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1. Introduction 

In the information era, as computer networks and related applications become more and 
more popular, security problems are more and more serious in global information 
infrastructure. It was reported that in the past two years, large amounts of network attacks 
and computer viruses caused great damages to global economy and the potential threats to 
the global information infrastructure have increased a lot. To defend various cyber attacks 
and computer viruses, lots of computer security techniques have been studied, which 
include cryptography, firewalls and intrusion detection, etc. As an important computer 
security technique, intrusion detection [1,2] has been considered to be more promising for 
defending complex computer attacks than other techniques such as cryptography, firewalls, 
etc. The aim of intrusion detection is to find cyber attacks or non-permitted deviations of the 
characteristic properties in a computer system or monitored networks. Thus, one of the 
central problems for intrusion detection systems (IDSs) is to build effective behavior models 
or patterns to distinguish normal behaviors from abnormal behaviors by observing collected 
audit data. To solve this problem, earlier IDSs usually rely on security experts to analyze the 
audit data and construct intrusion detection rules manually [2]. However, since the amount 
of audit data, including network data, process execution traces and user command data, etc., 
increases vary fast, it becomes a time-consuming, tedious and even impossible work for 
human experts to analyze dynamic, huge volumes of audit data and extract attack 
signatures or detection rules. Furthermore, detection rules constructed by human experts 
are usually based on fixed features or signatures of existing attacks, so it will be very 
difficult for these rules to detect deformed or even completely new attacks. 
According to the differences in the monitored data, IDSs can be mainly classified into two 
categories, i.e., network-based intrusion detection and host-based intrusion detection. 
Network-based intrusion detection observes data from network packets and extracts various 
features from them, which usually include connection features, traffic features, and content 
features. A systematic discussion on feature representation in network-based intrusion 
detection can be found in [3]. For host-based intrusion detection, various observation data 
from the corresponding operation systems are collected, which mainly include system call 
data and shell command data [4], etc. Despite of having different observation data, both 
host-based and network-based intrusion detection need to improve the detection accuracy 
for large volumes and variability of normal and attack behaviors. Aiming at this problem, O
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lots of research work has been devoted to develop intrusion detection systems (IDSs) using 
various artificial intelligence (AI) methods and tools [3-5]. Thus, the motivations for 
applying AI techniques in IDSs are due to large amounts of dynamic behaviors and the lack 
of a priori knowledge for unknown attacks. How to establish appropriate behavior models 
has been a central problem in the development of IDSs since the distinctions between 
normal behaviors and computer attacks are usually very vague. In earlier research on IDSs, 
it was very popular to separately construct behavior models either for normal usages or 
attacks. To model intrusion behaviors alone is called misuse detection and anomaly 
detection refers to establish profiles of normal usages. In misuse detection, behavior patterns 
or models of known attacks are constructed and alarms are raised when the patterns of 
observation data match the attack models. On the other hand, anomaly detection only 
models the patterns of normal behaviors and detects any possible attacks as deviations from 
the normal behavior model. Until now, although there have been many advances in misuse 
detection and anomaly detection, some significant challenges still exist to meet the 
requirements of defending computer systems from attacks with increasing complexity, 
intelligence, and variability. For misuse detection, the inability of detecting new attacks is its 
inevitable weakness and it is very hard to improve the performance of pure misuse 
detection systems for the sake of increasing amounts of novel attacks. Although anomaly 
detection has the ability of detecting new attacks, it usually suffers from high rates of false 
alarms since it is very difficult to obtain a complete model of normal behaviors. 
To solve the above problems in IDSs, machine learning and data mining methods for 

intrusion detection have received a lot of research interests in recent years [4-10]. One 

motivation for applying machine learning and data mining techniques in IDSs is to 

construct and optimize detection models automatically, which will eliminate the tedious 

work of human experts for data analysis and model building in earlier IDSs. To detect novel 

attacks, several adaptive anomaly detection methods were proposed by employing data 

mining methods based on statistics [7], or clustering techniques [10]. Recently, there have 

been several efforts in designing anomaly detection algorithms using supervised learning 

algorithms, such as neural networks [8], support vector machines [11], etc. In addition to 

supervised or inductive learning methods for misuse and anomaly detection, another 

approach to adaptive intrusion detection is to use unsupervised learning methods. Unlike 

supervised learning methods, where detection models are constructed by careful labeling of 

normal behaviors, unsupervised anomaly detection tries to detect anomalous behaviors 

with very little a priori knowledge about the training data. However, as studied in [12], the 

performance of pure unsupervised anomaly detection approaches is usually unsatisfactory, 

e.g., it was demonstrated in [12] that supervised learning methods significantly outperform 

the unsupervised ones if the test data contains no unknown attacks. 

Despite of many advances that have been achieved, existing IDSs still have some difficulties 
in improving their performance to meet the needs of detecting increasing types of attacks in 
high-speed networks. One difficulty is to improve detection abilities for complex or new 
attacks without increasing false alarms. Since misuse IDSs employ signatures of known 
attacks, it is hard for them to detect deformed attacks, notwithstanding completely new 
attacks. On the other hand, although anomaly detection can detect new types of attacks by 
constructing a model of normal behaviors, the false alarm rates in anomaly-based IDSs are 
usually high. How to increase the detecting ability while maintaining low false alarms is still 
an open problem of IDS research. 
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In addition to the ability of realizing automatic model construction for misuse detection and 
anomaly detection, another promising application of machine learning methods in intrusion 
detection is to build dynamic behavior modeling frameworks which can combine the 
advantages of misuse detection and anomaly detection while eliminate the weakness of 
both. Many previous results on misuse detection and anomaly detection were usually based 
on static behavior modeling, i.e., normal behaviors or attack behaviors were modeled as 
static feature patterns and the intrusion detection problem was transformed to a pattern 
matching or classification procedure. However, dynamic behavior modeling is different 
from static behavior modeling approaches in two aspects. One aspect is that the 
relationships between temporal features are explicitly modeled in dynamic modeling 
approaches while static modeling only considers time independent features. The other 
aspect is that probabilistic frameworks are usually employed in dynamic behavior models 
while most static models make use of deterministic decision functions. Furthermore, many 
complex attacks are composed of multiple stages of behaviors, for example, a remote-to-
local (R2L) attack commonly performs probe attacks to find target computers with 
vulnerabilities at first, and later realizes various buffer overflow attacks by utilizing the 
vulnerabilities in the target host computers. Therefore, sequential modeling approaches will 
be more beneficial to precisely describe the properties of complex multi-stage attacks. In [4], 
dynamic behavior modeling and static behavior modeling approaches were discussed and 
compared in detail, where a Hidden Markov Model was proposed to establish dynamic 
behavior models of audit data in host computers including system call data and shell 
command data. It was demonstrated in [4] that dynamic behavior modeling is more suitable 
for sequential data patterns such as system call data of host computers. However, the main 
difficulty for applying HMMs in real-time IDS applications is that the computational costs of 
HMM training and testing increase very fast with the number of states and the length of 
observation traces. 
In this Chapter, some recently developed machine learning techniques for sequential 
behavior modeling and prediction are studied, where adaptive intrusion detection in 
computer systems is used as the application case. At first, a general framework for applying 
machine learning to computer intrusion detection is analyzed. Then, reinforcement learning 
algorithms based on Markov reward models as well as previous approaches using Hidden 
Markov Models (HMMs) are studied for sequential behavior modeling and prediction in 
adaptive intrusion detection. At last, the performance of different methods are evaluated 
and compared. 

2. A general framework of ML applications in intrusion detection 

In [9], based on a comprehensive analysis for the current research challenges in intrusion 
detection, a framework for adaptive intrusion detection using machine learning techniques 
was presented, which is shown in Fig.1. The framework is composed of three main parts. 
The first one is for data acquisition and feature extraction. Data acquisition is realized by a 
data sensing module that observes network flow data or process execution trajectories from 
network or host computers. After pre-processing of the raw data, a feature extraction 
module is used to convert the raw data into feature vectors that can be processed by 
machine learning algorithms and an extraction model based on unsupervised learning can 
be employed to extract more useful features or reduce the dimensionality of feature vectors. 
This process for automated feature extraction is a component of the machine learning part in 
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the framework. In the machine learning part, audit data for training are stored in databases 
and they can be dynamically updated by human analysts or by machine learning 
algorithms. The third part in the framework depicted in Fig.1 is for real-time detection, 
which is to make use of the detection models as well as the extracted feature vectors to 
determine whether an observed pattern or a sequence of patterns is normal or abnormal. 
To automatically construct detection models from the audit data, various machine learning 
methods can be applied, which include unsupervised learning, supervised learning and 
reinforcement learning. In addition, there are three perspectives of research challenges for 
intrusion detection, which include feature extraction, classifier construction and sequential 
behavior prediction. Although various hybrid approaches may be employed, it was 
illustrated that these three perspectives of research challenges are mainly suitable for 
machine learning methods using unsupervised, supervised and reinforcement learning 
algorithms, respectively. In contrast, in the previous adaptive IDS framework in [13], feature 
selection and classifier construction of IDSs were mainly tackled by traditional association 
data mining methods such as the Apriori algorithm. 

2.1 Feature extraction 

As illustrated in Fig.1, feature extraction is the basis for high-performance intrusion 

detection using data mining since the detection models have to be optimized based on the 

selection of feature spaces. If the features are improperly selected, the ultimate performance 

of detection models will be influenced a lot. This problem has been studied during the early 

work of W.K. Lee and his research results lead to the benchmark dataset KDD99 [13-14], 

where a 41-dimensional feature vector was constructed for each network connection. The 

feature extraction method in KDD99 made use of various data mining techniques to identify 

some of the important features for detecting anomalous connections. The features employed 

in KDD99 can serve as the basis of further feature extraction. 

In KDD99, there are 494,021 records in the 10% training data set and the number of records 

in the testing data set is about five million, with a 10 percent testing subset of 311028 

records. The data set contains a total of 22 different attack types. There are 41 features for 

each connection record that have either discrete values or continuous values. The 41-

dimensional feature can be divided into three groups. The first group of features is called 

basic or intrinsic features of a network connection, which include the duration, prototype, 

service, number of bytes from source IP addresses or from destination IP addresses, and 

some flags in TCP connections. The second group of features in KDD99 is composed of the 

content features of network connections and the third group is composed of the statistical 

features that are computed either by a time window or a window of certain kind of 

connections. 

The feature extraction method in the KDD99 dataset has been widely used as a standard 

feature construction method for network-based intrusion detection. However, in the later 

work of other researchers, it was found that the 41-dimensional features are not the best 

ones for intrusion detection and the performance of IDSs may be further improved by 

studying new feature extraction or dimension reduction methods [11]. In [11], a 

dimension reduction method based on principal component analysis (PCA) was 

developed so that the classification speed of IDSs can be improved a lot without much 

loss of detection precision. 
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Fig. 1. A framework for adaptive IDSs based on machine learning 

2.2 Classifier construction 

After performing feature extraction of network flow data, every network connection record 
can be denoted by a numerical feature vector and a class label can be assigned to the record, 
i.e., 

 

For the extracted features of audit data such as KDD99, when labels were assigned to each 
data record, the classifier construction problem can be solved by applying various 
supervised learning algorithms such as neural networks, decision trees, etc. However, the 
classification precision of most existing methods needs to be improved further since it is 
very difficult to detect lots of new attacks by only training on limited audit data. Using 
anomaly detection strategy can detect novel attacks but the false alarm rate is usually very 
high since to model normal patterns very well is also hard. Thus, the classifier construction in 
IDSs remains another technical challenge for intrusion detection based on machine learning. 

2.3 Sequential behavior prediction 

As discussed above, host-based IDSs are different from network-based IDSs in that the 
observed trajectories of processes or user shell commands in a host computer are sequential 
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patterns. For example, if we use system call traces as audit data, a trajectory of system calls 
can be modeled as a state transition sequence of short sequences. In the following Fig. 2, it is 
shown that every state is a short sequence of length 3 and different system call traces can 
form different state transitions, where a, b, and c are symbols for system calls in a host 
computer. 
 

 

Fig. 2. A sequential state transition model for host-based IDSs 

Therefore, the host-based intrusion detection problem can be considered as a sequential 
prediction problem since it is hard to determine a single short sequence of system calls to be 
normal and normal and there are intrinsic temporal relationships between sequences. 
Although we can still transform the above problem to a static classification problem by 
mapping the whole trace of a process to a feature vector [15], it has been shown that 
dynamic behavior modeling methods, such as Hidden Markov Models (HMMs) [4], are 
more suitable for this kind of intrusion detection problem. In the following, a host-based 
intrusion detection method will be studied based on reinforcement learning, where a 
Markov reward model is established for sequential pattern prediction and temporal 
difference (TD) algorithms [16] are used to realize high-precision prediction without many 
computational costs. At first, the popular HMMs for sequential behavior modeling will be 
introduced in the next section. 

3. Hidden Markov Models (HMMs) for sequential behavior modeling 

Due to the large volumes of audit data, to establish and modify detection models manually 
by human experts becomes more and more impractical. Therefore, machine learning and 
data mining methods have been widely considered as important techniques for adaptive 
intrusion detection, i.e., to construct and optimize detection models automatically. Previous 
work using supervised learning mainly focused on static behavior modeling methods based 
on pre-processed training data with class labels. However, training data labeling is one of 
the most important and difficult tasks since it is hard to extract signatures precisely even for 
known attacks and there are still increasing amounts of unknown attacks. In most of the 
previous works using static behavior modeling and supervised learning algorithms, every 
single sample of the training data was either labeled as normal or abnormal. However, the 
distinctions between normal and abnormal behaviors are usually very vague and improper 
labeling may limit or worsen the detection performance of supervised learning methods. 
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More importantly, for complex multi-stage attacks, it is very difficult or even impossible for 
static behavior models based on supervised learning to describe precisely the temporal 
relationships between sequential patterns. The above problems become the main reasons 
leading to the unsatisfactory performance of previous supervised learning approaches to 
adaptive IDSs, especially for complex sequential data. The recent works on applying HMMs 
[4] and other sequence learning methods [17] have been focused on dynamic behavior 
modeling for IDSs, which tried to explicitly estimate the probabilistic transition model of 
sequential patterns. For the purpose of comparisons, in the following, a brief introduction 
on HMM-based methods for intrusion detection will be given. 
As a popular sequential modeling approach, HMMs have been widely studied and applied 

in lots of areas such as speech recognition [18], protein structure prediction, etc. A discrete 

state, discrete time, first order hidden Markov model describes a stochastic, memory-less 

process. A full HMM can be specified as a tuple: λ = (N, M, A, B, π), where N is the number 

of states, M is the number of observable symbols, A is the state transition probability matrix 

which satisfies the Markov property: 

 (1) 

B is the observation probability distribution 

 (2) 

and π is the initial state distribution. The initial state distribution π satisfies: 

 
(3) 

 
(4) 

 

(5) 

For discrete state HMMs, we can let Q = {q1, q2, …,qM} denote the set of all states, O = {O1, O2, 
… ,ON} denote the set of all observation symbols. A typical trace of HMMs is shown in the 
following Fig.3, where Oi (i=1,2,…,T) are observation symbols and qi (i=1,2,…,T) are the 
corresponding states. 
 

 

Fig. 3. An HMM model 
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In practice, there might be a priori reasons to assign certain values to each of the initial state 
probabilities. For example, in some applications, one typically expects HMMs to start in a 
particular state. Thus, one can assign probability one to that state and zero to others. 
For HMMs, there are two important algorithms to compute the data likelihood when the 
model of an HMM is given. One algorithm is the Forward-Backward algorithm which 
calculates the incomplete data likelihood and the other is the Viterbi algorithm which 
calculates the complete data likelihood. Implicitly, both Forward-Backward and Viterbi find 
the most likely sequence of states, although differently defined. For detailed discussion on 
the two algorithms, please refer to [8]. 
Another important problem in HMMs is the model learning problem which is to estimate 
the model parameters when the model is unknown and only observation data can be 
obtained. The model learning problem is essential for HMMs to be applied in intrusion 
detection since a detection model must be constructed only by training data samples. For 
model learning in HMMs, the Expectation-Maximization (EM) algorithm is the most 
popular one which finds maximum a posteriori or maximum likelihood parameter estimate 
from incomplete data. The Baum-Welch algorithm is a particular form of EM for maximum 
likelihood parameter estimation in HMMs. For a detailed discussion on HMMs, the readers 
may refer to [18]. 
In intrusion detection based on HMMs, the Baum-Welch algorithm can be used to establish 
dynamic behavior models of normal data and after the learning process is completed, attack 
behaviors can be identified as deviations from the normal behavior models. 

4. Reinforcement learning for sequential behavior prediction 

4.1 Intrusion detection using Markov reward model and temporal-difference learning 

In HMM-based dynamic behavior modeling for intrusion detection, the probabilistic 
transition model of the IDS problem is explicitly estimated, which is computationally 
expensive when the number of states and the length of traces increase. In this Section, an 
alternative approach to adaptive intrusion detection will be presented. In the alternative 
approach, Markov state transition models are also employed but have an additional 
evaluative reward function, which is used to indicate the possibility of anomaly. Therefore, 
the intrusion detection problem can be tackled by learning prediction of value functions of a 
Markov reward process, which have been widely studied in the reinforcement learning 
community. To explain the principle of the RL-based approach to intrusion detection, the 
sequential behavior modeling problem in host-based IDSs using sequences of system calls is 
discussed in the following. 
For host-based intrusion detection, the audit data are usually obtained by collecting the 
execution trajectories of processes or user commands in a host computer. As discussed in 
[19], host-based IDSs can be realized by observing sequences of system calls, which are 
related to the operating systems in the host computer. The execution trajectories of different 
processes form different traces of system calls. Each trace is defined as the list of system calls 
issued by a single process from the beginning of its execution to the end. If a state at a time 
step is defined as m successive system calls and a sliding window with length l is defined, 
the traces of system calls can be transformed to a state transition sequences and different 
traces correspond to different state transition sequences. For example, if we select a 
sequence of 4 system calls as one state and the sliding length between sequences is 1, the 
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state transitions corresponding to a short trace tr={ open, read, mmap, mmap, open, read, 
mmap} are: 

 

Then the state transition sequence of the above trace tr is: 

 

As studied and verified in [4], dynamic behavior models for sequential pattern prediction 
are superior to static models when temporal relationships between feature patterns need to 
be described accurately. Different from the previous work in [4], where an HMM-based 
dynamic behavior modeling approach was studied, the following dynamic behavior 
modeling method for intrusion detection is based on learning prediction using Markov 
reward models. The method is focused on a learning prediction approach, which has been 
popularly studied in RL research [21-22], by introducing a Markov reward model of the IDS 
problem so that high accuracy and low computational costs can both be guaranteed [20]. 
Firstly, the Markov reward model for the IDS problem is introduced as follows. 
Markov reward processes are popular stochastic models for sequential modeling and 
decision making. A Markov reward process can be denoted as a tuple {S, R, P}, where S is 
the state space, R is the reward function, P is the state transition probability. Let  

{xt |t=0,1,2,…; xt ∈S} denote a trajectory generated by a Markov reward process. For each 
state transition from xt to xt+1, a scalar reward rt is defined. The state transition probabilities 
satisfy the following Markov property: 

 (6) 

The reward function of the Markov reward plays an important role for dynamic behavior 
modeling in intrusion detection problems. As described in the following Fig.2, in a Markov 
reward model for intrusion detection based on system calls, each state is defined as a short 
sequence of successive system calls and after each state transition, a scalar reward rt is given 
to indicate whether there is a possibility to be normal or attack behaviors. The design of the 
reward function can make use of available a priori information so that the anomaly 
probability of a whole state trajectory can be estimated based on the accumulated reward 
function. In one extreme case, we can indicate every state to be normal or abnormal with 
high confidence and the immediate reward of each state is designed as 

 

(7) 

The above extreme case is identical to transform the dynamic behavior modeling problem to 
a static pattern classification problem since we have class labels for every possible states, 
where the reward becomes a class label for every state. However, in fact, due to the 
sequential properties of system call data and the vague distinctions between normal traces 
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and abnormal traces, it is usually not appropriate or even impossible to tell whether an 
intermediate state to be normal or abnormal definitely. Moreover, even if it is reasonable to 
assign precise class labels to every states, it is also very hard to obtain precise class labels for 
large amounts of audit data. Therefore, it is more reasonable to develop dynamic behavior 
modeling approaches which not only incorporate the temporal properties of state transitions 
but also need little a priori knowledge for class labeling. An extreme case toward this 
direction is to provide evaluative signals to a whole state transition trajectory, i.e., only a 
whole state trajectory is indicated to be normal or abnormal while the intermediate states 
are not definitely labeled. For example, in the following Fig.4, the reward at the terminal 
state rT can be precisely given as: 

 

(8) 

For intermediate states s1,…, sT-1, a zero reward can be given to each state when there is no a 

priori knowledge about the anomaly of the states. However, in more general cases, the 

intermediate rewards can be designed based on available prior knowledge on some features 

or signatures of known attacks. 
 

 

Fig. 4. A Markov reward process for intrusion detection 

According to the above Markov reward process model, the detection of attack behaviors can 

be tackled by the sequential prediction of expected total rewards of a state in a trajectory 

since the reward signals, especially the terminal reward at the end of the trajectory provide 

information about whether the trajectory is normal or abnormal. Therefore, the intrusion 

detection problem becomes a value function prediction problem of a Markov reward 

process, which has been popularly studied by many researchers in the framework of 

reinforcement learning [21-24]. Among the learning prediction methods studied in RL, 

temporal difference learning (TD) is one of the most important one and in the following 

discussions, we will focus on the TD learning prediction algorithm for intrusion detection. 

Firstly, some basic definitions on value functions and dynamic programming are given as 

follows. 

In order to predict the expected total rewards received after a state trajectory starting from a 

state x, the value function of state x is defined as follows: 

 
(9) 

where x ∈ S , 0 < Ǆ ≤ 1 is the discount factor, rt is the reward received after state transition  
xt → xt+1 and E{.} is the expectation over the state transition probabilities. 
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According to the theory of dynamic programming, the above value function satisfies the 
following Bellman equation. 

 (10)

where Rt is the expected reward received after state transition xt → xt+1 . 
The aim of RL is to approximate the optimal or near-optimal policies from its experiences 
without knowing the parameters of this process. To estimate the optimal policy of an MDP, 
RL algorithms usually predict the value functions by observing data from state transitions 
and rewards. Thus, value function prediction of Markov reward models becomes a central 
problem in RL since optimal policies or optimal value functions can be obtained based on 
the estimation of value functions. However, in RL, learning prediction is more difficult that 
in supervised learning. As pointed out by Sutton [22], the prediction problems in supervised 
learning are single-step prediction problems while learning prediction in reinforcement 
learning belongs to multi-step prediction, which is to predict outcomes that depend on a 
future sequence of decisions. 
Until now, temporal difference learning or TD learning has been considered as one of the 
most efficient approaches to value function prediction without any a priori model 
information about Markov reward processes. Different from supervised learning for 
sequential prediction such as Monte Carlo estimation methods, TD learning is to update the 
estimations based on the differences between two temporally successive estimations, which 
constitutes the main ideas of a popular class of TD learning algorithms called TD( ǌ ) [22]. In 
TD( ǌ ), there are two basic mechanisms which are the temporal difference and the eligibility 
trace, respectively. Temporal differences are defined as the differences between two 
successive estimations and have the following form 

 
(11)

where xt+1 is the successive state of xt, V# (x) denotes the estimate of value function V(x) and 

rt is the reward received after the state transition from xt to xt+1. 
As discussed in [22], the eligibility trace can be viewed as an algebraic trick to improve 
learning efficiency without recording all the data of a multi-step prediction process. This 
trick is originated from the idea of using a truncated reward sum of Markov reward 
processes. In TD learning with eligibility traces, an n-step truncated return is defined as 

 
(12)

For an absorbing Markov reward process whose length is T, the weighted average of 
truncated returns is 

 

(13)

where 0 ≤ λ ≤1 is a decaying factor and 

 (14)
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RT is the Monte-Carlo return at the terminal state. In each step of TD( ǌ ), the update rule of 
value function estimation is determined by the weighted average of truncated returns 
defined above, i.e., 

 
(15)

where αt is a learning factor. 
The update equation (25) can be used only after the whole trajectory of the Markov reward 
process is observed. To realize incremental or online learning, eligibility traces are defined 
for each state as follows: 

 

(16)

The online TD( ǌ ) update rule with eligibility traces is 

 
(17)

where ǅt is the temporal difference at time step t, which is defined in (21) and z0(s)=0 for all s. 
Based on the above TD learning prediction principle, the intrusion detection problem can be 
solved by a model learning process and an online detection process. In the model learning 
process, the value functions are estimated based on the online TD( ǌ ) update rules and in 
the detection process, the estimated value functions are used to determine whether a 
sequence of states belongs to a normal trajectory or an abnormal trajectory. For the reward 
function defined in (18), when an appropriate threshold Ǎ is selected, the detection rules of 
the IDS can be designed as follows: 

If V (x) > Ǎ , then raise alarms for attacks, 

Else there are no alarms. 

Since the state space of a Markov reward process is usually large or infinite in practice, 
function approximators such as neural networks are commonly used to approximate the 
value function. Among the existing TD learning prediction methods, TD( ǌ ) algorithms with 
linear function approximators are the most popular and well-studied ones, which can be 
called linear TD( ǌ ) algorithms. 
In linear TD( ǌ ), consider a general linear function approximator with a fixed basis function 
vector 

 (18)

The estimated value function can be denoted as 

 
(19)

where Wt =(w1, w2,…,wn)T is the weight vector. 
The corresponding incremental weight update rule is 
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(20)

where the eligibility trace vector  is defined as 

 
(21)

In [19], the above linear TD( ǌ ) algorithm is proved to converge with probability 1 under 
certain assumptions and the limit of convergence W* is also derived, which satisfies the 
following equation 

 (22)

where Xt =(xt,xt+1,zt+1) (t=1,2,…) form a Markov process, E0[· ] stands for the expectation with 
respect to the unique invariant distribution of {Xt}, and A(Xt), b(Xt) are defined as 

 
(23)

 (24)

Then, based on a set of observation data {(xt, rt)} (t=1,2,…,T), a least-squares solution to the 
above problem can be obtained as [24]: 

 

(25)

4.2 Kernel-based RL for sequential behavior learning 

After introducing the above Markov reward model, the intrusion detection problem using 

system call traces can be solved by a class of reinforcement learning algorithms called 

temporal-difference (TD) learning. The aim of TD learning is to predict the state value 

functions of a Markov reward process by updating the value function estimations based on 

the differences between temporally successive predictions rather than using errors between 

the real values and the predicted ones. And it has been verified that TD learning is more 

efficient than supervised learning in multi-step prediction problems [22]. 

Until now, TD learning algorithms with linear function approximators have been widely 

studied in the literature [23-24]. In [24], a linear TD learning algorithm was applied to host-

based intrusion detection using sequences of system calls and very promising results have 

been obtained. Nevertheless, the approximation ability of linear function approximators is 

limited and the performance of linear TD learning is greatly influenced by the selection of 

linear basis functions. In the following, a sparse kernel-based LS-TD(λ) algorithm will be 

presented for value function prediction in host-based IDSs [25]. The sparse kernel-based LS-

TD algorithm was recently developed in [26] and it was demonstrated that by realizing 

least-squares TD learning in a kernel-induced high-dimensional feature space, nonlinear 

value function estimation can be implicitly implemented by a linear form of computation 
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with high approximation accuracy. Therefore, by making use of the kernel-based LS-TD 

learning algorithm, the predictions of anomaly probabilities for intrusion detection will have 

higher precision and it will be more beneficial to realize high-performance IDSs based on 

dynamic behavior modeling. 

In the kernel-based LS-TD learning method [26], the same solution to the following LS-TD 

problem was considered: 

 
(26)

where the corresponding value functions are estimated by 

 

Using the average value of observations as the estimation of expectation E0[· ], equation (26) 

can be expressed as follows: 

 

(27)

Based on the idea of kernel methods, a high-dimensional nonlinear feature mapping can be 

constructed by selecting a Mercer kernel function k(x1, x2) in a reproducing kernel Hilbert 

space (RKHS). In the following, the nonlinear feature mapping based on the kernel function 

k(.,.) is also denoted by φ(s) and according to the Mercer Theorem [27], the inner product of 

two feature vectors is computed by 

 (28)

Due to the properties of RKHS [27], the weight vector W can be represented by the weighted 

sum of the state feature vectors: 

 

(29)

where xi (i = 1,2,..., N) are the observed states, N is the total number of states and  

α = [α1, α2 ,...,αN ]T are the corresponding coefficients, and the matrix notation of the feature 
vectors is denoted as 

 (30)

For a state sequence xi (i = 1, 2,..., N) , let the corresponding kernel matrix K be denoted as 

K=(kij) N×N , where kij=k(xi, xj). 

 
(31)

By substituting (28), (29) and (30) into (27), and multiplying the two sides of (27) with 
T

N
Φ we can get 
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(32)

 (33)

 

(34)

In (34), the values of ǃi (i=1,2,…,N-1) are determined by the following rule: when state xi-1 is 

not an absorbing state, ǃi is equal to -1, otherwise, ǃi is set to zero. 

As discussed in [26], by using the techniques of generalized inverse matrix in [28], the 

kernel-based LS-TD solution to (26) is as follows: 

 (35)

where (.)+ denotes the generalized inverse of a matrix. 

One problem remained for the above kernel-based LS-TD learning algorithm is that the 

dimension of the kernel-based LS-TD solution is equal to the number of state transition 

samples, which will cause huge computational costs when the number of observation data is 

large. To make the above algorithm be practical, one key problem is to decrease the 

dimension of kernel matrix K as well as the dimensional of α. The problem has been studied 

in [29] by employing an approximately linear dependence (ALD) analysis method [30] for 

the sparsification of kernel matrix K. 

The main idea of ALD-based sparcification is to represent the feature vectors of the original 

data samples by an approximately linearly independent subset of feature vectors, which is 

to compute the following optimization problem 

 

(36)

During the sparsification procedure, a data dictionary is incrementally constructed and 

every new data sample xt is tested by compute the solution ǅt of (36). Only if ǅt is greater than 

a predefined threshold, the tested data sample xt will be added to the dictionary. For 

detailed discussion of the sparsification process, please refer to [29] and [30]. After the 

sparsification procedure, a data dictionary DN with reduced number of feature vectors will 

be obtained and the approximated state value function can be represented as: 

 

(37)

where n(DN) is the size of the dictionary. 

www.intechopen.com



 Machine Learning 

 

416 

When the above learning and sparcification process is completed, a value function model of 

the IDS problem can be obtained. And the accumulated anomaly probability of a state 

sequence Sn={x1, x2,…xn} can be computed as 

 

(38)

By selecting an appropriate threshold Ǎ, the detection output of the adaptive IDS can be 
simply determined as follows: 

 

4.3 Performance evaluations 

Generally speaking, previous works on machine learning methods for adaptive intrusion 

detection can be mainly classified into four categories, i.e., supervised learning methods, 

unsupervised learning methods, semi-supervised methods and statistical modeling 

methods. Compared with the supervised learning methods in intrusion detection, the 

proposed model does not require precise labeling of every observed feature, which is a 

difficult task and may usually lead to the poor performance of supervised methods, 

especially for complex sequential attacks. For unsupervised learning algorithms in intrusion 

detection, e.g., SOM, clustering, due to the lack of prior information, the performance of 

IDSs can not be optimized adequately [12]. 

The proposed RL-based dynamic behavior modeling approach for intrusion detection 

estimates the anomaly probability of states based on the learning prediction of state value 

functions. Therefore, it can be applied to detect complex attack behaviors with complex 

sequential patterns. The computational complexity of TD learning algorithms is linear with 

respect to the number k of state features and the length m of traces, i.e., it has time 

complexity of O(km), which is lower than the training algorithm for HMMs, which runs in 

time O(nm2), where n is the number of states in the HMM and m is the size of the trace. 

Furthermore, since TD learning prediction methods using function approximators are 

commonly used, the number k of state features can become much smaller than n and the 

computational efficiency will be further improved. 

For the RL-based approach, the most related methods are based on Markov chain modeling 
or Hidden Markov models (HMMs), which are anomaly detection techniques that aim to 
establish the probabilistic structure model of the normal data sequences explicitly. However, 
the Markov reward model and the TD prediction method are based on hybrid modeling 
strategy where the intrusion data can be combined with normal data to train the detection 
model. Moreover, the RL-based method only implicitly constructs the probabilistic model 
and the detection of anomalies is based on the estimated value functions. In [31], the 
robustness of Markov chain modeling techniques was studied and it was shown that when 
explicitly estimating the probabilistic structure of the Markov chain model for normal data, 
the detection accuracy was very sensitive to the noise of data, i.e., when the intrusion data 
were mixed with normal data, the performance of the Markov chain model would become 
worse. Nevertheless, in our approach, the detection accuracy is not influenced by the mixing 
of normal and abnormal data due to the hybrid modeling strategy. 

www.intechopen.com



Machine Learning for Sequential Behavior Modeling and Prediction 

 

417 

To compare the performance between the previous HMM-based approach and the RL-based 

approach, experiments on host-based intrusion detection using system calls were 

conducted. In the experiments, two types of data sets were used, which include system call 

traces from the “live” lpr and the Sendmail programs. Table 1 shows some of the details of 

the data, which include two kinds of attack data and corresponding normal data. All of 

these data sets are publicly available at the website of University of New Mexico [32]. 

In the data sets, each trace is a sequence of system calls generated by a single process from 

the beginning of its execution to the end. Since the traces were generated by different 

programs under different environments, the number of system calls per trace varies widely. 

In the MIT environment, lpr was traced by running the program on 77 different hosts, each 

running SunOS, for two weeks, to obtain traces of a total of 2766 print jobs. For detailed 

discussion of the properties of the data sets, please refer to [32-33]. 

The two types of system call traces were divided into two parts. One part is for model 

training and threshold determination and the other part is for performance evaluation. 

Table 1 shows the numbers of normal and attack traces for training and testing. As can be 

seen in the table, the numbers of testing traces are usually larger than those of testing 

traces. 

 
 

 
 

Table 1. Experimental data for host-based IDS 

During the threshold determination process, the same data sets were used as the training 

process, i.e., the training data sets and the data sets for threshold determination are the 

same. For performance testing, the data sets are different from those in model training and 

their sizes are usually larger than the training data. In the testing stage, two criterions for 

performance evaluations were used, which are the detection rate Dr and the false alarm or 

false positive rate Fp, and they are computed as follows: 

 

(36)
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(37)

where nd is the number of abnormal traces that have been correctly identified by the 

detection model and na is the total number of abnormal traces, Na is the number of normal 

states that have been incorrectly identified as anomaly by the detection model, and N is the 

total number of normal states. In the computation of false alarm rates, we use the same ideas 

discussed in [4], where every possible false alarms during a long state traces are all counted 

and the total sum of false alarms is divided by the number of all states in traces. Therefore, 

the false positives were measured differently from the detection rates or true positives. To 

detect an intrusion, it is only required that the anomaly probabilities exceed a preset 

threshold at some point during the intrusion. However, making a single decision as to 

whether a normal trace is abnormal or not is not sufficient, especially for very long traces. 

For example, if a program runs for several days or more, each time that it is flagged as 

anomalous must be counted separately. As pointed out in [17], the simplest way to measure 

this is to count all the individual decisions. Then, the false-positive rate is selected as the 

percentage of decisions in which normal data were detected as anomalous. 

In the experiments, the TD learning prediction method was applied to the above data sets. 

Every state in the Markov reward model has a system-call sequence length of 6, which has 

been widely employed in previous works. The reward function is defined by (18). A linear 

function approximator, which is a polynomial function of the observation states and has a 

dimension of 24, was used as the value function approximator. To compare the performance 

of TD learning prediction and previous approaches, the experimental results in [4], where 

HMM-based dynamic behavior modeling methods were applied to the same data sets, are 

also shown in the following Table 2. 

 
 

 
 
 

Table 2. Performance comparisons between TD and HMM methods 

To compare the performance between the kernel LS-TD approach with the linear LS-TD [16] 

and the HMM-based approach [4], experiments on host-based intrusion detection using 

system calls were conducted. In the experiments, the data set of system call traces generated 

from the Sendmail program was used. The system call traces were divided into two parts. 
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One part is for model training and threshold determination and the other part is for 

performance evaluation. The normal trace numbers for training and testing are 13 and 67, 

respectively. The numbers of attack traces used for training and testing are 5 and 7. The total 

number of system calls in the data set is 223733. During the threshold determination 

process, the same traces were used as the training process. The testing data are different 

from those in model training and their sizes are usually larger than the training data. 

In the learning prediction experiments for intrusion detection, the kernel LS-TD algorithm 

and previous linear TD(λ) algorithms, i.e., LS-TD(λ), are all implemented for the learning 

prediction task. In the kernel-based LS-TD algorithm, a radius basis function (RBF) kernel is 

selected and its width parameter is set to 0.8 in all the experiments. A threshold parameter 

ǅ=0.001 is selected for the sparsification procedure of the kernel-based LS-TD learning 

algorithm. The LS-TD(λ) algorithm uses a linear function approximator, which is a 

polynomial function of the observation states and has a dimension of 24. 

 
 

 
 
* The false alarm rates were only computed for trace numbers, not for single state 
 

Table 3. Performance comparisons between different methods 

The experimental results are shown in Table 3. It can be seen from the results that both of 

the two RL methods, i.e., the kernel LS-TD and linear LS-TD, have 100% detection rates and 

the kernel-based LS-TD approach has better performance in false alarm rates than the linear 

LS-TD method. The main reason is due to the learning prediction accuracy of kernel-based 

LS-TD for value function estimation. It is also illustrated that the two TD learning prediction 

methods have much better performance than the previous HMM-based method. Therefore, 

the applications of kernel-based reinforcement learning methods, which are based on the 

Markov reward model, will be very promising to realize dynamic behavior modeling and 

prediction for complex multi-stage attacks so that the performance of IDSs can be efficiently 

optimized. 

5. Conclusions 

Although in recent years, there are many research works on applying machine learning 

and statistical modeling methods to intrusion detection problems, the sequential 

modeling problem in intelligent intrusion detection has not been well solved yet. In this 

Chapter, the TD learning prediction method is introduced to construct detection models 

and improve the performance of IDSs only by simplified labeling schemes using 
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evaluative signals or feedbacks for sequential training data. It is illustrated that compared 

with previous anomaly detection approaches using machine learning, the TD learning and 

prediction method can obtain comparable or even better detection accuracies for complex 

sequential attacks. More importantly, the proposed TD learning and prediction approach 

provides an efficient anomaly detection technique with simplified labeling procedure and 

reduced computational complexity. Future work may need to be focused on the extension 

of the proposed method to more general intrusion detection systems with real-time 

applications. 
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