic recalculation of the expression (Eq. (25)). To this end Pu is calculated using the

formula (Eq. (25)); further, in the cycle the value Puþj is defined by increasing j. When the

condition Puþj ≥Prg is met, the cycle stops.

To simplify application of the predictive model, let us assume that Aj ¼ a, which corresponds

to the transition from the model (Eq. (6)) to (Eq. (3)). Then, after we reduce the expression

(Eq. (25)) and take its logarithm, we will obtain the following expression required to evaluate

the number J of software revisions that are necessary to achieve the desired level of reliability:

J ¼
ln

P∞�Prg

P∞�Pu

	

ln 1� a=P∞ð Þ

0

@

1

A

�

�

�

�

�

�

�

�

�

�

�

�

, (26)

where ℵk k is the operation of obtaining of the nearest biggest integer ℵ and a is the averaged

software revision efficiency factor.

Assuming that revisions do not introduce additional errors (i.e., P∞ ¼ 1), we can obtain the

formula for the number of remaining errors after u revision:

Nu ¼
ln

1�Prq

1�Pu

	

ln 1� að Þ

0

@

1

A

�

�

�

�

�

�

�

�

�

�

�

�

: (27)

4. Fuzzy model of software reliability and security evaluation-based on test

results

Testing of software complexes for compliance with requirements for reliability and security is

one of the most time-consuming and difficult stages of implementation of automation system.

This is primarily due to the extreme structural complexity of modern software and its hetero-

geneity. Incomplete information on the software structure, principles and functioning, hetero-

geneity of its composition, presence of imported elements, and insufficient specifications make

it difficult to evaluate and predict the software reliability. In these cases, traditional approaches

to acquisition and forecasting of reliable values are associated with significant costs; that is

why models based on the fuzzy sets of theory that allow estimating the software reliability

with practically acceptable accuracy are of immediate interest [26–28].

At the present time, the literature describes fuzzy models of software reliability evaluation.

These models are peculiar for their focus on static and dynamic analysis of the software graph,

which is practically difficult due to the extreme structural complexity of the modern software

systems and environments. We suggest describing the software testing and debugging process

Probabilistic Modeling in System Engineering160

by a non-monotonic software reliability growth function utilizing the fuzzy sets of theory in

order to take into account the incompleteness of input data.

It is possible to demonstrate that the non-monotonic software reliability growth function looks

as follows:

Pn ¼ P
∞
� P

∞
� P0ð Þ 1�

a

P
∞

� �n

, (28)

where Pn is the probability of successful software run after n revision, a is the revision effi-

ciency factor, P0 is the initial level of reliability, and P
∞
is the maximum level of reliability.

This model depends on three parameters that can be conveniently calculated with the help of the

maximum likelihood method. To create the likelihood function, it is reasonable to use the data

recorded during the software tests, namely, the order of revisions, results of the software runs

(whether any vulnerabilities were detected or not), and number of runs between the revisions.

It is easy to show that the maximum likelihood function logarithm will look as follows:

ln Lnð Þ ¼
Xn

J¼1

cmj ln 1� P
∞
þ P

∞
� P0ð Þ 1� a=P

∞
ð Þi

	
	

þðnj �cmj

�
ln P

∞
þ P

∞
� P0ð Þ 1� a=P

∞
ð Þi

	

:

where cmj is the number of failures in nj tests and n is the number of revisions.

The function ln Lnð Þ is convex and is defined for a convex set; that is why in order to effectively

find the maximum of the likelihood function we can use, for example, the modified steepest

descent method with the variable increment parameter, which allows obtaining the desired

parameters of the model (Eq. (28)). The greatest difficulty of modeling the automation system

operational readiness is determined by the fact that the software reliability level has to be

evaluated in conditions of considerable uncertainty, namely:

1. Fuzziness of cause-and-effect relationship of the automation system as an ergatic system

does not allow clear distinction between successful and unsuccessful revisions.

2. Definition of the amount of revisions as a function of the software metric characteristics

does not always line up with reality. Knowledge of the software developers is required.

3. A number of errors appear as the result of shortcomings of the debugging and update

procedures. Some errors are automatically eliminated at the final stages of the software

development and do not require correction.

These uncertainties introduce a significant portion of subjectivity to the software reliability

evaluation. The fuzzy set of theory allows taking them into account without substantial

alteration of the model (Eq. (3)). This work is primarily aimed at solving this task.

4.1. Development of a fuzzy software reliability and security model

Let us present the information on the debugging process in the form of the set X ¼ xif g, where

xi is the software revision (i ¼ 1, n). The number of relevant revisions is defined as

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

161

m ¼
Pn

i¼1 χi, where χi={0,1} is the characteristic function defining the presence of revision xi.

Let us formalize the probable fuzziness of the software revision by transition from the charac-

teristic function {0,1} to continuum [0,1]. Then, we have:

1. Fuzzy set A ¼ хi;μA хið Þ
� �� �

representing a set of ordered couples of revisions хi of the

universal set X и membership functions that characterize availability of revisions.

2. Set of relevant revisions R ¼ mf g, m ¼ 0, n.

In this case, the fuzzy set of relevant revisions will look as follows:

M ¼ m;μM mð Þ
� �� �

, (29)

where μM mð Þ is the membership function defining the level of confidence in the fact that the

number of relevant revisions is equal to m.

In general, the membership function can be found using the following expression:

μM ¼ maxmin μi1
;…μim

;μj1
;…;μj n�mð Þ

n o

: (30)

For the purpose of practical calculation, it is convenient to expand the revision membership

function in ascending and descending order:

μ0 ≥μ1 ≥… ≥μm ≥μmþ1 ≥… ≥μn;

μ0 ≤μ1 ≤… ≤μm ≤μmþ1 ≤… ≤μn :

8

>

>

<

>

>

:

(31)

This provides the main calculated ratio: μM mð Þ ¼ min μmþ1

�

, μmÞ: The number of relevant

revisions corresponding to the maximum level of confidence (i.e., to the maximum member-

ship function) is equal to:

m ¼
X

n

i¼0

mi, (32)

where mj ¼
0, если μi < μi;

1, если μi ≥μi :

(

The maximum membership function can be calculated in the following way:

μmax ¼ min max
1<i<m

μi;μi

� �

: (33)

By applying the generalization principle, we can move from the fuzzy set of relevant revisions

(Eq. (29)) to the desired fuzzy set of the software reliability levels:

P ¼ Pm;μP Pmð Þ
� �� �

, (34)

where μP Pmð Þ ¼ min μiþ1

�

, μiÞ, m ¼ 0, n; and Pm —reliability level defined according to the

formula (Eq. (3)).

Probabilistic Modeling in System Engineering162

It is important to note that considering the monotonic dependence of the software reliability level

from the number of revisions, it is possible to formalize the fuzzy set P (Eq. (34)) with the

complex of hierarchically ordered crisp sets. According to the decomposition theorem, we have:

μ
P
¼ ⋃

α∈ 0;1½ �

αμ
Pα

	

, (35)

where μ
Pα

¼
0, если μ xð Þ ≥α;

1, если μ xð Þ < α:

(

Then, by defining the value α based on the specific software operating conditions and accuracy

of expert estimation, we can obtain the interval (guaranteed) software reliability level:

Ρ ¼ Pm jμ
M

mð Þ ≥α
� �

: (36)

4.2. Example of possible application of fuzzy sets

Below is the simplest example of calculation of the software reliability level. During the

debugging stage, 48 tests were carried out, 5 groups of defects were detected, and required

revisions were performed. After the expert opinions were processed, the information on

debugging was obtained in the form of a fuzzy set of revisions:

A ¼ 1; 0:0ð Þ; 2; 0:4ð Þ; 3; 0:2ð Þ; 4; 1:0ð Þ; 5; 0:9ð Þf g: (37)

Having arranged the fuzzy set A by the membership function values, we obtained a fuzzy set

of relevant revisions:

M ¼ 0; 0:0ð Þ; 1; 0:2ð Þ; 2; 0:4ð Þ; 3; 0:6ð Þ; 4; 0:1ð Þ; 5; 0:0ð Þf g: (38)

After we calculated reliability levels using the formulae (Eq. (3)), we obtained a fuzzy subset of

the software reliability levels:

P ¼ 0:31; 0:2ð Þ; 0:69; 0:4ð Þ; 0:97; 0:6ð Þ; 0:98; 0:1ð Þf g: (39)

According to the accepted assurance level α=0.4, we have.

P ¼ 0:69; 0:97½ �: (40)

Thus, practical solutions suggested in the work take into account the uncertainties of software

development and testing conditions. This allows obtaining rather accurate maximum and inter-

val estimates of the software reliability and security. Analytical expressions allow simplifying the

software reliability analysis as compared with the methods based on expert judgments. It is

reasonable to apply the described results for planning of system and complex tests.

5. Evaluation models and test planning selection criteria

It should be noted that there is no universal model of the software evaluation and test planning.

Moreover, beside the described classes of models, studies suggest simulation models [29],

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

163

structural models [22], fuzzy models [26, 27], interval models [30], software dynamic models

[31–33], software/hardware complex models [34, 35], Bayesian model modifications [19, 30, 36,

37], as well as neural networks applied for certain scientific purposes [38, 39]. In order to select a

suitable model, a number of qualitative and quantitative criteria can be suggested [40].

The following qualitative criteria can be used:

1. Ease of application that primarily concerns the degree of the model adequacy to the

statistic collection system, i.e., utilized input data can be easily obtained; the data must be

representative; and the input and output data must be clear for the experts.

2. Validity: the model must be reasonably (sufficiently) accurate to solve the tasks of analysis

or synthesis in the field of software security. The positive property of the model that allows

reducing the input sample is the ability to use a priori information and integrate data from

other models.

3. Applicability for various tasks. Some models allow estimating a wide range of param-

eters necessary for experts at different stages of the software lifecycle, for instance,

reliability values, expected number of errors of different types, predicted time and

financial expenditure, developers’ qualification, test quality, software cover parameters,

etc.

4. Simplicity of implementation including the possibility of automated estimation based on

well-known mathematical packages and libraries, model learning after revisions, taking

into account the incomplete or incorrect input statistics, and other restrictions of the

models.

The following quantitative criteria can be used:

• Evaluation accuracy parameters.

• Predictive model’s quality parameters (convergence, noise tolerance, prediction accuracy,

consistency).

• Information criteria of predictive model’s quality (dimensionality, BIC/AIC criteria).

Combined and integral parameters, for instance:

IC ¼ max
XK

i¼1

kiχi, (41)

where ki is the weighting factor of i property of the considered model selected by the expert

and χi. is the characteristic function of the i property.

As the study has shown, there are a lot of mathematical models that allow estimating the

software reliability and security at different stages of lifecycle, which is important for budget

planning. On a practical level, the described classification of models simplifies selection and

integration of the models based on the available statistics.

Probabilistic Modeling in System Engineering164

It is important to bear in mind that due to the dynamic nature, complexity, and heterogeneity

of modern software development projects, the described models are not able to meet strict

requirements for accuracy and serve for making intuitive decisions relating to the software test

planning for all sets of input data. However, the results obtained from the model application

are useful both for substantiating the labor content of the tests and for preparation of reports,

which can increase the customer’s confidence in the work deliverables.

6. Conclusion

1. The chapter presents a new class of probabilistic step models for software reliability (and

security) assessment which allows to improve the adequacy and accuracy of evaluation for

modern multi-version software systems (e.g., open-source software). One of the main

features of the developed models is taking into account the effect of reducing the degree

of reliability when updating programs.

These mathematical models have undergone a detailed study and lead to a method that

allows planning and monitoring the level of software reliability at the stages of prelimi-

nary testing, trial operation, acceptance testing, inspection, and testing after modifications.

Completeness and consistency of the method is ensured by the fact that the developed

models do not impose strict limitations on the taxonomy of errors, modifications, tests,

and input data.

2. The results of the proposed version of the test process modeling can be used at different

stages of the software life cycle and integrated into various systems for modeling the

reliability and safety of software. To do this the chapter proposes qualitative and quantita-

tive criteria for selecting software test models.

3. It should be mentioned that in the field of information security the use of mathematical

models becomes a mandatory procedure in case of checking the high confidence level of

the software. This is determined by the methodology of Common Criteria5 regulated by

ISO/IEC 15408.

In the field of quality and functional safety of software, the application of mathematical models

is welcomed to reduce the level of subjectivity in testing using black box method, fuzzing,

functional testing, etc. (see the lines of international standards IEC 61508, IEC 61511, and ISO/

IEC 33001 and also the Russian new standard GOST R 56939). In this respect, IEC 61508–

7:20106 is extremely useful because it regulates the relationship between the classes of software

testing and the use of formal and semiformal models in detail.

5

www.commoncriteriaportal.org
6

IEC 61508–7:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems—Part 7:

Overview of techniques and measures.

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

165

Author details

Alexey Markov1*, Alexander Barabanov2 and Valentin Tsirlov2

*Address all correspondence to: mail@cnpo.ru

1 Bauman Moscow State Technical University, Moscow, Russia

2 NPO Echelon, Moscow, Russia

References

[1] Gokhale SS, Marinos PN, Trivedi KS. Important milestones in software reliability model-

ing. In: Proceedings of Software Engineering and Knowledge Engineering (SEKE 96);

Lake Tahoe; 1996. pp. 345-352

[2] Markov A. Software testing models against information security requirements. Cornell

University Library [Internet]. 2013. Available from: http://arxiv.org/ftp/arxiv/papers/1306/

1306.1958.pdf [Accessed: February 5, 2018]

[3] Andersson B, Persson M. Software reliability prediction—An evaluation of a novel tech-

nique. SEBIT; 2004. p. 32

[4] Bondi AB. Performance Engineering: Process, Performance Modeling, Requirements, Test-

ing, Scalability, and Practice. 1st ed. Harlow: Addison-Wesley Professional; 2014. p. 426

[5] Kapur PK, Pham H, Gupta A, Jha PC. Software Reliability Assessment with OR Applica-

tions. London: Springer; 2013. p. 548. DOI: 10.1007/978-0-85729-204-9

[6] Karanta I. Methods and problems of software reliability estimation. VTT WP. 2006;63:57

[7] Lyu MRT. Software Reliability Theory. John Wiley & Sons Inc.; 2002. p. 43. DOI: 10.1002/

0471028959.sof329

[8] Musa JD. More Reliable Software Faster and Cheaper. 2nd ed. New York: McGraw-Hill;

2004. p. 632

[9] Naik S, Tripathy P. Software Testing and Quality Assurance: Theory and Practice. Hobo-

ken: Wiley; 2008. p. 616

[10] Shooman ML. Reliability of Computer Systems and Networks: Fault Tolerance, Analysis

and Design. New York: Wiley-Interscience; 2002. p. 560

[11] Subburaj R. Software Reliability Engineering.NewYork:McGrawHill Education; 2014. p. 458

[12] Tian J. Software Quality Engineering: Testing, Quality Assurance and Quantifiable

Improvement. Hoboken: Wiley-IEEE Computer Society Press; 2005. p. 440

[13] Xie M, Dai Y-S, Poh K-L. Computing Systems Reliability. Models and Analysis. Dordrech:

Kluwer Academic Publishers; 2004. 293p. DOI: 10.1007/b100619

[14] Yamada S. Software Reliability Modeling: Fundamentals and Applications. Japan: Springer;

2014. p. 90. DOI: 10.1007/978-4-431-54565-1

Probabilistic Modeling in System Engineering166

[15] Anniprincy B, Sridhar S. Prediction of software reliability using COBB-Douglas model in

SRGM. Journal of Theoretical and Applied Information Technology. 2014;62(2):355-363

[16] Bubnov VP, Sergeev SA. Non-stationary models of a local server of the automated system

for monitoring artificial structures. SPIIRAS Proceedings. 2016;2(45):102-115. DOI:

10.15622/sp.45.6

[17] Krymsky VG, Ivanov IV. Application of interval-valued probabilities and unified scheme

of non-homogeneous Poisson process models to software failure prognostics. In:

Podofillini L, Sudret B, Stojadinovic B, Zio E, Kröger W, editors. Safety and Reliability of

Complex Engineered Systems: ESREL 2015. Balkema: CRC Press; 2015. pp. 2403-2411

[18] Tamura Y, Yamada S. Cost optimization based on decision-making and reliability model-

ing for big data on cloud computing. Communications in Dependability and Quality

Management. 2015;18(4):5-19

[19] Wang LJ, Hu QP, Xie M. Bayesian analysis for NHPP-based software fault detection and

correction processes. In: 2015 IEEE International Conference on Industrial Engineering

and Engineering Management (IEEM); IEEE; 2015. pp. 1046-1050

[20] Zeephongsekul P, Jayasinghe CL, Fiondella L, Nagaraju V. Maximum-likelihood estima-

tion of parameters of NHPP software reliability models using expectation conditional

maximization algorithm. IEEE Transactions on Reliability. 2016;65(3):1571-1583. DOI:

10.1109/TR.2016.2570557

[21] Zhao C, Qiu J, Liu G, Lv K. Planning, tracking and projecting method for testability

growth based on in time correction. Proceedings of the Institution of Mechanical Engi-

neers, Part O: Journal of Risk and Reliability. 2015;230(2):228-236

[22] Teyer TA, Lipow M, Nelson EC. Software Reliability. A Study of Large Project Reality,

TRW Systems and Energy. Amsterdam/Lausanne/New York: Elsevier; 1978. p. 326

[23] MarkovA.Nonmonotonemodels of reliability and security of software in the early stages of

testing. Voprosy kiberbezopasnosti [Cybersecurity Issues]. 2014;2(3):10-17. DOI: 10.21681/

2311-3456-2014-2-10-17 (in Russia)

[24] Lloyd DK, Lipow M. Reliability Management, Methods, and Mathematics. 2nd ed. Mil-

waukee: American Society for Quality; 1984. p. 589

[25] Gnedenko B, Pavlov IV. Ushakov IA. Statistical Reliability Engineering, New York: Wiley-

Interscience; 1999. p. 528

[26] Junhong G, Xiaozong Y, Hongwei L. Software reliability nonlinear modeling and its fuzzy

evaluation. In: 4th WSEAS International Conferernce on Non-Linear Analysis, Non-

Linear Systems and Chaos (NOLASC'05); 27–29 October 2005; Sofia: ACM; 2005. pp. 49-54

[27] Kumar R, Khatter K, Kalia A. Measuring software reliability: A fuzzy model. ACM

SIGSOFT Software Engineering Notes. 2011;36(6):1-6. DOI: 10.1145/2047414.2047425

[28] Vorobiev EG, Petrenko SA, Kovaleva IV, Abrosimov IK. Organization of the entrusted

calculations in crucial objects of informatization under uncertainty. In: Proceedings of 2017

20th IEEE International Conference on Soft Computing and Measurements (SCM 2017);

24–26 May 2017; St. Petersburg: IEEE; 2017. 17039917. DOI: 10.1109/SCM.2017.7970566

Models for Testing Modifiable Systems
http://dx.doi.org/10.5772/intechopen.75126

167

[29] Iqbal J, Quadri SMK. Software reliability simulation: Process, approaches and methodol-

ogy. Global Journal of Computer Science and Technology. 2011;1(8):1-8

[30] Utkin LV, Zatenko SI, Coolen FPA. New interval Bayesian models for software reliability

based on non-homogeneous Poisson processes. Automation and Remote Control. 2010;

71(5):935-944. DOI: 10.1134/S0005117910050218

[31] Danilov AI, Khomonenko AD, Danilov AA. Dynamic software testing models. In: Pro-

ceedings of International Conference on Soft Computing and Measurements (SCM 2015);

19–21 May 2015; St. Petersburg: IEEE; 2015. pp. 72-74. DOI: 10.1109/SCM.2015.7190414

[32] Ivannikov V, Gaissaryan S, Avetisyan A, Padaryan V, Leontyev H. Dynamic analysis and

trace simulation for data parallel programs in the parjava environment. In: Avances en la

Ciencia de la Computacion (ENC’04); Colima; 2004. pp. 481-488

[33] Ivutin AN, Larkin EV, Perepelkin DA. Software errors and reliability of embedded soft-

ware. In: 2016 IEEE Conference on Quality Management, Transport and Information

Security, Information Technologies (IT&MQ&IS); 4–11 October 2016; Nalchik: IEEE; 2016.

pp. 69-71. DOI: 10.1109/ITMQIS.2016.7751926

[34] Kostogryzov A. Modeling software tools complex for evaluation of information systems

operation quality (CEISOQ). Lecture Notes in Computer Science. 2001;2052:90-101. DOI:

10.1007/3-540-45116-1_12

[35] Smagin VA, Novikov AN, Smagin SY. A probabilistic model of the control of technical

systems. Automatic Control and Computer Sciences. 2010;44(6):324-329. DOI: 10.3103/

S0146411610060027

[36] Rana R, Staron M, Berger C, Hansson J, Nilsson M, Meding W. Analyzing defect inflow

distribution and applying Bayesian inference method for software defect prediction in

large software projects. Journal of Systems and Software. 2016;117:229-244. DOI: 10.1016/j.

jss.2014.08.033

[37] Stieber HA. Estimating the total number of software faults reliability models and muta-

tion testing a Bayesian approach. In: 2015 IEEE 39th Annual Computer Software and

Applications Conference; 1–5 July 2015. Taichung: IEEE; 2015. pp. 423-426. DOI: 10.1109/

COMPSAC.2015.180

[38] Bisi M, Goyal NK. Artificial Neural Network Applications for Software Reliability Predic-

tion, Performability Engineering Series. Wiley-Scrivener; 2017. p. 303

[39] Kaswan KS, Choudhary S, Sharma K. Software reliability modeling using soft computing

techniques: Critical review. Journal of Information Technology and Software Engineering.

2015;5:144. DOI: 10.4172/2165-7866.1000144

[40] Maevsky D, Kharchenko V, Kolisnyk M, Maevskaya E. Software reliability models and

assessment techniques review: Classification issues. In: 2017 9th IEEE International Con-

ference on Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications (IDAACS); 21–23 Sept. 2017; Bucharest: IEEE; 2017. pp. 894-899. DOI:

10.1109/IDAACS.2017.8095216

Probabilistic Modeling in System Engineering168

