
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

20

Machine Learning for Sequential Behavior
Modeling and Prediction

Xin Xu
Institute of Automation, National University of Defense Technology,

Changsha, 410073, China

1. Introduction

In the information era, as computer networks and related applications become more and
more popular, security problems are more and more serious in global information
infrastructure. It was reported that in the past two years, large amounts of network attacks
and computer viruses caused great damages to global economy and the potential threats to
the global information infrastructure have increased a lot. To defend various cyber attacks
and computer viruses, lots of computer security techniques have been studied, which
include cryptography, firewalls and intrusion detection, etc. As an important computer
security technique, intrusion detection [1,2] has been considered to be more promising for
defending complex computer attacks than other techniques such as cryptography, firewalls,
etc. The aim of intrusion detection is to find cyber attacks or non-permitted deviations of the
characteristic properties in a computer system or monitored networks. Thus, one of the
central problems for intrusion detection systems (IDSs) is to build effective behavior models
or patterns to distinguish normal behaviors from abnormal behaviors by observing collected
audit data. To solve this problem, earlier IDSs usually rely on security experts to analyze the
audit data and construct intrusion detection rules manually [2]. However, since the amount
of audit data, including network data, process execution traces and user command data, etc.,
increases vary fast, it becomes a time-consuming, tedious and even impossible work for
human experts to analyze dynamic, huge volumes of audit data and extract attack
signatures or detection rules. Furthermore, detection rules constructed by human experts
are usually based on fixed features or signatures of existing attacks, so it will be very
difficult for these rules to detect deformed or even completely new attacks.
According to the differences in the monitored data, IDSs can be mainly classified into two
categories, i.e., network-based intrusion detection and host-based intrusion detection.
Network-based intrusion detection observes data from network packets and extracts various
features from them, which usually include connection features, traffic features, and content
features. A systematic discussion on feature representation in network-based intrusion
detection can be found in [3]. For host-based intrusion detection, various observation data
from the corresponding operation systems are collected, which mainly include system call
data and shell command data [4], etc. Despite of having different observation data, both
host-based and network-based intrusion detection need to improve the detection accuracy
for large volumes and variability of normal and attack behaviors. Aiming at this problem, O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Machine Learning, Book edited by: Abdelhamid Mellouk and Abdennacer Chebira,
 ISBN 978-3-902613-56-1, pp. 422, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Machine Learning

402

lots of research work has been devoted to develop intrusion detection systems (IDSs) using
various artificial intelligence (AI) methods and tools [3-5]. Thus, the motivations for
applying AI techniques in IDSs are due to large amounts of dynamic behaviors and the lack
of a priori knowledge for unknown attacks. How to establish appropriate behavior models
has been a central problem in the development of IDSs since the distinctions between
normal behaviors and computer attacks are usually very vague. In earlier research on IDSs,
it was very popular to separately construct behavior models either for normal usages or
attacks. To model intrusion behaviors alone is called misuse detection and anomaly
detection refers to establish profiles of normal usages. In misuse detection, behavior patterns
or models of known attacks are constructed and alarms are raised when the patterns of
observation data match the attack models. On the other hand, anomaly detection only
models the patterns of normal behaviors and detects any possible attacks as deviations from
the normal behavior model. Until now, although there have been many advances in misuse
detection and anomaly detection, some significant challenges still exist to meet the
requirements of defending computer systems from attacks with increasing complexity,
intelligence, and variability. For misuse detection, the inability of detecting new attacks is its
inevitable weakness and it is very hard to improve the performance of pure misuse
detection systems for the sake of increasing amounts of novel attacks. Although anomaly
detection has the ability of detecting new attacks, it usually suffers from high rates of false
alarms since it is very difficult to obtain a complete model of normal behaviors.
To solve the above problems in IDSs, machine learning and data mining methods for

intrusion detection have received a lot of research interests in recent years [4-10]. One

motivation for applying machine learning and data mining techniques in IDSs is to

construct and optimize detection models automatically, which will eliminate the tedious

work of human experts for data analysis and model building in earlier IDSs. To detect novel

attacks, several adaptive anomaly detection methods were proposed by employing data

mining methods based on statistics [7], or clustering techniques [10]. Recently, there have

been several efforts in designing anomaly detection algorithms using supervised learning

algorithms, such as neural networks [8], support vector machines [11], etc. In addition to

supervised or inductive learning methods for misuse and anomaly detection, another

approach to adaptive intrusion detection is to use unsupervised learning methods. Unlike

supervised learning methods, where detection models are constructed by careful labeling of

normal behaviors, unsupervised anomaly detection tries to detect anomalous behaviors

with very little a priori knowledge about the training data. However, as studied in [12], the

performance of pure unsupervised anomaly detection approaches is usually unsatisfactory,

e.g., it was demonstrated in [12] that supervised learning methods significantly outperform

the unsupervised ones if the test data contains no unknown attacks.

Despite of many advances that have been achieved, existing IDSs still have some difficulties
in improving their performance to meet the needs of detecting increasing types of attacks in
high-speed networks. One difficulty is to improve detection abilities for complex or new
attacks without increasing false alarms. Since misuse IDSs employ signatures of known
attacks, it is hard for them to detect deformed attacks, notwithstanding completely new
attacks. On the other hand, although anomaly detection can detect new types of attacks by
constructing a model of normal behaviors, the false alarm rates in anomaly-based IDSs are
usually high. How to increase the detecting ability while maintaining low false alarms is still
an open problem of IDS research.

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

403

In addition to the ability of realizing automatic model construction for misuse detection and
anomaly detection, another promising application of machine learning methods in intrusion
detection is to build dynamic behavior modeling frameworks which can combine the
advantages of misuse detection and anomaly detection while eliminate the weakness of
both. Many previous results on misuse detection and anomaly detection were usually based
on static behavior modeling, i.e., normal behaviors or attack behaviors were modeled as
static feature patterns and the intrusion detection problem was transformed to a pattern
matching or classification procedure. However, dynamic behavior modeling is different
from static behavior modeling approaches in two aspects. One aspect is that the
relationships between temporal features are explicitly modeled in dynamic modeling
approaches while static modeling only considers time independent features. The other
aspect is that probabilistic frameworks are usually employed in dynamic behavior models
while most static models make use of deterministic decision functions. Furthermore, many
complex attacks are composed of multiple stages of behaviors, for example, a remote-to-
local (R2L) attack commonly performs probe attacks to find target computers with
vulnerabilities at first, and later realizes various buffer overflow attacks by utilizing the
vulnerabilities in the target host computers. Therefore, sequential modeling approaches will
be more beneficial to precisely describe the properties of complex multi-stage attacks. In [4],
dynamic behavior modeling and static behavior modeling approaches were discussed and
compared in detail, where a Hidden Markov Model was proposed to establish dynamic
behavior models of audit data in host computers including system call data and shell
command data. It was demonstrated in [4] that dynamic behavior modeling is more suitable
for sequential data patterns such as system call data of host computers. However, the main
difficulty for applying HMMs in real-time IDS applications is that the computational costs of
HMM training and testing increase very fast with the number of states and the length of
observation traces.
In this Chapter, some recently developed machine learning techniques for sequential
behavior modeling and prediction are studied, where adaptive intrusion detection in
computer systems is used as the application case. At first, a general framework for applying
machine learning to computer intrusion detection is analyzed. Then, reinforcement learning
algorithms based on Markov reward models as well as previous approaches using Hidden
Markov Models (HMMs) are studied for sequential behavior modeling and prediction in
adaptive intrusion detection. At last, the performance of different methods are evaluated
and compared.

2. A general framework of ML applications in intrusion detection

In [9], based on a comprehensive analysis for the current research challenges in intrusion
detection, a framework for adaptive intrusion detection using machine learning techniques
was presented, which is shown in Fig.1. The framework is composed of three main parts.
The first one is for data acquisition and feature extraction. Data acquisition is realized by a
data sensing module that observes network flow data or process execution trajectories from
network or host computers. After pre-processing of the raw data, a feature extraction
module is used to convert the raw data into feature vectors that can be processed by
machine learning algorithms and an extraction model based on unsupervised learning can
be employed to extract more useful features or reduce the dimensionality of feature vectors.
This process for automated feature extraction is a component of the machine learning part in

www.intechopen.com

 Machine Learning

404

the framework. In the machine learning part, audit data for training are stored in databases
and they can be dynamically updated by human analysts or by machine learning
algorithms. The third part in the framework depicted in Fig.1 is for real-time detection,
which is to make use of the detection models as well as the extracted feature vectors to
determine whether an observed pattern or a sequence of patterns is normal or abnormal.
To automatically construct detection models from the audit data, various machine learning
methods can be applied, which include unsupervised learning, supervised learning and
reinforcement learning. In addition, there are three perspectives of research challenges for
intrusion detection, which include feature extraction, classifier construction and sequential
behavior prediction. Although various hybrid approaches may be employed, it was
illustrated that these three perspectives of research challenges are mainly suitable for
machine learning methods using unsupervised, supervised and reinforcement learning
algorithms, respectively. In contrast, in the previous adaptive IDS framework in [13], feature
selection and classifier construction of IDSs were mainly tackled by traditional association
data mining methods such as the Apriori algorithm.

2.1 Feature extraction

As illustrated in Fig.1, feature extraction is the basis for high-performance intrusion

detection using data mining since the detection models have to be optimized based on the

selection of feature spaces. If the features are improperly selected, the ultimate performance

of detection models will be influenced a lot. This problem has been studied during the early

work of W.K. Lee and his research results lead to the benchmark dataset KDD99 [13-14],

where a 41-dimensional feature vector was constructed for each network connection. The

feature extraction method in KDD99 made use of various data mining techniques to identify

some of the important features for detecting anomalous connections. The features employed

in KDD99 can serve as the basis of further feature extraction.

In KDD99, there are 494,021 records in the 10% training data set and the number of records

in the testing data set is about five million, with a 10 percent testing subset of 311028

records. The data set contains a total of 22 different attack types. There are 41 features for

each connection record that have either discrete values or continuous values. The 41-

dimensional feature can be divided into three groups. The first group of features is called

basic or intrinsic features of a network connection, which include the duration, prototype,

service, number of bytes from source IP addresses or from destination IP addresses, and

some flags in TCP connections. The second group of features in KDD99 is composed of the

content features of network connections and the third group is composed of the statistical

features that are computed either by a time window or a window of certain kind of

connections.

The feature extraction method in the KDD99 dataset has been widely used as a standard

feature construction method for network-based intrusion detection. However, in the later

work of other researchers, it was found that the 41-dimensional features are not the best

ones for intrusion detection and the performance of IDSs may be further improved by

studying new feature extraction or dimension reduction methods [11]. In [11], a

dimension reduction method based on principal component analysis (PCA) was

developed so that the classification speed of IDSs can be improved a lot without much

loss of detection precision.

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

405

Fig. 1. A framework for adaptive IDSs based on machine learning

2.2 Classifier construction

After performing feature extraction of network flow data, every network connection record
can be denoted by a numerical feature vector and a class label can be assigned to the record,
i.e.,

For the extracted features of audit data such as KDD99, when labels were assigned to each
data record, the classifier construction problem can be solved by applying various
supervised learning algorithms such as neural networks, decision trees, etc. However, the
classification precision of most existing methods needs to be improved further since it is
very difficult to detect lots of new attacks by only training on limited audit data. Using
anomaly detection strategy can detect novel attacks but the false alarm rate is usually very
high since to model normal patterns very well is also hard. Thus, the classifier construction in
IDSs remains another technical challenge for intrusion detection based on machine learning.

2.3 Sequential behavior prediction

As discussed above, host-based IDSs are different from network-based IDSs in that the
observed trajectories of processes or user shell commands in a host computer are sequential

www.intechopen.com

 Machine Learning

406

patterns. For example, if we use system call traces as audit data, a trajectory of system calls
can be modeled as a state transition sequence of short sequences. In the following Fig. 2, it is
shown that every state is a short sequence of length 3 and different system call traces can
form different state transitions, where a, b, and c are symbols for system calls in a host
computer.

Fig. 2. A sequential state transition model for host-based IDSs

Therefore, the host-based intrusion detection problem can be considered as a sequential
prediction problem since it is hard to determine a single short sequence of system calls to be
normal and normal and there are intrinsic temporal relationships between sequences.
Although we can still transform the above problem to a static classification problem by
mapping the whole trace of a process to a feature vector [15], it has been shown that
dynamic behavior modeling methods, such as Hidden Markov Models (HMMs) [4], are
more suitable for this kind of intrusion detection problem. In the following, a host-based
intrusion detection method will be studied based on reinforcement learning, where a
Markov reward model is established for sequential pattern prediction and temporal
difference (TD) algorithms [16] are used to realize high-precision prediction without many
computational costs. At first, the popular HMMs for sequential behavior modeling will be
introduced in the next section.

3. Hidden Markov Models (HMMs) for sequential behavior modeling

Due to the large volumes of audit data, to establish and modify detection models manually
by human experts becomes more and more impractical. Therefore, machine learning and
data mining methods have been widely considered as important techniques for adaptive
intrusion detection, i.e., to construct and optimize detection models automatically. Previous
work using supervised learning mainly focused on static behavior modeling methods based
on pre-processed training data with class labels. However, training data labeling is one of
the most important and difficult tasks since it is hard to extract signatures precisely even for
known attacks and there are still increasing amounts of unknown attacks. In most of the
previous works using static behavior modeling and supervised learning algorithms, every
single sample of the training data was either labeled as normal or abnormal. However, the
distinctions between normal and abnormal behaviors are usually very vague and improper
labeling may limit or worsen the detection performance of supervised learning methods.

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

407

More importantly, for complex multi-stage attacks, it is very difficult or even impossible for
static behavior models based on supervised learning to describe precisely the temporal
relationships between sequential patterns. The above problems become the main reasons
leading to the unsatisfactory performance of previous supervised learning approaches to
adaptive IDSs, especially for complex sequential data. The recent works on applying HMMs
[4] and other sequence learning methods [17] have been focused on dynamic behavior
modeling for IDSs, which tried to explicitly estimate the probabilistic transition model of
sequential patterns. For the purpose of comparisons, in the following, a brief introduction
on HMM-based methods for intrusion detection will be given.
As a popular sequential modeling approach, HMMs have been widely studied and applied

in lots of areas such as speech recognition [18], protein structure prediction, etc. A discrete

state, discrete time, first order hidden Markov model describes a stochastic, memory-less

process. A full HMM can be specified as a tuple: λ = (N, M, A, B, π), where N is the number

of states, M is the number of observable symbols, A is the state transition probability matrix

which satisfies the Markov property:

 (1)

B is the observation probability distribution

 (2)

and π is the initial state distribution. The initial state distribution π satisfies:

(3)

(4)

(5)

For discrete state HMMs, we can let Q = {q1, q2, …,qM} denote the set of all states, O = {O1, O2,
… ,ON} denote the set of all observation symbols. A typical trace of HMMs is shown in the
following Fig.3, where Oi (i=1,2,…,T) are observation symbols and qi (i=1,2,…,T) are the
corresponding states.

Fig. 3. An HMM model

www.intechopen.com

 Machine Learning

408

In practice, there might be a priori reasons to assign certain values to each of the initial state
probabilities. For example, in some applications, one typically expects HMMs to start in a
particular state. Thus, one can assign probability one to that state and zero to others.
For HMMs, there are two important algorithms to compute the data likelihood when the
model of an HMM is given. One algorithm is the Forward-Backward algorithm which
calculates the incomplete data likelihood and the other is the Viterbi algorithm which
calculates the complete data likelihood. Implicitly, both Forward-Backward and Viterbi find
the most likely sequence of states, although differently defined. For detailed discussion on
the two algorithms, please refer to [8].
Another important problem in HMMs is the model learning problem which is to estimate
the model parameters when the model is unknown and only observation data can be
obtained. The model learning problem is essential for HMMs to be applied in intrusion
detection since a detection model must be constructed only by training data samples. For
model learning in HMMs, the Expectation-Maximization (EM) algorithm is the most
popular one which finds maximum a posteriori or maximum likelihood parameter estimate
from incomplete data. The Baum-Welch algorithm is a particular form of EM for maximum
likelihood parameter estimation in HMMs. For a detailed discussion on HMMs, the readers
may refer to [18].
In intrusion detection based on HMMs, the Baum-Welch algorithm can be used to establish
dynamic behavior models of normal data and after the learning process is completed, attack
behaviors can be identified as deviations from the normal behavior models.

4. Reinforcement learning for sequential behavior prediction

4.1 Intrusion detection using Markov reward model and temporal-difference learning

In HMM-based dynamic behavior modeling for intrusion detection, the probabilistic
transition model of the IDS problem is explicitly estimated, which is computationally
expensive when the number of states and the length of traces increase. In this Section, an
alternative approach to adaptive intrusion detection will be presented. In the alternative
approach, Markov state transition models are also employed but have an additional
evaluative reward function, which is used to indicate the possibility of anomaly. Therefore,
the intrusion detection problem can be tackled by learning prediction of value functions of a
Markov reward process, which have been widely studied in the reinforcement learning
community. To explain the principle of the RL-based approach to intrusion detection, the
sequential behavior modeling problem in host-based IDSs using sequences of system calls is
discussed in the following.
For host-based intrusion detection, the audit data are usually obtained by collecting the
execution trajectories of processes or user commands in a host computer. As discussed in
[19], host-based IDSs can be realized by observing sequences of system calls, which are
related to the operating systems in the host computer. The execution trajectories of different
processes form different traces of system calls. Each trace is defined as the list of system calls
issued by a single process from the beginning of its execution to the end. If a state at a time
step is defined as m successive system calls and a sliding window with length l is defined,
the traces of system calls can be transformed to a state transition sequences and different
traces correspond to different state transition sequences. For example, if we select a
sequence of 4 system calls as one state and the sliding length between sequences is 1, the

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

409

state transitions corresponding to a short trace tr={ open, read, mmap, mmap, open, read,
mmap} are:

Then the state transition sequence of the above trace tr is:

As studied and verified in [4], dynamic behavior models for sequential pattern prediction
are superior to static models when temporal relationships between feature patterns need to
be described accurately. Different from the previous work in [4], where an HMM-based
dynamic behavior modeling approach was studied, the following dynamic behavior
modeling method for intrusion detection is based on learning prediction using Markov
reward models. The method is focused on a learning prediction approach, which has been
popularly studied in RL research [21-22], by introducing a Markov reward model of the IDS
problem so that high accuracy and low computational costs can both be guaranteed [20].
Firstly, the Markov reward model for the IDS problem is introduced as follows.
Markov reward processes are popular stochastic models for sequential modeling and
decision making. A Markov reward process can be denoted as a tuple {S, R, P}, where S is
the state space, R is the reward function, P is the state transition probability. Let

{xt |t=0,1,2,…; xt ∈S} denote a trajectory generated by a Markov reward process. For each
state transition from xt to xt+1, a scalar reward rt is defined. The state transition probabilities
satisfy the following Markov property:

 (6)

The reward function of the Markov reward plays an important role for dynamic behavior
modeling in intrusion detection problems. As described in the following Fig.2, in a Markov
reward model for intrusion detection based on system calls, each state is defined as a short
sequence of successive system calls and after each state transition, a scalar reward rt is given
to indicate whether there is a possibility to be normal or attack behaviors. The design of the
reward function can make use of available a priori information so that the anomaly
probability of a whole state trajectory can be estimated based on the accumulated reward
function. In one extreme case, we can indicate every state to be normal or abnormal with
high confidence and the immediate reward of each state is designed as

(7)

The above extreme case is identical to transform the dynamic behavior modeling problem to
a static pattern classification problem since we have class labels for every possible states,
where the reward becomes a class label for every state. However, in fact, due to the
sequential properties of system call data and the vague distinctions between normal traces

www.intechopen.com

 Machine Learning

410

and abnormal traces, it is usually not appropriate or even impossible to tell whether an
intermediate state to be normal or abnormal definitely. Moreover, even if it is reasonable to
assign precise class labels to every states, it is also very hard to obtain precise class labels for
large amounts of audit data. Therefore, it is more reasonable to develop dynamic behavior
modeling approaches which not only incorporate the temporal properties of state transitions
but also need little a priori knowledge for class labeling. An extreme case toward this
direction is to provide evaluative signals to a whole state transition trajectory, i.e., only a
whole state trajectory is indicated to be normal or abnormal while the intermediate states
are not definitely labeled. For example, in the following Fig.4, the reward at the terminal
state rT can be precisely given as:

(8)

For intermediate states s1,…, sT-1, a zero reward can be given to each state when there is no a

priori knowledge about the anomaly of the states. However, in more general cases, the

intermediate rewards can be designed based on available prior knowledge on some features

or signatures of known attacks.

Fig. 4. A Markov reward process for intrusion detection

According to the above Markov reward process model, the detection of attack behaviors can

be tackled by the sequential prediction of expected total rewards of a state in a trajectory

since the reward signals, especially the terminal reward at the end of the trajectory provide

information about whether the trajectory is normal or abnormal. Therefore, the intrusion

detection problem becomes a value function prediction problem of a Markov reward

process, which has been popularly studied by many researchers in the framework of

reinforcement learning [21-24]. Among the learning prediction methods studied in RL,

temporal difference learning (TD) is one of the most important one and in the following

discussions, we will focus on the TD learning prediction algorithm for intrusion detection.

Firstly, some basic definitions on value functions and dynamic programming are given as

follows.

In order to predict the expected total rewards received after a state trajectory starting from a

state x, the value function of state x is defined as follows:

(9)

where x ∈ S , 0 < Ǆ ≤ 1 is the discount factor, rt is the reward received after state transition
xt → xt+1 and E{.} is the expectation over the state transition probabilities.

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

411

According to the theory of dynamic programming, the above value function satisfies the
following Bellman equation.

 (10)

where Rt is the expected reward received after state transition xt → xt+1 .
The aim of RL is to approximate the optimal or near-optimal policies from its experiences
without knowing the parameters of this process. To estimate the optimal policy of an MDP,
RL algorithms usually predict the value functions by observing data from state transitions
and rewards. Thus, value function prediction of Markov reward models becomes a central
problem in RL since optimal policies or optimal value functions can be obtained based on
the estimation of value functions. However, in RL, learning prediction is more difficult that
in supervised learning. As pointed out by Sutton [22], the prediction problems in supervised
learning are single-step prediction problems while learning prediction in reinforcement
learning belongs to multi-step prediction, which is to predict outcomes that depend on a
future sequence of decisions.
Until now, temporal difference learning or TD learning has been considered as one of the
most efficient approaches to value function prediction without any a priori model
information about Markov reward processes. Different from supervised learning for
sequential prediction such as Monte Carlo estimation methods, TD learning is to update the
estimations based on the differences between two temporally successive estimations, which
constitutes the main ideas of a popular class of TD learning algorithms called TD(ǌ) [22]. In
TD(ǌ), there are two basic mechanisms which are the temporal difference and the eligibility
trace, respectively. Temporal differences are defined as the differences between two
successive estimations and have the following form

(11)

where xt+1 is the successive state of xt, V# (x) denotes the estimate of value function V(x) and

rt is the reward received after the state transition from xt to xt+1.
As discussed in [22], the eligibility trace can be viewed as an algebraic trick to improve
learning efficiency without recording all the data of a multi-step prediction process. This
trick is originated from the idea of using a truncated reward sum of Markov reward
processes. In TD learning with eligibility traces, an n-step truncated return is defined as

(12)

For an absorbing Markov reward process whose length is T, the weighted average of
truncated returns is

(13)

where 0 ≤ λ ≤1 is a decaying factor and

 (14)

www.intechopen.com

 Machine Learning

412

RT is the Monte-Carlo return at the terminal state. In each step of TD(ǌ), the update rule of
value function estimation is determined by the weighted average of truncated returns
defined above, i.e.,

(15)

where αt is a learning factor.
The update equation (25) can be used only after the whole trajectory of the Markov reward
process is observed. To realize incremental or online learning, eligibility traces are defined
for each state as follows:

(16)

The online TD(ǌ) update rule with eligibility traces is

(17)

where ǅt is the temporal difference at time step t, which is defined in (21) and z0(s)=0 for all s.
Based on the above TD learning prediction principle, the intrusion detection problem can be
solved by a model learning process and an online detection process. In the model learning
process, the value functions are estimated based on the online TD(ǌ) update rules and in
the detection process, the estimated value functions are used to determine whether a
sequence of states belongs to a normal trajectory or an abnormal trajectory. For the reward
function defined in (18), when an appropriate threshold Ǎ is selected, the detection rules of
the IDS can be designed as follows:

If V (x) > Ǎ , then raise alarms for attacks,

Else there are no alarms.

Since the state space of a Markov reward process is usually large or infinite in practice,
function approximators such as neural networks are commonly used to approximate the
value function. Among the existing TD learning prediction methods, TD(ǌ) algorithms with
linear function approximators are the most popular and well-studied ones, which can be
called linear TD(ǌ) algorithms.
In linear TD(ǌ), consider a general linear function approximator with a fixed basis function
vector

 (18)

The estimated value function can be denoted as

(19)

where Wt =(w1, w2,…,wn)T is the weight vector.
The corresponding incremental weight update rule is

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

413

(20)

where the eligibility trace vector is defined as

(21)

In [19], the above linear TD(ǌ) algorithm is proved to converge with probability 1 under
certain assumptions and the limit of convergence W* is also derived, which satisfies the
following equation

 (22)

where Xt =(xt,xt+1,zt+1) (t=1,2,…) form a Markov process, E0[·] stands for the expectation with
respect to the unique invariant distribution of {Xt}, and A(Xt), b(Xt) are defined as

(23)

 (24)

Then, based on a set of observation data {(xt, rt)} (t=1,2,…,T), a least-squares solution to the
above problem can be obtained as [24]:

(25)

4.2 Kernel-based RL for sequential behavior learning

After introducing the above Markov reward model, the intrusion detection problem using

system call traces can be solved by a class of reinforcement learning algorithms called

temporal-difference (TD) learning. The aim of TD learning is to predict the state value

functions of a Markov reward process by updating the value function estimations based on

the differences between temporally successive predictions rather than using errors between

the real values and the predicted ones. And it has been verified that TD learning is more

efficient than supervised learning in multi-step prediction problems [22].

Until now, TD learning algorithms with linear function approximators have been widely

studied in the literature [23-24]. In [24], a linear TD learning algorithm was applied to host-

based intrusion detection using sequences of system calls and very promising results have

been obtained. Nevertheless, the approximation ability of linear function approximators is

limited and the performance of linear TD learning is greatly influenced by the selection of

linear basis functions. In the following, a sparse kernel-based LS-TD(λ) algorithm will be

presented for value function prediction in host-based IDSs [25]. The sparse kernel-based LS-

TD algorithm was recently developed in [26] and it was demonstrated that by realizing

least-squares TD learning in a kernel-induced high-dimensional feature space, nonlinear

value function estimation can be implicitly implemented by a linear form of computation

www.intechopen.com

 Machine Learning

414

with high approximation accuracy. Therefore, by making use of the kernel-based LS-TD

learning algorithm, the predictions of anomaly probabilities for intrusion detection will have

higher precision and it will be more beneficial to realize high-performance IDSs based on

dynamic behavior modeling.

In the kernel-based LS-TD learning method [26], the same solution to the following LS-TD

problem was considered:

(26)

where the corresponding value functions are estimated by

Using the average value of observations as the estimation of expectation E0[·], equation (26)

can be expressed as follows:

(27)

Based on the idea of kernel methods, a high-dimensional nonlinear feature mapping can be

constructed by selecting a Mercer kernel function k(x1, x2) in a reproducing kernel Hilbert

space (RKHS). In the following, the nonlinear feature mapping based on the kernel function

k(.,.) is also denoted by φ(s) and according to the Mercer Theorem [27], the inner product of

two feature vectors is computed by

 (28)

Due to the properties of RKHS [27], the weight vector W can be represented by the weighted

sum of the state feature vectors:

(29)

where xi (i = 1,2,..., N) are the observed states, N is the total number of states and

α = [α1, α2 ,...,αN]T are the corresponding coefficients, and the matrix notation of the feature
vectors is denoted as

 (30)

For a state sequence xi (i = 1, 2,..., N) , let the corresponding kernel matrix K be denoted as

K=(kij) N×N , where kij=k(xi, xj).

(31)

By substituting (28), (29) and (30) into (27), and multiplying the two sides of (27) with
T

N
Φ we can get

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

415

(32)

 (33)

(34)

In (34), the values of ǃi (i=1,2,…,N-1) are determined by the following rule: when state xi-1 is

not an absorbing state, ǃi is equal to -1, otherwise, ǃi is set to zero.

As discussed in [26], by using the techniques of generalized inverse matrix in [28], the

kernel-based LS-TD solution to (26) is as follows:

 (35)

where (.)+ denotes the generalized inverse of a matrix.

One problem remained for the above kernel-based LS-TD learning algorithm is that the

dimension of the kernel-based LS-TD solution is equal to the number of state transition

samples, which will cause huge computational costs when the number of observation data is

large. To make the above algorithm be practical, one key problem is to decrease the

dimension of kernel matrix K as well as the dimensional of α. The problem has been studied

in [29] by employing an approximately linear dependence (ALD) analysis method [30] for

the sparsification of kernel matrix K.

The main idea of ALD-based sparcification is to represent the feature vectors of the original

data samples by an approximately linearly independent subset of feature vectors, which is

to compute the following optimization problem

(36)

During the sparsification procedure, a data dictionary is incrementally constructed and

every new data sample xt is tested by compute the solution ǅt of (36). Only if ǅt is greater than

a predefined threshold, the tested data sample xt will be added to the dictionary. For

detailed discussion of the sparsification process, please refer to [29] and [30]. After the

sparsification procedure, a data dictionary DN with reduced number of feature vectors will

be obtained and the approximated state value function can be represented as:

(37)

where n(DN) is the size of the dictionary.

www.intechopen.com

 Machine Learning

416

When the above learning and sparcification process is completed, a value function model of

the IDS problem can be obtained. And the accumulated anomaly probability of a state

sequence Sn={x1, x2,…xn} can be computed as

(38)

By selecting an appropriate threshold Ǎ, the detection output of the adaptive IDS can be
simply determined as follows:

4.3 Performance evaluations

Generally speaking, previous works on machine learning methods for adaptive intrusion

detection can be mainly classified into four categories, i.e., supervised learning methods,

unsupervised learning methods, semi-supervised methods and statistical modeling

methods. Compared with the supervised learning methods in intrusion detection, the

proposed model does not require precise labeling of every observed feature, which is a

difficult task and may usually lead to the poor performance of supervised methods,

especially for complex sequential attacks. For unsupervised learning algorithms in intrusion

detection, e.g., SOM, clustering, due to the lack of prior information, the performance of

IDSs can not be optimized adequately [12].

The proposed RL-based dynamic behavior modeling approach for intrusion detection

estimates the anomaly probability of states based on the learning prediction of state value

functions. Therefore, it can be applied to detect complex attack behaviors with complex

sequential patterns. The computational complexity of TD learning algorithms is linear with

respect to the number k of state features and the length m of traces, i.e., it has time

complexity of O(km), which is lower than the training algorithm for HMMs, which runs in

time O(nm2), where n is the number of states in the HMM and m is the size of the trace.

Furthermore, since TD learning prediction methods using function approximators are

commonly used, the number k of state features can become much smaller than n and the

computational efficiency will be further improved.

For the RL-based approach, the most related methods are based on Markov chain modeling
or Hidden Markov models (HMMs), which are anomaly detection techniques that aim to
establish the probabilistic structure model of the normal data sequences explicitly. However,
the Markov reward model and the TD prediction method are based on hybrid modeling
strategy where the intrusion data can be combined with normal data to train the detection
model. Moreover, the RL-based method only implicitly constructs the probabilistic model
and the detection of anomalies is based on the estimated value functions. In [31], the
robustness of Markov chain modeling techniques was studied and it was shown that when
explicitly estimating the probabilistic structure of the Markov chain model for normal data,
the detection accuracy was very sensitive to the noise of data, i.e., when the intrusion data
were mixed with normal data, the performance of the Markov chain model would become
worse. Nevertheless, in our approach, the detection accuracy is not influenced by the mixing
of normal and abnormal data due to the hybrid modeling strategy.

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

417

To compare the performance between the previous HMM-based approach and the RL-based

approach, experiments on host-based intrusion detection using system calls were

conducted. In the experiments, two types of data sets were used, which include system call

traces from the “live” lpr and the Sendmail programs. Table 1 shows some of the details of

the data, which include two kinds of attack data and corresponding normal data. All of

these data sets are publicly available at the website of University of New Mexico [32].

In the data sets, each trace is a sequence of system calls generated by a single process from

the beginning of its execution to the end. Since the traces were generated by different

programs under different environments, the number of system calls per trace varies widely.

In the MIT environment, lpr was traced by running the program on 77 different hosts, each

running SunOS, for two weeks, to obtain traces of a total of 2766 print jobs. For detailed

discussion of the properties of the data sets, please refer to [32-33].

The two types of system call traces were divided into two parts. One part is for model

training and threshold determination and the other part is for performance evaluation.

Table 1 shows the numbers of normal and attack traces for training and testing. As can be

seen in the table, the numbers of testing traces are usually larger than those of testing

traces.

Table 1. Experimental data for host-based IDS

During the threshold determination process, the same data sets were used as the training

process, i.e., the training data sets and the data sets for threshold determination are the

same. For performance testing, the data sets are different from those in model training and

their sizes are usually larger than the training data. In the testing stage, two criterions for

performance evaluations were used, which are the detection rate Dr and the false alarm or

false positive rate Fp, and they are computed as follows:

(36)

www.intechopen.com

 Machine Learning

418

(37)

where nd is the number of abnormal traces that have been correctly identified by the

detection model and na is the total number of abnormal traces, Na is the number of normal

states that have been incorrectly identified as anomaly by the detection model, and N is the

total number of normal states. In the computation of false alarm rates, we use the same ideas

discussed in [4], where every possible false alarms during a long state traces are all counted

and the total sum of false alarms is divided by the number of all states in traces. Therefore,

the false positives were measured differently from the detection rates or true positives. To

detect an intrusion, it is only required that the anomaly probabilities exceed a preset

threshold at some point during the intrusion. However, making a single decision as to

whether a normal trace is abnormal or not is not sufficient, especially for very long traces.

For example, if a program runs for several days or more, each time that it is flagged as

anomalous must be counted separately. As pointed out in [17], the simplest way to measure

this is to count all the individual decisions. Then, the false-positive rate is selected as the

percentage of decisions in which normal data were detected as anomalous.

In the experiments, the TD learning prediction method was applied to the above data sets.

Every state in the Markov reward model has a system-call sequence length of 6, which has

been widely employed in previous works. The reward function is defined by (18). A linear

function approximator, which is a polynomial function of the observation states and has a

dimension of 24, was used as the value function approximator. To compare the performance

of TD learning prediction and previous approaches, the experimental results in [4], where

HMM-based dynamic behavior modeling methods were applied to the same data sets, are

also shown in the following Table 2.

Table 2. Performance comparisons between TD and HMM methods

To compare the performance between the kernel LS-TD approach with the linear LS-TD [16]

and the HMM-based approach [4], experiments on host-based intrusion detection using

system calls were conducted. In the experiments, the data set of system call traces generated

from the Sendmail program was used. The system call traces were divided into two parts.

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

419

One part is for model training and threshold determination and the other part is for

performance evaluation. The normal trace numbers for training and testing are 13 and 67,

respectively. The numbers of attack traces used for training and testing are 5 and 7. The total

number of system calls in the data set is 223733. During the threshold determination

process, the same traces were used as the training process. The testing data are different

from those in model training and their sizes are usually larger than the training data.

In the learning prediction experiments for intrusion detection, the kernel LS-TD algorithm

and previous linear TD(λ) algorithms, i.e., LS-TD(λ), are all implemented for the learning

prediction task. In the kernel-based LS-TD algorithm, a radius basis function (RBF) kernel is

selected and its width parameter is set to 0.8 in all the experiments. A threshold parameter

ǅ=0.001 is selected for the sparsification procedure of the kernel-based LS-TD learning

algorithm. The LS-TD(λ) algorithm uses a linear function approximator, which is a

polynomial function of the observation states and has a dimension of 24.

* The false alarm rates were only computed for trace numbers, not for single state

Table 3. Performance comparisons between different methods

The experimental results are shown in Table 3. It can be seen from the results that both of

the two RL methods, i.e., the kernel LS-TD and linear LS-TD, have 100% detection rates and

the kernel-based LS-TD approach has better performance in false alarm rates than the linear

LS-TD method. The main reason is due to the learning prediction accuracy of kernel-based

LS-TD for value function estimation. It is also illustrated that the two TD learning prediction

methods have much better performance than the previous HMM-based method. Therefore,

the applications of kernel-based reinforcement learning methods, which are based on the

Markov reward model, will be very promising to realize dynamic behavior modeling and

prediction for complex multi-stage attacks so that the performance of IDSs can be efficiently

optimized.

5. Conclusions

Although in recent years, there are many research works on applying machine learning

and statistical modeling methods to intrusion detection problems, the sequential

modeling problem in intelligent intrusion detection has not been well solved yet. In this

Chapter, the TD learning prediction method is introduced to construct detection models

and improve the performance of IDSs only by simplified labeling schemes using

www.intechopen.com

 Machine Learning

420

evaluative signals or feedbacks for sequential training data. It is illustrated that compared

with previous anomaly detection approaches using machine learning, the TD learning and

prediction method can obtain comparable or even better detection accuracies for complex

sequential attacks. More importantly, the proposed TD learning and prediction approach

provides an efficient anomaly detection technique with simplified labeling procedure and

reduced computational complexity. Future work may need to be focused on the extension

of the proposed method to more general intrusion detection systems with real-time

applications.

6. References

[1] D. Denning: An intrusion-detection model. IEEE Transactions on Software Engineering,

13(2) (1987) 222-232

[2] M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. Alan Whitehurst. Expert systems in

intrusion detection: A case study. In Proceedings of the 11th National Computer

Security Conference, Baltimore, Maryland, October, (1988) 74-81

[3] W. K. Lee, Stolfo, S., and Mok, K.: Adaptive Intrusion Detection: A Data Mining

Approach. Artificial Intelligence Review, 14(6), (2000) 533 – 567

[4] D.Y. Yeung, Y.X. Ding, Host-based intrusion detection using dynamic and static

behavioral models. Pattern Recognition, 36 (2003) 229 – 243

[5] A. K. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly

and misuse detection. in Proceedings of the 8th USENIX Security Symposium,

(1999).

[6] H.Shah, J.Undercoffer and A.Joshi: Fuzzy clustering for intrusion detection. In:

Proceedings of the 12th IEEE International Conference on Fuzzy Systems. (2003)

1274-1278

[7] D. Barbara, N. Wu, S. Jajodia, Detecting novel network intrusions using Bayes estimators,

First SIAM Conference on Data Mining, Chicago, IL, (2001).

[8] J. Ryan, M-J. Lin, R. Miikkulainen, Intrusion detection with neural networks, Proceedings

of AAAI-97 Workshop on AI Approaches to Fraud Detection and Risk Management, AAAI

Press, (1997) 72-77.

[9] X. Xu. Adaptive Intrusion Detection Based on Machine Learning: Feature Extraction,

Classifier Construction and Sequential Pattern Prediction. International Journal of

Web Services Practices, Vol.2, No.1-2 (2006), pp. 49-58

[10] M. Mahoney, P.Chan: Learning nonstationary models of normal network traffic for

detecting novel attacks. In: Proceedings of 8th International Conference on Knowledge

Discovery and Data Mining, (2002) 376-385

[11] X. Xu, X. N. Wang, Adaptive network intrusion detection method based on PCA and

support vector machines . Lecture Notes in Artificial Intelligence, ADMA 2005, LNAI

3584, (2005) 696 – 703.

[12] P. Laskov, P. Düssel, C. Schäfer, K. Rieck, Learning intrusion detection: supervised or

unsupervised? Proc. ICIAP 2005, September, Lecture Notes in Computer Science ,

LNCS 3617 (2005) 50-57

www.intechopen.com

Machine Learning for Sequential Behavior Modeling and Prediction

421

[13] W.K. Lee, S.J.Stolfo: A data mining framework for building intrusion detection model.

In: Gong L., Reiter M.K. (eds.): Proceedings of the IEEE Symposium on Security and

Privacy. Oakland, CA: IEEE Computer Society Press (1999) 120~132

[14] http://www.kdnuggets.com/datasets/kddcup.html

[15] Y. H. Liao, V. Rao Vemuri, Using text categorization techniques for intrusion

detection, Proceedings of the 11th USENIX Security Symposium, August, (2002)

51-59.

[16] X.Xu, Intrusion Detection Based on Dynamic Behavior Modeling: Reinforcement

Learning versus Hidden Markov Models, International Journal of Computational

Intelligence Theory and Practice, 2(1), (2007) 57-66

[17] T. Lane, C. Brodley, Temporal sequence learning and data reduction for anomaly

detection. ACM Transactions on Information and System Security, 2(3) (1999) 295–331

[18] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2): 257-286, 1986.

[19] S. Hofmeyr et al., Intrusion detection using sequences of systems call, Journal of

Computer Security, 6 (1998) 151-180

[20] X.Xu, A Reinforcement Learning Approach for Host-Based Intrusion Detection Using

Sequences of System Calls. Lecture Notes in Computer Science, LNCS 3644, pp. 995 –

1003

[21] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: a survey.

Journal of Artificial Intelligence Research, vol. 4, (1996) 237--285.

[22] R. Sutton, Learning to predict by the method of temporal differences. Machine Learning,

3(1), (1988) 9-44

[23] X. Xu, H. G. He, D. W. Hu: Efficient reinforcement learning using recursive least-

squares methods. Journal of Artificial Intelligence Research, vol.16, (2002) 259-292

[24] J. A. Boyan, Technical Update: Least-squares temporal difference learning. Machine

Learning, 49, (2002) 233-246

[25] X. Xu, Yirong Luo, A Kernel-Based Reinforcement Learning Approach to Dynamic

Behavior Modeling of Intrusion Detection, In : D. Liu et al. (Eds.): ISNN 2007,

Lecture Notes in Computer Science, LNCS 4491, Part I, (2007) 459–468

[26] X. Xu, et al., Kernel Least-Squares Temporal Difference Learning, International Journal of

Information Technology,11(9), (2005) 54-63

[27] Schölkopf, B., Smola, A.: Learning with Kernels. Cambridge, MA: MIT Press (2002)

[28] Nashed, M. Z., ed.: Generalized Inverses and Applications. Academic Press, New York,

(1976)

[29] Xu, X.: A Sparse Kernel-Based Least-Squares Temporal Difference Algorithm for

Reinforcement Learning. In: Proceedings of International Conference on

Intelligent Computing. 2006, Lecture Notes in Computer Science, LNCS 4221

(2006) 47-56

[30] Engel, Y., Mannor, S., Meir, R.: The Kernel Recursive Least-Squares Algorithm. IEEE

Transactions on Signal Processing, 52 (8) (2004) 2275-2285

[31] N. Ye, Y. Zhang, and C. M. Borror. Robustness of the Markov-Chain model for cyber-

attack detection. IEEE Transactions on Reliability, 53(1), (2004) 116-123.

[32] http://www.cs.unm.edu/~immsec/data/

www.intechopen.com

 Machine Learning

422

[33] C. Warrender, S. Forrest, B. Pearlmutter. Detecting intrusions using system calls:

alternative data models. in the 1999 IEEE Symposium on Security and Privacy, May

9-12, (1999)

www.intechopen.com

Machine Learning

Edited by Abdelhamid Mellouk and Abdennacer Chebira

ISBN 978-953-7619-56-1

Hard cover, 450 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Machine Learning can be defined in various ways related to a scientific domain concerned with the design and

development of theoretical and implementation tools that allow building systems with some Human Like

intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through

experience.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Xin Xu (2009). Machine Learning for Sequential Behavior Modeling and Prediction, Machine Learning,

Abdelhamid Mellouk and Abdennacer Chebira (Ed.), ISBN: 978-953-7619-56-1, InTech, Available from:

http://www.intechopen.com/books/machine_learning/machine_learning_for_sequential_behavior_modeling_an

d_prediction

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

