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1. Introduction 

When we try to accomplish a collaborative task, e.g., playing football or carrying large 
tables, we have to share a goal and a way of achieving the goal. Although people 
accomplish such tasks, achieveing such cooperation is not so easy in the context of a 
computational multi-agent learning system because participating agents cannot observe 
another person’s intention directly. We cannot know directly what other participants intend 
to do and how they intend to achieve that. Therefore, we have to notice another participant’s 
intention by utilizing other hints or information. In other words, we have to estimate 
another’s intention to accomplish collaborative tasks. 
In particular, in multi-agent reinforcement learning tasks, when another’s intention is 
unobservable the learning process is fatally harmed. When a participating agent of a 
collaborative task changes its intention and switches or modifies its controller, system 
dynamics for each agent will inevitably change. If other agents learn on the basis of simple 
reinforcement learning architecture, they cannot keep up with changes in the task 
environment because most reinforcement learning architectures assume that environmental 
dynamics are fixed. To overcome the problem, each agent must have a simple reinforcement 
learning architecture and some additional capability, which solves the problem. We take the 
capability of “estimation of another’s intention” as an example of such a capability. 
Human beings can perform several kinds of collaborative tasks. This means that we have 
some computational skills, which enable us to estimate another’s intention to some extent 
even if we cannot observe another’s intention directly. 
The computational model for implicit communication is described in this chapter on the 
basis of a framework of modular reinforcement learning. The computational model is called 
situation-sensitive reinforcement learning (SSRL), which is a type of modular reinforcement 
learning architecture. We assumed that such a distributed learning architecture would be 
essential for an autonomous agent to cope with a physically dynamic environment and a 
socially dynamic environment that included changes in another agent’s intentions. The skill, 
estimation of another’s intention, seems to be a social skill. However, human adaptability, 
which we believe our selves to be equipped with to deal with a physically dynamic 
environment, enables an agent to deal with such a dynamic social environment, including O
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intentional changes of collaborators. Determining clearlify the computational relationship 
between the two skills is also a purpose of this study. 
The mathematical basis for the implicit estimation of another’s intention based on the 
framework of reinforcement learning is also provided. Furthermore, a simple truck-pushing 
task performed by a pair of agents is presented to evaluate the learning architecture. 

2. Communication and estimation of another’s intention 

Communicating one’s intention to another person enables the other person to estimate one’s 
intention. Therefore, communication and estimation of another’s intention are different 
aspects of the same phenomenon. Implicit estimation is a key idea to supplement the 
classical communication model, i.e., Shannon-Weaver communication model. Additionally, 
it is also important to understand a computational mechanism of emergence of 
communication. 
 

 

Fig. 1. Schematic diagram of general communication system 

We describe the background in this section. In addition to that, an abstract mechanism of the 
implicit estimation is described on the basis of the notion of multiple internal models. 

2.1 Communication models 
Shannon formulated “communication” in mathematical terms [5]. In Shannon’s 
communication model, a sender’s messages encapsulated in signals or signs are carried 
through an information channel to a receiver. An encoder owned by the sender encodes the 
message to the signal by referring to its code table. When a receiver receives the signal, the 
receiver’s decoder decodes the signal back to a message by referring to its code table. After 
that, the receiver understands the sender’s intention and determines what to do. The general 
communication system described by Shannon is shown in Fig. 1 schematically. 
In contrast to Shannon, Peirce, who started “semiotics,” insisted that the basis of 
communication is symbols, and he defined a symbol as a triadic relationship among “sign,” 
“object,” and “interpretant”[2]. A “sign” is a signal that represents something to an 
interpreter. An “object” is something that is represented by the sign, and an “interpretant” is 
something that relates the sign to the object. In other words, an “interpretant” is a mediator 
between a “sign” and an “object.” The words “sign” and “object” are easy for most people 
to understand. However, “interpretant” may be difficult to understand. An “interpretant” is 
sometimes a concept an interpreter comes up with, an action the interpreter takes, or culture 
in which people consider the sign and object to be related. The important point of Peirce’s 
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semiotics is that the relationship between “sign” and “object” is not fixed. The relationship 
can be dynamically changing. The relationship simply depends on the “interpretant.” The 
dynamic process by which a sign represents an object mediated by an interpretant is called 
“semiosis.” Peirce’s semiotics is thoroughly constructed from the viewpoint of an 
interpreter. In the framework of Peirce’s semiotics, the third element, “interpretant,” plays 
an essential role in communication. In Shannon’s communication model, one premise is that 
a shared code table is required. However, an autonomous agent cannot observe other 
agents’ internal goals or code table. In contrast, Peirce’s semiosis does not require such a 
premise. Semiosis is a phenomenon that emerges inside of an autonomous agent. The 
participants in a communication must create meaning from incoming signs based on their 
physical and social experience. Such an individual learning process is considered to 
supplement symbolic communication. However, semiosis requires autonomous agents to 
have sufficient adaptability and capability to create meanings from superficial meaningless 
signs. 
 

 

Fig. 2. Semiotic triad 

In a human collaborative task, a human participant becomes able to distinguish several 
situations, which are modified by another’s changing intentions. In such a case, the kind of 
policy the participant should follow in each situation is not clear beforehand. However, if 
the team continues to collaborate through trial and error, some kind of shared rules will be 
formed as a kind of habit of the team, and a follwer on the team becomes able to perform 
adequately by referring to the situation and the habit. This process corresponds to 
“semiosis” in Peirce’s semiotics. Here, “sign,” “object,” and “interpretant” correspond to a 
“situation,” “the leader’s intention,” and “acquired rule” or “the follower’s action,” 
respectively. 
An important point in this scenario is that the “situation” has no meaning before the 
follower distinguishes situation, performs adequately, and a tacit rule is established 
between the two agents. 
In this chapter, we describe candidates for computational communication models, which are 
based on Peirce’s semiosis. 

2.2 Estimation of another’s intention 
Roughly speaking, we assume there are two ways in which we estimate another’s intention. 
Here, we explain the difference between the two ways of estimating another’s intention. 
For illustrative purposes, we assume that there is a leader in an organization who makes 
decisions. The leader makes decisions to direct the team, and followers play their roles 
based on the decision. 
In such a case, the leader communicates his/her intention to the follwers, and followers in 
the organization have to estimate a leading agent’s intention to cope with cooperative tasks. 
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The communication and the estimation of another’s intention are different aspects of the 
same phenomenon, as we described above. How can followers members estimate the 
leader’s intention? This is the problem. 
Here, we take two kinds of estimation of another’s intention into consideration. One is 
“explicit estimation,” and the other is “implicit estimation.” 

2.2.1 Explicit estimation of another’s intention 
One solution for communicating one’s intention to another person is to express one’s 
intention directly with predefined signals, e.g., by pointing to the goal and by commanding 
the other person to act. The method of communication requires a shared symbolic system as 
a basic premise. The symbolic system is often called a code table. If the symbolic system 
used in this communication must be completely shared by the participants in the 
cooperativetask environment, a participant who receives a message understands exactly 
what the person transmitting the message wants to do. The receiver of the message can 
estimate the sender’s intentions based on externalized signs. We call this process the 
“explicit estimation” because the intention of the leader is explicitly expressed as 
externalized signals. In this communication model, both agents have to share a predefined 
code table before the tasks. In the explicit estimation model, the accuracy of the 
communication is measured by the coincidence between the transmitted message and the 
receiver’s interpretation of the sender’s message, which is obtained by decoding the 
incoming signal utilizing the shared code table. The process of estimating another’s 
intention in a collaborative task is shown in Figure 3 schematically. A leader and a follower 
carry a truck collaboratively. How can the follower estimate the leader’s goal using explicit 
estimation when the leader changes his goal? 
 

 

Fig. 3. explicit estimation 

First, the leader agent changes his goal. In the explicit estimation scheme, this seems like a 

natural framework of communication. After Shannon formulated “communication” 

mathematically, many sociologists and computer scientists have described “communication” 

as above. However, the communication model based on explicit estimation of another’s 
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intention has two shortcomings. One is that the method of sharing the code table between 

the two agetns is unknown. If we consider the two agents to be autonomous, neither agent 

can observe the other agent’s internal goals and code table. Therefore, neither agent can 

utilize a “teacher signal” as feedback of its interpretation to upgrade its code table. The 

second shortcoming is that the leader agent has to display his intention whenever he 

changes his goal. These are two problems of explicit estimation of another’s intention. 

In contrast, when we review what we do in collaborative tasks, we find that we do not 

always send verbal messages representing our intention to our collaborators. We sometimes 

execute a collaborative task without saying anything. In this case, the leader’s intention is 

not transmitted to the follower by sending the explicit linguistic sign but through the shared 

environmental dynamics implicitly. Explicit estimation of another’s intention is not the only 

way of communication. To complement or to support the explicit estimation, implicit 

estimation is necessary. 

 

 

Fig. 4. Implicit communication 

2.2.2 Implicit estimation of another’s intention 
People occasionally undertake collaborative tasks without saying anything. Even if a leader 

says nothing to members of his organization, they can often perform the task by estimating 

the leader’s intentions on the basis of their observation. We call such an estimation process 

“implicit estimation” of another’s intention. However, if there were no pathways through 

which information about the leader’s intention goes to the followers, the followers could 

never estimate the leader’s intention. One reason followers can estimate the leader’s 

intention is that the action and sensation of the followers are causally related to the leader’s 

intentions. 

In other words, sensations a participating agent has after he/she performs actions are 
affected by the leader’s way of acting and another agents’ ways of acting. Therefore, 
subjective environmental dynamics for a participating agent are causally affected by the 
leader’s intention because other agents are assumed to behave based on the leader’s 
intention. 
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We assume none of the members can observe any information except for their own sensory-
motor information. However, they can estimate the leader’s intentions. We call this process 
“implicit estimation.” Implicit estimation is achieved by watching how the agent’s sensation 
changes. In control tasks, an agent usually observes state variables. 
In what follows, we assume that an agent obtains state variables, e.g., position, velocity, and 
angle. State variables are usually considered to be objectives to be controlled in many 
control tasks. However, in implicit communication, state variables also become information 
media of another agent’s intention. An participating agent can estimate another’s intention 
by observing changes in state variables. The information goes through their shared 
dynamics. 
The process of implicit estimation of another’s intention is showen in Figure 4, 
schematically. First, the leader changes his goal. When the leader’s goal has changed, his 
controller, which produces his behavior, is switched. That, of course, affects physical 
dynamics of the dynamical system shared between the leader and the follower. If a 
participating agent has a state predictor, he will become aware of the qualitative change in 
the shared dynamics because his prediction of the state value collapses If physical dynamics 
are stable, he can predict his state variables consistently. If the follower agent notices the 
change in subjective physical dynamics, the follower can notice the change in the leader’s 
intention based on the causal relationship between the leader’s intention and his facing 
dynamical system. 
Therefore, the capability to predict state variables seems to be required for physical skills 
and social skills. This scenario suggests the process of learning physical skills to control the 
target system and the method to communicate with the partner agent might be quite similar 
in such cooperative tasks. 

3. Multiple internal models 

Our computational model of implicit estimation of another’s intention is based on modular 
reinforcement learning architecture including multiple internal models. To achieve implicit 
estimation of another’s intention described in the previous section, an agent must have a 
learning architecture that includes state predictors. We focus on multiple internal models as 
neural architectures that achieve such an adaptive capability. 

3.1 Multiple internal models and social adaptability 
Relationships between the human brain’s social capability and physical capability are 
commanding interest. From the viewpoint of computational neuroscience, Wolpert et al. [17, 
3] suggested that MOSAIC, which is a modular learning architecture representing a part of 
the human central nervous system (CNS), acquires multiple internal models that play an 
essential role in adapting to the physical dynamic environment as well as other roles. We 
regard this as a candidate for a brain function that connects human physical capability and 
social capability. An internal model is a learning architecture that predicts the state 
transition of the environment or other target system. This is a belief that a person can 
operate his/her body and his/her grasping tool by utilizing an obtained internal model[16]. 
The internal model is acquired in the cerebellum through interactions. The learning system 
of internal models is considered to be a kind of schema that assimilates exterior dynamics 
and accommodates the internal memory system, i.e., internal model. If a person encounters 
various kinds of environments and/or tools, which have different dynamical properties, the 
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human brain needs to differentiate them and acquire several internal models. However, 
segmentation of dynamics is not given a priori. Therefore, a learning architecture 
representing multiple internal models should generate and learn internal models, and 
recognize changes in physical dynamics in its facing environment at the same time. To 
describe such a learning system, several computational models have been proposed, e.g., 
MPFIM [17], the mixture of RNNs[10], RNNPB[9], and the schema model [13]. Most of them 
are comprised of several learning predictors. The learning architecture switches the 
predictors and accommodates them through interactions with the environment. Such a 
learning architecture is often called a modular learning system. The RNNPB is not a 
modular learning system. Tani insisted internal models should be obtained in a single 
neural network in a distributed way[9]. In most modular learning architecture, a Bayesian 
rule is used to calculate the posterior probability in which a current predictor is selected. In 
contrast, the schema model [13] is a modular learning architecture that does not use a 
Bayesian rule but hypothesis-testing theory. At the moment, multiple internal models are 
usually considered to be a learning system for an autonomous system to cope with a 
physically dynamic environment. Meanwhile, Wolpert et al. addressed a hypothesis that a 
person utilizes multiple internal models to estimate another’s intention from the observation 
of another’s movement. Although these internal models described in the hypothesis seem to 
add a slightly different feature to the original definition of an internal model, interestingly, 
the hypothesis tries to connect neural architectures for physical adaptability and social 
adaptability. Doya et al. [1] proposed a modular learning architecture that enables robots to 
estimate another’s intention and to communicate with each other in a reinforcement 
learning task. 
In addition, when a person performs a collaborative task with others, one can notice changes 
in another agent’s intention by recognizing the change in his/her facing dynamical system 
without any direct observation of the other agent’s movement. This means multiple internal 
models enable an agent to notice changes in another agent’s intention. This usage of 
multiple internal models does not require adding any features to the original definition of 
multiple internal models. 

3.2 Implicit estimation of another’s intention based on multiple internal models 
“Intention” in everyday language denotes a number of meanings. Therefore, a perfect 
computational definition of “intention” is impossible. In this chapter, we simply consider an 
“intention” as a goal the agent is trying to achieve. In the framework of reinforcement 
learning, an agent’s goal is represented by a reward function. Therefore, an agent who has 

several intentions has several internal goals, i.e., several internal reward functions, Gm. If an 

internal reward function, Gm, is selected, a policy, um, is selected and modified to maximize 
the cumulative future internal reward through interactions with the task environment. 
In the following, we assume that the collaborative task involves two agents. The system is 
described as 

 (1) 

                          (2) 

                           (3) 
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Here, x is a state variable, ui is the i-th agent’s motor output, and n is a noise term. We 

assumed that an agent would not be able to observe another agent’s motor output directly. 

In such cases, environmental dynamics seem to be Eq. 3 to the first agent. If the second agent 

changes its policy, environmental dynamics for the first agent change. Therefore, in a 

physically stationary environment, the first agent can establish that the second agent has 

changed its intention by noticing changes in environmental dynamics. 

The discussion can be summarized as follows. If physical environmental dynamics, f, is 

fixed, agents who have multiple internal models can detect changes in another agent’s 

intentions by detecting changes in subjective environmental dynamics, F. The computational 

process is equal to the process by which an agent detects changes in the original physical 

dynamics. 

We define “situation” as “how state variable x and motor output u change observed output 
y.” In this case, a change in an agent’s intentions leads to a change in the subjective situation 
of another agent. By utilizing multiple internal models, an agent is expected to differentiate 
situations and execute adequate actions. In the next section, we describe a concrete modular 
reinforcement learning architecture named Situation-Sensitive Reinforcement Learning 
(SSRL). 

4. Situation-sensitive reinforcement learning architecture 

It is important for autonomous agents to accumulate the results of adaptation to various 

environments to cope with dynamically changing environments. Acquired concepts, 

models, and policies should be stored for similar situations that are expected to occur in the 

near future. Not only learning a certain behavior and/or a certain model, but also the 

obtained behaviors, policies, and models is essential to describe such a learning process. 

Many modular learning architectures [7, 4] and hierarchical learning architectures [10, 8] 

have been proposed to describe this kind of learning process. This section introduces such a 

modular-learning architecture called the situation-sensitive reinforcement learning 

architecture (SSRL). This enables an autonomous agent to distinguish changes the agent is 

facing in situations, and to infer the partner agent’s intentions without any teacher signals 

from the partner. 

4.1 Discrimination of intentions based on changes in dynamics 

Fig. 5 is an overview of SSRL. SSRL has several state predictors, Fm, representing situations 

and internal goals, Gm, representing intentions. Each state predictor Fm corresponds to each 
situation. 

 
(4) 

 

(5) 

 
(6) 
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where  is the temporal average of the prediction error, , of the j-th state predictor, Fj . If 

averaged error  has a normal distribution and the system dynamics is Fj , the posterior 

probability, P(j| ), can be defined based on the Bayesian framework above under the 

condition that there is no other information. If there are no adequate state predictors in 
SSRL, the SSRL allocates one more state predictor based on hypothesis-testing theory [13]. 
 

 

Fig. 5. Situation-Sensitive Reinforcement Learning architecture 

We model the state predictors by using locally linear predictors, and we don’t estimate the 
standard deviation σ . The updating rule are switched based on hypothesis testing.  

Case 1:  

In this case, the learning system considers that incoming sample data are normal 
samples for the existing predictors, decides the curret situation j*, and update the 

corresponding function F j* by using assimilated samples. 

Case 2:  

In this case, the learning system considers that incoming sample data are outliers for the 

existing predictors, and prepare a new fnction Fp+1. It decides the curret situation jp+1. 

However, the new predictor is considered as a exeptional state predictor until < ǅl. 

If the predictor’s averaged error reaches under ǅl, the function Fp+1 is taken into a list of 
existing predictors, and p ← p + 1. 

Case 3:  

In this case, the system take no account of the incoming sample. 
This is an intermediate method for the MOSAIC model [17, 15], which is based on the Basian 

framework, and the schema model [13], which is based on hypothesis-testing theory. SSRL 

detects the current situation based on Eq. 6. During this an adequate state predictor is 

selected and assimilates the incoming experiences; SSRL acquires the state predictors by 

ridge regression based on the assimilated experiences. 
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4.2 Reinforcement learning 
Each policy corresponding to a goal is acquired by using reinforcement learning [6]. SSRL 
uses Q-Learning [14] in this paper. This method can be used to estimate the state-action 
value function, Q(s, a), through interactions with the agent’s environment. The optimal 

state-action value function directly gives the optimal policy. When we define S as a set of 

state variables and A as a set of motor outputs, and we assume the environment consists of 

a Markov decision process, the algorithm for Q-learning is described as 

                                      

 
(7) 

 
(8) 

where s ∈ S is a state variable, a ∈A is a motor output, r(s, a) is a reward, and s’ is a state 

variable at the next time step. In these equations,  is the learning rate and Ǆ is a discount 
factor. After an adequate Q is acquired,the agent can utilize an optimal policy, u, as in Eq. 8. 
Boltzmann selection is employed during the learning phase. 

 

(9) 

4.3 Switching architecture of internal goals 
An agent can detect changes in the other agent’s intentions by distinguishing between 
situations he/she faces. However, the goals themselves cannot be estimated even if 
switching between several goals can be detected. Here, we describe a learning method, 
which enables an agent to estimate the another’s intentions implicitly. The method requires 
three assumptions to be made. 
A1 Physical environmental dynamics f do not change. 
A2 Every internal goal is equally difficult to achieve. 
A3 The leader agent always selects each optimal policy for each intention. 
The mathematical explanation for these assumptions will be described in the next section. 
We employes Boltzmann selection for internal goal switch. The rule to select the internal 
goals are described as 

 

(10)

where p(m|j) is the probability that Gm will be selected under situation, F j , and B is the 

inverse temperature. The network connection, wjm, between the current situation, F j , and 

the current internal goal, Gm, is modified by the sum of the obtained reward, , during a 
certain period during the t-th trial, i.e., 
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(11)

Here, ν is the learning rate of the internal goal switching module. Eq. 11 shows that 

connection wjm
 becomes strong if internal goal Gm is more easy to accomplish when the 

situation is F j . Eq. 10 shows that an internal goal is more likely to be selected if its network 
connection is stronger than the other’s. The abstract figure for the switching module is 
shown in Fig. 6. If the learning process for the switching architecture of internal goals is 
preceded and converged, a certain internal goal corresponding to a situation is selected. 
 

 
Fig. 6. Internal goal switching module 

4.4 Mathematical basis for internal goal switching module 
This section provides the mathematical basis for the learning rule ofr the implicit 
communication. First, the Bellman equation for the i-th (i = 1, 2) agent of a system involving 
two agents are described as1. 

 
(12)

where Gλ is a reward function for the λ-th goal, ui
 is the i-th agent’s motor output, and x’ is 

the x in the next step. Gλ in this framework is not assumed to have motor outputs as 
variables of the function. The optimal value function for the i-th agent depends on the other 

agent’s policy, uj
 . Here, we define  as the i-th agent’s policy that maximizes the j-th 

agent’s maximized value function whose goal is Gλ. 

 
(13)

 
(14)

                                                 
1 In this section, we have assumed i ≠ j without making any remarks. 
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The assumptions, A2 and A3, we made in the previous section can be translated into the 
following, 

A’2 : We assumed the j-th agent would use the controller, , and 

A’3 :
 

 

where x0 is the initial point of the task. The following relationship can easily be derived from 
the definition. 

 
(15)

Therefore, the i-th agent’s internal goal becomes the same as j-th agent’s goal, if the i-th 
agent select a reward function that maximizes the value function under the condition that 

the j-th agent uses controller . When the initial point is not fixed, Vi(x0) is substituted by 

the averaged cumulative sum of rewards the i−th agent obtains, who starts the task around 
the initial point, x0. This leads us to the algorithm eq.11. 

5. Experiment 

We evaluate SSRL in this section. To fulfill all the assumptions made in Section 4 completely 
is difficult in a realistic task environment. The task described in this section roughly satisfies 
the assumptions, A’2 and A’3. 

5.1 Conditions 
We applied the proposed method to the truck-pushing task shown in Fig. 7. Two agents in 
the task environment, “Leader” and “Follower,”cooperatively push a truck to various 
locations. Both agents can adjust the truck’s velocity and the angle of the handle. However, a 
single agent cannot achieve the task alone because its control force is limited. In addition, 
the Leader has all fixed policies for all sub-goals beforehand, and holds a stake in deciding 
the next goal. However, the agents cannot communicate with each other. Therefore, the 

agents cannot “explicitly” communicate their intentions. The Follower perceives situation F j 

by using SSRL, changes its internal goal Gm
 based on the situation, and learns how to 

achieve the collaborative task. The two agents output the angle of the handle, θL, θF, and the 

wheel’s rotating speed, ωL, ωF. Here，the final motor output to the truck, θ, ω, is defined as 

 (16)

 (17)

where Kθ and Kω are the gain parameters of the truck. Kθ and Kω were set to 0.5 in this 
experiment. The Leader’s controller was designed to approximately satisfy the assumptions 
in Section 3. The controller in this experiment was a simple PD controller. The Follower’s 
state, s, was defined as s = [ǒ, ]. The state space was digitized into 10 × 8 parts. The action 
space was defined as θF = {−Ǒ/4,−Ǒ/8, 0, Ǒ/8, Ǒ/4} and ωF = {0.0, 3.0}. As a result of the two 
agents’ actions, the truck’s angular velocity, Ω, was observed by the Follower agent. Ω, θ, 
and ω have a relationship of 

 (18)

www.intechopen.com



Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning 

 

393 

The agents can carry the truck to a certain goal by cooperatively controlling Ω. The main 

state variables are shown in Fig. 8. Internal reward function Gm is defined as 

 

(19)

where C is the position of the truck, and Goalm is the position of the m-th goal. 
 

 

Fig. 7. Simple truck-pushing task by pair of agents 

 
Fig. 8. State variables and parameters in task environment 

5.2 Experiment 1: implicit estimation of another’s intention 
Wwe fisrt conducted an experiment in which the Follower estimated the Leader’s goal, 
where the Leader selected one of three sub-goals, and learned how to achieve the 
collaborative task (Fig. 9, top). There were three goals, and the Leader changed its goals 
from G1− > G2− > G3 alternately every 1000 trials. 
In contrast to simple reinforcement learning, the Follower agent not only has to learn the 
policies for the goals but also the state for predictors the relationship between the current 
situation and the internal goal by updating these parameters. 
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The 1000 trajectories of the truck corresponding to all 1000 trials in this experiment are 
shown in Figs. 10 and 11. Simple Q-learning with explicitly given internal goals and SSRL 
are compared. Fig. 10 shows the results obtained from the experiment using Q-learning, and 
Fig. 11 shows those from the experiment using SSRL. The task success rate is indicated in 
each figure. The red curves represent the trajectories for the team that reached the goal, and 
the gray curves represent the trajectories for the team that did not reach the goal. This shows 
that simple Q-learning achieves a single task. However, the Follower could not coordinate 
with the Leader agent after it had changed its goal because it could not discover the Leader 
agent’s intentions. SSRL performs better when the Leader changes its intentions. Fig.13 
shows that three predictors were generated that discover the Leader’s intentions. 
Furthermore, Fig. 12 shows that appropriate internal goals were selected inside the Follower 
agent. 
 

 

Fig. 9. Top: cooperative action is acquired by Follower, bottom: plan toward the goal is 
acquired by Leader 

 

Fig. 10. Behaviors of truck at Follower’s learning stage with single Q-table and internal goal-
switching module without state predictors 
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Fig. 11. Behaviors of truck at Follower’s learning stage with SSRL 

 

Fig. 12. Time course of probabilities where m-th internal goal is selected 

 
Fig. 13. Time course of probabilities that environment being faced is the i-th situation 
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Fig. 14. Reward function for Follower’s internal goals 

These results show that SSRL enabled the Follower to implicitly estimate the Leader’s 
intention. 

5.3 Experiment 2: sequential collaborative task 
After the follower had acquired the ability to implicitly estimate the leader’s intentions, the 

next experiment was carried out. The experimental environment is shown at the bottom of 

Fig. 9. The task required the agents to go through several checkpoints (sub-goals), and reach 

the final goal. The Follower in the next experiment exploited the SSRL acquired through 

Experiment 1, and the Leader explored and planed the path to the final goal. The Leader 

agent can chose the next sub-goal out of three check points that correspond to three goals in 

Experiment 1, i.e., “up,” “upper right,” and “right,” from the current checkpoint as shown in 

Fig. 9. There are also two “cliffs” in this task environment. If the truck enters the cliffs, it can 

no longer move. The Leader learned the path to the final goal by using a simple Q-learning. 

The reward function for the Leader is shown in Fig. 15. Two kinds of Follower agents are 

compared in this experiment. The first has a single Q-learning architecture and a perfect 

internal goal switch. The second has SSRL. 

Fig. 16 shows the results for the experiment using simple Q-learning. Fig. 17 shows the 

results for the experiment using SSRL. Fig. 18 shows the success rate representing the 

probability that the team will finally reach the final goal. The results reveal that the team 

whose Follower agent could not discriminate the Leader’s intentions performed worse than 

the team whose Follower agent could distinguish the Leader’s intentions. Without such a 

distributed memory system like SSRL, the Follower would not be able to up with in the 

Leader’s intentions. In addition to disadvantage, the poor performance of the Follower 

agent adversely affects the Leader’s learning process. However, the Follower with SSRL 

could estimate the Leader’s intentions and keep up with the Leader’s plans although there 

was no explicit communication between the two agents. 
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Fig. 15. Reward function for Leader agent for planning path 
 

 

Fig. 16. Behaviors of truck at Leader’s learning stage with single Q-table and internal goal 
switching module without Situation Recognizer 

However, the success rate for the collaborative task saturated at about 40%. The reason for 
this is that the Follower notices changes in the Leader’s intentions after these changes have 
sufficiently affected the state variables. The delay until the Follower becomes aware of the 
changes is sometimes critical, and the truck occasionally fell into the cliffs. To estimate the 
other’s intentions without any explicit signs outside the state variables, the information has 
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Fig. 17. Behaviors of truck at Leader’s learning stage with SSRL 

 

 

Fig. 18. Success rate for cooperative task 

to be embedded in the state variables, which are the objectives of the team’s control task. 
Our results suggest that it is not impossible to implicitly estimate the other’s intentions, but 
it is important to have a communication channel whose variables are not related to the state 
variables, which are the objectives of the task, e.g., voice, colar sign, or marker. This must be 
the reason why we use explicit sign in collaborative tasks. As we mentioned, the “implicit 
estimation” must back up and complement “explicit estimation.” “Explicit estimation” must 
be faster and better than “implicit estimation” as far as a code table was shared in a team. 
However, this does not mean “explicit estimation” is superior to“implicit estimation.” They 
are complementary architectures. 

www.intechopen.com



Implicit Estimation of Another’s Intention Based on Modular Reinforcement Learning 

 

399 

6. Conclusion 

We described a framework for implicitly estimating another’s intentions based on modular 
reinforcement learning. We applied the framework to a truckpushing task by two agents as 
a concrete example. In the experiment, the Follower agent could perceive changes in the 
Leader’s intentions and estimate his intentions without observing any explicit signs on any 
action outputs from the Leader. This demonstrated that autonomous agents can 
cooperatively achieve a task without any explicit communication. Self-enclosed autonomous 
agents can indirectly perceive the other’s changes in intentions from changes in their 
surrounding environment. It is revealed that multiple internal models help an autonomous 
agent to achieve collaborative task. 
In the context of artificial intelligence, “symbol grounding problem” is considered as an 
important problem. The problem deals with how robots and people can relate their 
symbolic system to their physical and embodied experiences. The symbolic system 
mentioned here is also used in communication, usually. Takamuku et al. presented a system 
for lexicon acquisition through behavior learning which is based on a modified multi-
module reinforcement. The robot in their work is able to automatically associate words to 
objects with various visual features based on similarities in features of dynamics[8]. At the 
same time, Taniguchi et al. described an integrative learning architecture for spike timing-
dependent plasticity (STDP) and the reinforcement learning schemata model (RLSM) [12, 
11]. The learning architecture enables an autonomous robot to acquire behavioral concepts 
and signs representing the situation where the robot should initiate the behavior. They 
called this process “symbol emergence.” The symbolic system plays a important role in 
human social communication.They also utilize modular learning architecture to describe the 
process of symbol organization. However, they treat bottomup organization of “explicit 
symbols,” which is assumed to be used explicit communication. 
In many researches, “symbolic communication” means exchanging discrete signals. 
However, the essential point of symbolic communication is not such an externalized signs, 
but an adaptive formation of “interpretant” from the viewpoint of Peirce’s semiotics. 
Therefore, we focus on the implicit communication and its bottom-up process of 
organization. 
However, the system we treated in this chapter is constrained to some extent. This 
framework for implicit estimates does not always work well. If the system does not satisfy 
the assumptions made in Section 4, the framework is not guaranteed to work. The Leader’s 
policies are fixed when the Follower agent is learning its policies, predictors, and network 
connections in our framework. The model described in this chapter may not work in the 
simultaneous multi-agent reinforcement learning environment. We intend to take these into 
account in future work. 
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