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1. Introduction     

Many science and engineering applications require hardware and software systems that 
acquire, process, and integrate information gathered by various knowledge sources. A 
typical example is that of an intelligent road vehicle using several sensors installed in its 
front bumper to perform a robust driving assistance under all operative conditions. For 
most of these systems, information made available by the knowledge sources is incomplete, 
inconsistent, or imprecise. A crucial element in achieving autonomy and efficiency for these 
systems is the availability of a mechanism that can model, fuse, and interpret the 
information for knowledge assimilation and decision making. The fused data reflects not 
only information generated by each knowledge source, but also information that cannot be 
inferred by either knowledge source acting alone. 
This chapter deals with fusing data from sensors that provide information about kinematics 
characteristics of targets in a moving road scene. The sensors include radar and laser range 
finder. Information about the positions and velocities, in addition to errors associated with 
sensor readings is used to solve the target tracking problem. Target tracking with both 
single and multiple sensors involve this concept: if the track kinematic estimate errors are 
small, it is easy to locate the next target measurement and continue to update and/or refine 
the kinematic estimate. The correctly associated measurements provide a “restoring force” 
since they must correspond to the same underlying target. Loss of accuracy for any reason 
makes it more difficult to identify the measurements from the target of interest if other 
targets are present. The aim of the fusion center is to obtain an estimate of the target 
kinematic state vector and the accuracy of this state estimate quantified by its error 
covariance. Estimation fusion can be classified into three categories, depending on which 
information is available at the fusion center: centralized fusion if all measurements are 
available at the fusion center, decentralized fusion if local estimates are available at the 
fusion center and hybrid fusion if available information includes both unprocessed data 
from one sensor and processed data from the other one. In order to be robust, the best 
achievable performance has to be defined. It depends on the accuracy of the measurements, 
the sampling interval, and the scenario used. For a linear and Gaussian system, the Kalman 
filter estimation is optimal. However, in non-linear cases, one cannot conclude on the O
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optimality of an estimation system. Some comparisons using bounds are thus made to 
characterize performance limitations, and consequently, to determine whether imposed 
performance requirements are realistic or not. In time-invariant statistical models, a 
commonly used lower bound is the Cramer-Rao Lower Bound (CRLB), given by the inverse 
of the Fisher information matrix. An extension of the CRLB to random parameters was 
derived: Posterior CRLB (PCRLB). More recently, a simple and straightforward derivation 
of the PCRLB for the problem of discrete-time nonlinear filtering has been proposed. Many 
bound comparisons will be made according to fusion architectures, to the accuracy of 
measurements, to various sensor configurations, and to the scenarios used in order to select 
the most robust fusion system which has to be installed in our experimental vehicle 
(VELAC: LASMEA’s experimental vehicle). This paper starts with a description of the 
motivation to use a combination of range-only measurements with Cartesian ones, and 
provides a mathematical formulation of the problem. Subsequently, the Posterior Cramer-
Rao Lower Bounds (PCRLB) are derived and analyzed from the aspect of algorithm 
convergence. Section 4 presents the two proposed algorithms and their error performance 
comparison according to the theoretical bounds. Since the combination of range-only 
measurements with Cartesian ones can be formulated as a nonlinear filtering problem, the 
Extended Kalman Filter (EKF) and the Particle Filter (PF) are selected as approximation to 
the optimal recursive Bayesian solution of the nonlinear filtering problem. Finally, an 
experiment is made in order to evaluate the decentralized fusion performance.  

2. Problem description 

2.1 Background 

Among the mobile robotic problems, obstacle detection and avoidance are the most 
important. Indeed, each mobile robot having to move in an unknown environment must be 
able to detect obstacles. J. Hancock's point of view (Hancock, 1999) is that the problem of 
obstacle avoidance will never be solved. Indeed, mobile robots are becoming more and more 
capable, and are evolving with increasing speed; these robots will thus need to observe 
farther and higher areas. Our proposed method for road obstacle detection and tracking 
combines two dissimilar sensor measurements to achieve a robust performance. It uses a 
laser based 3D-sensor (Laser Mirror Scanner LMS-Z210-60 from Riegl) which measures 
range and angles, combined with a radar sensor which delivers range and range rate. For 
the laser sensor, since target motion is best described in Cartesian coordinates but 
measurements are available in sensor coordinates, a commonly used method is to convert 
measurements from sensor to Cartesian coordinates (Li & Jilkov, 2001). Thus, we combine 
Cartesian target coordinates ݔ and ݕ with radar range ݎ and radar range rate ݎሶ  target 
measurements. Given the characteristics of the radar sensors (Blanc et al., 2004) we can 
affirm that radar data are complementary with all the other data. Indeed, the radar is 
insensitive to atmospheric conditions, thus it is judicious, even essential, to use such a 
sensor for obstacle detection in road environment. These sensors are installed in VELAC 
(LASMEA's Experimental Vehicle), see Fig. 1. 
Lidar sensor : the 3D-Laser Mirror Scanner LMS-Z210-60 is a surface imaging system based 
upon accurate distance measurement by means of electro-optical range measurement and a 
two axis beam scanning mechanism. The range finder system is based upon the principle of 
time-offlight measurement of short laser pulses in the infrared wavelength region. Many 
methods for time-of-flight’s calculation are described in (Hancock, 1999). The task of the 
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Fig. 1. LASMEA's experimental vehicle exteroceptive sensors. 

scanner mechanism is to direct the laser beam for range measurement in an accurately 
defined position. The 3D images are configurable. In our approach 20 lines x 103 pixels 
images at nearly 2 Hz are used (see Fig.2). The line scan mechanism (rotating polygonal four 
facets mirrors) provides a scan angle range about 60° fixed at a speed of 5 lines/s up to 
maximum 90 lines/s with an angle step width included between 0.072° and 0.36° and a 
readout accuracy of 0.036°.The frame scanner mechanism which is slower (1°/s up to max 
20°/s) than the line scan relies on rotating the optical head together with the fast line scan. 
This is accomplished by mounting both the line scanner mechanism and the optical head on 
a rotating table (0° up to max. 333°). The angle step width is 0.072° to 0.36° with an angle 
readout accuracy of 0.018°. For the obstacle detection, a two parts detection algorithm is 
used: first the segmentation of the 3D image in regions and second the recognition of the 
obstacle (particularly road vehicles) among these regions. A region growing algorithm is 
used to perform the segmentation of the 3D image. A region, including shots located at 
nearly the same distance ݀ with a tolerance ∆݀, is parameterized by a vector which includes 
the size of the target and the position of target’s center in the laser scanner reference. These 
characteristics are then compared to a car model. If parameters of a region are close to those 

of the model, this region is declared as an obstacle. Finally, a measurement vector ݖሺ௖ሻ ൌ൬ݔሺ௖ሻݕሺ௖ሻ൰ and its associated covariance ܴሺ௖ሻ ൌ ൭ߪ௫ሺ೎ሻଶ ͲͲ ௬ሺ೎ሻଶߪ ൱ are constructed. 
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After detection of different obstacles, we are able to track them in consecutive frames using 
a constant velocity Kalman filter and a nearest neighbor standard data association method. 

Each target is characterized by a state vector ݔሺ௖ሻ and its associated covariance ܲሺ௖ሻ. It is 
noticed that we are able to detect and track several types of obstacles (cars and trucks) 
(Blanc et al., 2005). The data association system based on research of nearest neighbor seems 
sufficient for this system. It is thus not necessary to use methods of type JPDAF or with 
multiple assumptions. Moreover, the precision of the lidar measures allows data association 
to easily integrate observation which corresponds best to the considered track. We will be 
able, for example, to use the obstacle size as one of the criteria of associations if several 
measurements fall into the validation window. The advantage of this method is based on 
the measurements precision delivered by the lidar and on a high detection probability. 
Moreover, in a road context, the number of tracks to follow in front of our experimental 
vehicle is weak. That reduces considerably necessary calculations to the data association 
systems. 
 

 

Fig. 2. 3D image and obstacle detection 

Radar sensor: the key interests to use a Radar in this project are on the one hand the accuracy 
of the obstacle speed estimate and on the other hand the quality of its information up to 150 
m in spite of difficult weather conditions. 
Firstly, the radar data are treated to determine the distance and the relative speed of the 
objects (or obstacles) located in the enlightened space by the Radar beam. The reader can 
refer to (Blanc et al., 2004) for many details on the radar data processing. Every 8 ms the 
radar delivers a measurement of time, amplitude, range and an index speed for all echoes. 
The range gate is ܴߜ ൌ ʹʹ.5 m and an index speed corresponds to a speed of  ݒߜ ൌ Ͳ.ʹ͵ͺ  
m/s. In radar measurements, one target can generate several echoes in close range gate as 
well as neighbor speed samples. A pretreatment is thus necessary in order to gather the 

echoes emanating from the same target. In a second step, a measurement vector ݖሺ௥ሻ ൌ ൬ݎሺ௥ሻݎሶ ሺ௥ሻ൰ 

and its covariance matrix ܴሺ௥ሻ ൌ ቆߪ௥ሺೝሻଶ ͲͲ ௥ሶሺೝሻଶߪ ቇ are associated to each resulting target. 

The Radar tracking is based on Kalman filter and yields to a more accurate range estimate 
than the gate value (22.5 m) (see Fig. 3). Each target is characterized by a state vector ݔሺ௥ሻ and its associated covariance ܲሺ௥ሻ. 
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Fig. 3. Radar tracking results in foggy conditions 

Obviously, all the sensors have different sample rates. Hypotheses made in this paper are: 

• sensors are synchronous 

• radar sample rate ௥ܶ  is lower or equal to the other one ௖ܶ (lidar), e.g  ௖ܶ ൌ ݊ ൈ ௥ܶ with ݊ א ܰା; 
Moreover, to avoid an additional level of complexity due to false detections and multiple 
target scenarios, we assume: 

• unity probability of detection and zero probability of false alarm; 

• all sensor measurements are associated for each target: we don't address the problem of 
data association. 

Thus, the aim of the fusion center is to estimate Cartesian target state ܺ and ܲ ൌ  ሺܺሻ, itsݒ݋ܿ
associated covariance, with respect to every ௥ܶ, using all available information ܻ.  Estimation 
fusion can be classified into three categories, depending on which information is available at 
the fusion module (Li et al., 2003): 

• ܻ ൌ ቄ൛ݖሺ௖ሻ, ܴሺ௖ሻൟ, ൛ݖሺ௥ሻ, ܴሺ௥ሻൟቅ: centralized fusion (CF) if all measurements are available at 

the fusion center.  

• ܻ ൌ ቄ൛ݔሺ௖ሻ, ܲሺ௖ሻൟ, ൛ݔሺ௥ሻ, ܲሺ௥ሻൟቅ: decentralized fusion (DF) if local estimates are available at 

the fusion center 

• hybrid fusion if available information at the fusion center includes both unprocessed 
data from one sensor and processed data from the other one. 

In this chapter, we focus on centralized and decentralized fusion. 
Moreover, between two available Cartesian measurements, the problem can be seen as a 
problem of target tracking with range-only measurements, i.e. range and range rate 
measurements. According to our bibliographical research, few publications are devoted to 
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this problem (Song, 1999) (Ristic et al., 2002). In (Song, 1999) the author discusses the 
conditions for target observability from range-only measurements. He concludes the same 
condition as the observability criterion for the related and extensively studied problem of 
bearing-only target motion analysis: if the target is moving at a constant velocity, the 
observer must be moving with a non-zero acceleration or if the target is moving at a 
constant acceleration, the observer must be moving with a non-zero jerk in order to observe 
the target. In (Ristic et al., 2002), the authors show that, for a typical scenario, tracking 
algorithms based on range and range-rate measurements can converge toward a steady 
state. 

2.2 Mathematical formulation 

Let us consider the fusion target state vector: ܺ ൌ ሺݔ, ሶݔ , ,ݕ ሶݕ ሻ௧ (1) 

where ݔ,  ,are the tracked positions in the reference frame which is common to both sensors ݕ
and ݔ,ሶ ሶݕ  the tracked relative speed. Evolution model can be represented in a matrix form by: ܺ௞ାଵ ൌ ௞ܺ௞ܨ ൅ ௞ܩ ௞ܸ , ௞ܩ ௞ܸ~ܰሺͲ, ܳ௞ሻ (2) 

where ܨ௞is the transition matrix which models the evolution of ܺ௞, and ܳ௞ the covariance 
matrix of ௞ܸ which represents the acceleration. 

௞ܨ ൌ ൮ͳ ௞ݐ Ͳ ͲͲ ͳ Ͳ ͲͲ Ͳ ͳ ௞Ͳݐ Ͳ Ͳ ͳ ൲ , ܳ௞ ൌ ௞ܩ ቆߪ௔௫ଶ ͲͲ ௔௬ଶߪ ቇ ௞௧ܩ , ௞ܩ ൌ
ۈۉ
ۇۈۈ

ʹ௞ଶݐ Ͳݐ௞ ͲͲ ௞ଶʹͲݐ ۋی௞ݐ
 (3) ۊۋۋ

The available information at time ݐ௞ is defined by: 

• Centralized fusion: 

        if ݖሺ௖ሻ is available, i.e. ݐ௞ ൌ ݊ ൈ ௖ܶ 

௞ݖ ൌ ൬ݖሺ௖ሻݖሺ௥ሻ൰ ൌ ۈۈۉ
ۋۋیሶ௞ሺ௥ሻݎ௞ሺ௥ሻݎ௞ሺ௖ሻݕ௞ሺ௖ሻݔۇ

ۊ ൌ ݄஼ிሺܺ௞ሻ ൅ ௞஼ிݓ ൌ ۇۉ
݄௫ሺܺ௞ሻ݄௬ሺܺ௞ሻ݄௥ሺܺ௞ሻ݄௥ሶ ሺܺ௞ሻۊی ൅ ௞஼ிݓ , ,௞஼ி~ܰሺͲݓ ܴ௞஼ிሻ (4) 

ܴ௞஼ி ൌ ൭ܴ௞ሺ௖ሻ ͲͲ ܴ௞ሺ௥ሻ൱ (5) 

else 

௞ݖ ൌ ሺݖሺ௥ሻሻ ൌ ൭ݎ௞ሺ௥ሻݎሶ௞ሺ௥ሻ൱ ൌ ݄஼ிሺܺ௞ሻ ൅ ௞஼ிݓ ൌ ൬݄௥ሺܺ௞ሻ݄௥ሶ ሺܺ௞ሻ൰ ൅ ௞஼ிݓ , ,௞஼ி~ܰሺͲݓ ܴ௞஼ிሻ (6) 
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• Decentralized fusion 

        if ݔሺ௖ሻ is available, i.e. ݐ௞ ൌ ݊ ൈ ௖ܶ 

௞ݖ ൌ ൬ݔሺ௖ሻݔሺ௥ሻ൰ ൌ
ۈۉ
ۇۈۈ

ሶሚ௞ݎ௞ݎሶ෨௞̃ݕ෤௞ݕሶ෨௞ݔ෤௞ݔ ۋی
ۊۋۋ ൌ ݄஽ிሺܺ௞ሻ ൅ ௞஽ிݓ ൌ

ۈۉ
ۇۈۈ

݄௫ሺܺ௞ሻ݄௫ሶ ሺܺ௞ሻ݄௬ሺܺ௞ሻ݄௬ሶ ሺܺ௞ሻ݄௥ሺܺ௞ሻ݄௥ሶ ሺܺ௞ሻۋی
ۊۋۋ ൅ ௞஽ிݓ , ,௞஽ி~ܰሺͲݓ ܴ௞஽ிሻ (8) 

ܴ௞஽ி ൌ ൭ ௞ܲሺ௖ሻ ௞ܲሺ௖௥ሻ
௞ܲሺ௖௥ሻ ௞ܲሺ௥ሻ ൱ (9) 

         where ௞ܲሺ௖௥ሻ
 is the cross covariance matrix 

         else 

௞ݖ ൌ ሺݔሺ௥ሻ ൌ ൬̃ݎ௞ݎሶሚ௞൰ ൌ ݄஽ிሺܺ௞ሻ ൅ ௞஽ிݓ ൌ ൬݄௥ሺܺ௞ሻ݄௥ሶ ሺܺ௞ሻ൰ ൅ ௞஽ிݓ , ,௞஽ி~ܰሺͲݓ ܴ௞஽ிሻ (10) 

ܴ௞஽ி ൌ ൫ ௞ܲሺ௥ሻ൯ (11) 

ەۖۖۖ
۔ۖۖ
ۓۖۖۖ

݄௫ሺܺ௞ሻ ൌ ௞݄௫ሶݔ ሺܺ௞ሻ ൌ ሶ௞݄௬ሺܺ௞ሻݔ ൌ ௞݄௬ሶݕ ሺܺ௞ሻ ൌ ሶ௞݄௥ሺܺ௞ሻݕ  ൌ ටݔ௞ଶ ൅ ௞ଶ݄௥ሶݕ ሺܺ௞ሻ ൌ ሶ௞ଶݔ௞ଶݔ ൅ ௞ଶݔሶ௞ଶටݕ௞ଶݕ ൅ ௞ଶݕ
 (12)

3. Posterior Cramer-Rao lower bounds 

3.1 Derivation of the bounds 

The system defined by both the evolution and the measurement model, respectively defined 

in (2) and (4,5) is considered. If ෠ܺ௞/௞ is an unbiased estimator of ܺ௞, calculated from the 

measurement sequence ܼ௞ ൌ ሼݖଵ, ڮ ,  ሺܺ଴ሻ (initial pdf), then݌ ௞ሽ and from the knowledge ofݖ

the covariance matrix of ෠ܺ௞/௞, noted ௞ܲ/௞ admits a lower bound given by: 

௞ܲ/௞ ؜ ሼሺܧ ෠ܺ௞/௞ െ ܺ௞ሻሺ ෠ܺ௞/௞ െ ܺ௞ሻ௧ሽ ൒ ௞ିܬ ଵ (13)

where ܬ௞ is the Fisher information matrix which we want to determine. Tichavsky et al. 
(Tichavsky et al., 1998) proposed a method to calculate ܬ௞  recursively: 
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Sensor and Data Fusion 64 ௞ାଵܬ ൌ ௞ଶଶܦ െ ௞ܬ௞ଶଵሺܦ ൅ ௞ଵଶܦ௞ଵଵሻିଵܦ (14)

where since the evolution model is linear and noises are Gaussian: ܦ௞ଵଵ ൌ ௞௧ܳ௞ିܨ ଵܨ௞ ௞ଵଶܦ (15) ൌ െܨ௞௧ܳ௞ି ଵ ൌ ሾܦ௞ଶଵሿ௧ (16) 

௞ଶଶܦ ൌ ቐܳ௞ି ଵ ൅ ܧ ቄൣܪ෩௞ାଵ஼ி ൧௧ൣܴ௞ାଵ஼ி ൧ିଵܪ෩௞ାଵ஼ி ቅ ݂݅ ௞ିܳܨܥ ଵ ൅ ܧ ቄൣܪ෩௞ାଵ஽ி ൧௧ሾܴ௞ାଵ஽ி ሿିଵܪ෩௞ାଵ஽ி ቅ ݂݅  (17) ܨܦ

where ܪ෩௞ାଵ஼ி  and ܪ෩௞ାଵ஽ி  are respectively the Jacobian matrix of ݄௞ାଵ஼ி ሺܺ௞ሻ and ݄௞ାଵ஽ி ሺܺ௞ሻ 
evaluated at the true value of ܺ௞ାଵ. Finally, by using the inversion matrix lemma, the 
recursive information matrix calculation is: 

௞ାଵܬ ൌ ሺܳ௞ ൅ ௞ିܬ௞ܨ ଵܨ௞௧ሻିଵ ൅ ቐܧ ቄൣܪ෩௞ାଵ஼ி ൧௧ൣܴ௞ାଵ஼ி ൧ିଵܪ෩௞ାଵ஼ி ቅ ݂݅ ܧܨܥ ቄൣܪ෩௞ାଵ஽ி ൧௧ሾܴ௞ାଵ஽ி ሿିଵܪ෩௞ାଵ஽ி ቅ ݂݅ (18) ܨܦ

In practice, the most difficult problem is the calculations of the expected value operator ܧ in 

(18). The expectation is only taken with respect to the state vector ܺ௞ (the bound is 

independent of the actual measurement sequence). A Monte Carlo approximation can be 

applied to implement the theoretical PCRB formulae. One first needs to create a set of state 

vector realizations, the so-called target trajectories. Then the appropriate term in (12) is 

computed as the average over this set. 

The recursions start with the initial information matrix ܬ଴ computed from the initial density ݌ሺܺ଴ሻ. If ݌ሺܺ଴ሻ is Gaussian then ܬ଴ ൌ ଴ܲି ଵ else ܬ଴ ൌ ቄ∆௑బ௑బܧ log ሺ݌ ܺ଴ሻቅ. 

3.2 Analysis of the bounds 

The scenario used is constructed from a ground truth approximation. It is a typical case of 

adaptive cruise control (ACC) scenario. For this, VELAC and only one obstacle are 

equipped with DGPS. Their locations are acquired every second. Obstacle position is sent 

to VELAC by MF communications. Relative positions and velocities are shown in Fig. 4 

after approximation. VELAC and obstacle move at a speed bounded by 20km/h and 

90km/h. 

As described in (Blanc et al., 2007) it is not necessary to stack ݎ in the ܼ௞ measurement 

vector except if  ߪ௥ ا ,௫ߪ ௥ߪ ௬ (with our sensorsߪ ൐ ,௫ߪ  ௬). Firstly, the Fig. 5 confirms, asߪ

expected, that the more data are available the more performance increases. As we can see, 

PCRLBs of ݔ and ݔሶ  increase between two Cartesian measurements as it the trajectory 

taken does not respect the observability criterion. For the calculations 100 MC runs are 

used and ܴሺ௖ሻ ൌ ቀʹଶ ͲͲ ʹଶቁ, ܴሺ௥ሻ ൌ ቀ͹ଶ ͲͲ Ͳ.ʹଶቁ. Moreover, decentralized and centralized 

estimation fusion architectures have an equivalent good performance for this ACC 

scenario. 
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Fig. 4. A scenario used for the analysis of Posterior Cramer-Rao lower bounds 

 

Fig. 5. Decentralized fusion (solid line) and centralized fusion (dashed line) PCRLB of  ݔ, ሶݔ , ,ݕ ሶݕ  with a fixed ௖ܶ ൌ Ͳ.5 ݏ, a varying ௥ܶ ൌ Ͳ.Ͳͳ ݏ, Ͳ.͵ ݏ 

4. Tracking algorithms 

4.1 Extended Kalman filter 

Estimation fusion using range, range-rate and Cartesian measurements, is a non-linear 
dynamic state estimation problem because the measurement equation is non-linear (12). The 
Kalman filter is therefore inappropriate. The conventional approach is to approximate Eqs. 
(4, 6, 8, 10) by a series expansion and then to use an equivalent measurement matrix in the 
ordinary Kalman filter equations: Extended Kalman filter (EKF) for a first-order series 
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expansion (linearization) of the non-linear measurement equation. The recursive equations 
of the EKF are presented below to describe the evaluation of the relative estimated state ܺ௞ାଵ/௞ାଵ and its associated covariance matrix ௞ܲାଵ/௞ାଵ by using the measurement ݖ௞ and the 

relative state vector ܺ௞/௞ with its associated covariance matrix ௞ܲ/௞. The state equation 

prediction is worked out by Eq. (2) while the covariance matrix is given by: 

௞ܲାଵ/௞ାଵ ൌ ௞ܨ ௞ܲ/௞ܨ௞௧ ൅ ௞௧ܩ௞ܳ௞ܩ  (19)

The measurement prediction is given by Eqs. (4, 6, 8, 10). We don’t stack ݎ in the 
measurement vector for Eqs. (4, 8) as it is proposed in previous section. 
The Kalman gain matrix can be evaluated as ܭ௞ାଵ௠ ൌ ௞ܲାଵ/௞ାଵሺܪ௞ାଵ௠ ሻ௧ൣܪ௞ାଵ௠ ௞ܲାଵ/௞ାଵሺܪ௞ାଵ௠ ሻ௧ ൅ ܴ௞ାଵ௠ ൧ିଵ

 (20)

where ݉ represents CF or DF, and ܪ௞ାଵ௠  is the linearised measurement matrix evaluated at 
the predicted state. 
Finally, the updated fusion state and its associated covariance matrix are given by: ܺ௞ାଵ௠ ൌ ܺ௞ାଵ/௞௠ ൅ ௞ାଵ௠ܭ ൫ݖ௞ାଵ െ ݄௠ሺܺ௞ାଵ/௞௠ ሻ൯ (21) 

௞ܲାଵ௠ ൌ ሺܫ െ ௞ାଵ௠ܭ ௞ାଵ௠ܪ ሻ ௞ܲାଵ/௞௠ (22) 

4.2 Particle filter 

Originally developed in the tracking community (Gordon et al., 1993), the particle filtering is 
currently enjoying a strong development in many research fields (vision, localization, 
navigation, robotics, etc.), in particular in multi-target tracking. This filter is a sequential 
Monte-Carlo method in which particles traverse the state space in an independent way, and 
interact under the effect of a probability function which automatically concentrates the 
particles in the state space areas of interest. This method has the advantage of not requiring 
linear or Gaussian assumptions on the model.  Moreover, it is very easy to implement, since 
it is enough to know how to simulate independent various trajectories of the model. We 
propose here, to carry out a particle filtering on the fusion module level. A fusion state is 
initialized. From this vector, a set of ௦ܰ particles is built. Noise particles are generated 

,ைሺ௜ሻܤ) ݅ ൌ ͳ, . . , ௦ܰ) and applied to the initial vector: ܺ଴/଴௠ሺ೔ሻ ൌ ܺ଴/଴௠ ൅ ,ைሺ௜ሻܤ ݅׊ א ሾͳ ڮ ௦ܰሿ (23)

Then, the model defined in (2) is applied to ௌܰ particles in a prediction step. Correction is 
carried out on the level of the calculation of the weights. We calculate ௦ܰ weights assigned to 
the ௦ܰ predicted particles. We have: ݓ௞௠ሺ೔ሻ ൌ pሺz୩/X୩/୩ିଵ୫ሺ౟ሻ ሻ (24)

Weights are then normalized, and finally the fused state considered is given by: 

ܺ௞௠ ൌ ෍ ௞௠ሺ೔ሻX୩/୩ିଵ୫ሺ౟ሻேೞݓ
௜ୀଵ  (25)

www.intechopen.com



Data Fusion Performance Evaluation for Dissimilar Sensors: Application to Road Obstacle Tracking 67 

and its covariance by: 

௞ܲ௠ ൌ ෍ ௞௠ሺ೔ሻݓ ቀX୩/୩ିଵ୫ሺ౟ሻ െ ܺ௞/௞ିଵ௠ ቁேೞ
௜ୀଵ ቀX୩/୩ିଵ୫ሺ౟ሻ െ ܺ௞/௞ିଵ௠ ቁ୲

 (26)

The particles are resampled and returned to the prediction step. 

4.2 Algorithm performance and comparison 

The performance of estimation fusion for two algorithms is analyzed by Monte-Carlo 
simulations. The analysis is made for the trajectory presented in Fig. 4. The measurement 

covariances are assumed to be ܴሺ௥ሻ ൌ ݀݅ܽ݃ሾ͹ଶ, Ͳ.ʹଶሿ and ܴሺ௖ሻ ൌ ݀݅ܽ݃ሾʹଶ, ʹଶሿ. 
The sampling rates are ௥ܶ ൌ Ͳ.Ͳͳ ݏ and ௖ܶ ൌ Ͳ.5 ݏ. The resulting error curves were computed 
to the theoretically derived PCRLB. The estimation error is defined as ݁௞ ൌ ܺ௞௠ െ ܺ௞. The 
performance is measured by the root mean square error (RMSE), which, for component ݆ of 

the state vector, is defined as ߪ௘ೖ௝ ൌ ටܧ ቀ݁௞௝ଶቁ where the expectation operator was computed 

by averaging over 50 independent Monte-Carlo runs. Results are shown in Fig. 6. 

 

Fig. 6. Performance of EKF and PF against PCRLB 

Firstly, we may notice that the EKF and particle filter errors are initially smaller than the 
square root of PCRLB which is unexpected. This result is due to the initialization, which 
does not exactly match to the inverse of the initially used information matrix in the PCRLB 
computation. For clarity, results for particle filter are present only with 2000 particles. 
Nevertheless, we observe that as the number of particles is increased, the performance of the 
particle filters improves, and approaches the PCRLB’s. This improved accuracy of the 
particle filter, however, is at the expense of the computational load. Particle filter with 10000 
particles is equivalent to EKF. Thus, in practical operation system, the EKF appears more 
suitable for implementation than the particle filter. 
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5. Experiments 

Quantitative results for decentralized fusion are obtained with a ground truth. Velac and 

only one obstacle are equipped with DGPS. Their locations are acquired every second. 

Obstacle position is sent to Velac by MF communication. In the same time, the obstacle is 

tracked by both processes (Radar/Lidar).  Decentralized fusion process and comparison are 

done offline. The measurement system includes a differential GPS Omnistar which delivers 

trames with format TSIP (Trimble Standard Interface Protocol). This GPS gives, in the best 

configuration, a position with a ±40 cm accuracy. It delivers a coefficient, called gdop: the 

current accuracy is gdop times 40 cm. DGPS errors are shown in Fig. 7. Moreover, for data 

communication, a radio modem of Satel receives trames coming from the obstacle. Fig. 7 

shows the results for the range estimation by extended Kalman filter and particle filter. 

Moreover, it shows the radar and lidar estimate. We see that radar estimate is less accurate 

than lidar estimate in this particular scenario. The DGPS reference allows computing root 

mean square error and its standard deviation (std) for both filters. As it is shown on results, 

performance of range estimation is correct for both filters. Errors and DGPS accuracy have 

almost the same order. Moreover, as expected, the EKF have very small computation time 

compared with the particle filters. Only EKF allows real time utilization because of the radar 

data rate which is 8 ms. 

 

 

Fig. 7. Range estimation by EKF and particle filter 
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6. Conclusion 

This paper has discussed the problem of centralized/decentralized fusion estimation for 

target tracking using range, range-rate and Cartesian measurements for road obstacle 

tracking. The Posterior Cramer-Rao Lower Bounds were derived and two tracking 

algorithms were developed. The PCRLBs allow us to predict the best achievable 

performance under various conditions such as the relative target trajectory, and 

measurement sample rate. Two algorithms have been considered: the extended Kalman 

filter and the particle filter. This study has shown that both algorithms are efficient for this 

kind of scenario even if the particle filter is unattractive for implementation in a practical 

operational system. Our future work will consist in developing a new method of 

laser/camera fusion for pedestrian detection. This work will take place in the context of the 

LOVe (Logiciel d’Observations des Vulnérables) which aims at improving road safety, 

mainly focusing on pedestrian security. 
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