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1. Introduction: The Soul of The Ape

The name Eugene Marais has slowly begun to fade to the annals of time; however, we would 

be remiss to begin a book about Primates without first discussing the life and work of the 
man who helped lay the foundation for naturalistic primate observation. Born in 1871 out-
side of Pretoria in South Africa, he first started out as a journalist who built a reputation for 
upsetting politicians to the point where he was indicted for high treason. After his acquittal, 
he moved to London where he not only studied law but also had tried his hand at medicine. 
During his time in London, the Boer War had begun and Marais left for Central Africa where 
he attempted to help his countrymen. Early in the twentieth century, estimated to be around 
1903, Marais retreated to Waterberg, a mountainous region in the north Limpopo Province 
of South Africa. The farmers who were originally in that area had largely been displaced as a 
result of the Boer War and because of this, the chacma baboons (Papio ursinus) had a tempo-

rary reprieve from human interaction. It was this time in Waterberg that Marais spent 3 years 
living with, following, and studying the chacma. He became one of the first to study wild 
baboons in their natural environment and consequently wrote “My Friends the Baboons” 
and his unfinished work “The Soul of the Ape.” For the most part, Marais was an untrained 
scientist, except perhaps a brief medical introduction during his time in London, but this 
might have led to the strength of his investigation by not having preconceived notions taint-
ing his observations [1].

In these two works, Marais delved into the psyche or as he termed it, the “soul” as he ques-

tioned phyletic (unconscious/instinctual) versus casual (conscious/learned) memory. Through 
time, he was able to make observations within a few yards of the chacma troop. However, as 
time passed, farmers along with their guns returned, thus finishing the relationship between 
Marais and the troop. Although this work remains unfinished, his insights about the psyche 
would not be possible without his keen observations of the chacma:
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“The phyletic history of the primate soul can clearly be traced in the mental evolution of the human 

child. The highest primate, man, is born an instinctive animal…as it grows, the new mentality slowly, 

by infinite gradations, emerges…it is here that the wonderful transition occurs, a transition which 
the phyletic evolution of the soul of the chacma exemplifies. As the new soul, the soul of the individual 
memory slowly emerges, the instinctive soul becomes just as slowly submerged.” [1], pp. 102–103

2. Primates and Intoxication

In addition to the psyche, Marais’ observations and perhaps his own personal experiences, 
delved into addiction and depression as he stated:

“Euphoric intoxication is of especial interest in this study because of convincing proof that there exists 

in the chacma a state of mind similar to that which induces the use of euphoric in man.” [1], p. 117

This is of special interest to our research group as vervet monkeys (Chlorocebus sabeus) will, in 

naturalistic settings, voluntarily consume alcohol [2, 3]. In fact, the St. Kitts vervet will drink 
beverage alcohol in both the laboratory and natural settings, with 15% voluntarily consuming 
over 5 g of ethanol/kg/day [2]. The range of alcohol consumption in this population is similar 
to that seen in the human population that varies from abstinence to those that chose to drink 
to the point of comatose with perhaps the largest population being somewhere in the middle. 
The consumption of alcohol has its roots in our evolutionary frugivorous history. The pres-

ence of ethanol in fruits coincides with ripeness and sugar content and with a potentially 
higher caloric content. As a result, it would have been advantageous to consume ripe fruit that 
has started to ferment [4]. Voluntary alcohol intake has been noted in different species includ-

ing birds, baboons, elephants, and the aforementioned vervets [1, 4–6]. It has been hypoth-

esized that the excessive consumption of alcohol is due to an advantageous ancestral trait 
that has become disadvantageous due to the abundant access of nutrition [4, 7]. This adaptive 
mechanism has been suggested to be related to “exploratory appetitive behavior” involving 
neurogenic as opposed to the neurological effects of ethanol [7]. The neurological effects of 
ethanol (sedative, tolerance, anxiolytics, and dependence) are important factors in the devel-
opment and sustenance of alcohol abuse; it remains a complex disorder [2], as Marais would 

attribute this to both phyletic and casual memory of the species. Although the etiology of 
alcoholism is unknown in humans, the likelihood of alcoholism in nonhuman primates shar-

ing some aspects of the same etiology is great. In fact, Marais recognized the overlap of the 
psyche between human and nonhuman primates a 100 years ago, stating:

“…the conclusion that the chacma suffers from the same attribute of pain which is such an important 
ingredient of human mentality, and that the condition is due to the same cause.” [1], p. 139

With the voluntary and naturalistic drinking pattern exhibited by vervets, we are able to 
address vulnerability factors, both genetic and neurochemical, leading to alcohol use and 
misuse [2]. We have been able to now further take advantage of the drinking patterns to exam-

ine the short-and long-term effects of prenatal ethanol exposure on the developing brain in a 
systematic manner which cannot be done in a clinical setting [3, 8–10].
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3. Validity of Model Systems

Given similarities such as neuroanatomy, physiology, immune, development, behavior, and 
anatomy and those outlined by Marais [1], between human and nonhuman primates, it might 

be tempting to restrict models of human conditions to monkeys. However, from both a practi-
cal and an ethical point of view, it is appropriate to use lower mammals to test initial hypoth-

esis, while reserving the study of nonhuman primates to final confirmations of hypothesis 
already well piloted in lower mammals and to situations in which other model systems do not 
provide an adequate degree of complexity. Furthermore, the validity of any animal model, 
including nonhuman primates, depends on the question being asked. To evaluate animal 
model validity, five criteria consisting of homological (assess species and strain), pathogenic 
(disease process similarities), mechanistic (assess proposed mechanisms of action as it relates 
to the human condition), face (similarity of observable disease features), and predictive (ability 

of model to make predictions on therapeutic interventions) validity should be examined as it 
relates to the research question [11–13].

For instance, applying the test of validity to our longitudinal assessment of the functional 
reorganization and adaptive neuroplastic responses following early life hemispherecto-

mies provides a demonstration of the strength of nonhuman primate model systems. The 
premise of developing this model was due in part to the remarkable recovery of patients 
following the cerebral hemicorticectomy surgical procedure as a treatment for intractable 
epilepsy [14–16]. The degree of recovery in the clinical setting depends on the age of inter-

vention and the targeted sensory and motor system [15–17]. Following surgical interven-

tion, there appears to be a rapid recovery of sensory and motor systems, which may be a 
result of a preexisting functional reorganization due to the dysfunctional hemisphere [18, 

19]. The purpose of our nonhuman primate model is to model the functional recovery by 
identifying the resultant reorganization and behavioral recovery following infant and adult 
hemispherectomy [20].

Infant (aged about 9 weeks) and adult (about 48 months of age) vervets underwent a surgical 
procedure to remove the left cerebral hemisphere (Figure 1) and allowed to recover in enriched 
environments at the Behavioral Sciences Foundation, St. Kitts. Behavioral assessments were 
conducted on a 6-month basis. All surgical and behavioral protocols were approved by the 
Animal Care and Use Committee at University of Montreal.

Sensory assessments consisted of visual (perimetry, palpebral reflex, and visual pursuit), 
thermal, and nocioceptive tasks, while motor observations were conducted via open field 
and horizontal bar crossing (as reviewed in Burke et al. [20]). Infant hemispherectomized 
monkeys displayed residual vision in the “blind” hemifield up to 45°, but adult subjects were 
unable to detect visual stimuli. Normal-sighted monkeys had a visual perimetry up to 90° 
in both hemifields. For both the infant- and adult-lesioned subjects lacked visual palpebral 
reflex and visual pursuit in the contralateral visual field. Infant-lesioned subjects retained 
nocioceptive and innocuous sensation capabilities on the contralateral side. In the open field, 
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we observed normal ipsilateral upper and lower limb and contralateral lower limb gait. 
Upper limb on the contralateral side remained paretic in infant-lesioned subjects. This is in 
contrast to adult-lesioned subjects where both upper and lower limbs were paretic. Within 
the first 2 years after surgery, infants displayed difficulty traversing the horizontal bar, after 
which the infant-lesioned subjects were able to cross by walking upright, but like the open-
field observations, subjects did not attempt to use the upper contralateral limb (Figure 2). 
Subjects also displayed ipsiversive and circling behaviors, possibly due to contralateral 
hemianopia [20].

Given the neurodevelopmental and homologous brain areas, the nonhuman primate offers a 
high degree of homological validity for the study of human development [3, 8, 9, 11, 20–24]. 
Pathogenic validity, which addresses the disease process, in this case, depends on the ques-

tion. If, for instance, the question in this case were to model reorganization following hemi-
spherectomy as a result of intractable epilepsy, then the model would have to also show a 
similar pathogenic process. However, this model is aimed at identifying the ability of the 
brain to functionally remodel during early development in a manner that cannot be fully elu-

cidated in the human epileptic condition considering the potential for preexisting reorganiza-

tion [20]. Several lines of evidence from our study demonstrate both mechanistic (addressing 

mechanism of action) and face (similarities of observable features) validity for neural remodel-

ing manifested through behavior as well as histological alterations. The residual vision and 
pervasive ipsilateral turning seen in our subjects is reminiscent of hemianopia seen in hemi-
spherectomized patients in which a subset has residual responses to visual stimuli on the 
hemianopic field, known as Type I blindsight (implicit) or Type II blindsight (explicit) [17]. 
The ipsilateral turning corresponds to the visual preference reported in the clinical popula-

tion [25]. Anatomically, our subjects have a significant degeneration of foveal retinal  ganglion 

Figure 1. Hemispherectomized brain: image here shows the removal of the left hemisphere (adapted from Burke  
et al. [20]).
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cells but remain intact in the peripheral retina [26]. The ipsilateral lateral geniculate also suf-
fers massive neural degeneration; however, it too retains neurons and appropriately placed 
projections from the retina despite significant volume loss [27, 28]. Likewise, human hemi-
spherectomy patients regain strength in lower limbs but display significant weakness in the 
contralateral upper limb [19, 29]. Residual contralateral tactile sensation remains intact and 
activates the ipsilateral somatosensory cortices [30, 31]. Histological data from our monkeys 
suggest that the dorsal column nuclei (cuneate and gracilis subdivisions) are unaffected, 
providing an anatomical substrate for an intact ipsilateral, non-decussating pathway. The 
residual vision and more complete motor recovery in infant, but not adult-lesioned, subjects 
further supports clinical data of a profound functional reorganization of neural circuitry 
underlying the behavioral observations [20].

Figure 2. Behavioral analysis: The perimetry test (top image) depicts residual vision. Subjects were able to detect visual 
stimuli at 45° in the blind field at a 16% success rate (contralateral hemifield) with no responses elicited beyond 45°. 
Panels A and B depict the open-field test where normal gait was significantly affected by surgery. The contralateral 
upper limb in the infant-lesioned subjects displayed paresis; however, the lower limb showed little residual paresis. In 
the adult-lesioned subject, however, both upper and lower limbs showed significant paresis. Panel C shows a subject 
1-year post surgery unable to cross the horizontal bar in an upright position, whereas in panel D at 2-year post surgery, 
the subject is able to cross in an upright position. Furthermore, in panel C, the young monkey is unable to grasp the bar 
with the upper limb and would glide the arm along the bar while attempting to grasp the bar. By 2–3 years’ post surgery, 
the subject is able to have more successful latches per attempt, but for most of the trials, the subjects did not attempt 
to latch on with the upper limb. Graphical data are shown at a 3-year post-surgical time points for all groups (adapted 
from Burke et al. [20]).
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Predictive validity (ability to make predictions) typically examines pharmacological inter-

ventions. However, here, we propose a functional model for neuroanatomical reorganization 
in multiple systems. Clinical functional magnetic resonance imaging (fMRI) data suggest 
ipsilateral sensory and motor pathways [30–32] potentially through the corticospinal and 
medial lemniscus tracts [33–35]. Our model supports several lines of evidence from the visual 
pathway that allow us to propose a neuroanatomical substrate for residual vision (Figure 3),  

Figure 3. Hemianopia pathway: we have previously proposed an anatomical pathway for visual field recovery depicted 
here. Briefly, the residual left temporal retinal ganglia cells send their projections to the appropriate lateral geniculate 
nucleus, the function of which is not entirely clear. The retinofugal projections to the left superior colliculus remain intact 
with information potentially traversing to the right side through the intertectal commissure (IC), then processed through 
the pulvinar, and finally to the right visual cortex. The left pulvinar is severely atrophied and is unlikely to account for 
residual vision seen in our subjects (figure is adapted from Burke et al. [20]).
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thereby supporting the predictive validity of this model. The surviving peripheral retinal 
ganglion cells provide the first line of residual visual capacity, but given the extent of 
volume and neuronal loss in the ipsilateral lateral geniculate nucleus, it is doubtful that 
this thalamic nucleus alone could explain vision in the blind field. The superior colliculus 
retains functional capacity, as revealed by cytochrome oxidase activity and relative spar-

ing of the neuronal population [36], as well as the neuronal population in the ipsilateral 

substantia nigra in these monkeys. The lateral substantia nigra comprises the nigrotectal 
pathway, which is an important mediator of saccadic eye movements. Therefore, we have 
proposed that the peripheral retinal ganglion cells project to the left superior colliculus 
from which the information is then transferred to the right superior colliculus via the inter-

tectal commissure to the right pulvinar and finally to the right extrastriate cortex [20, 28]. 
Diffusion tensor imaging (DTI) has also suggested such a retinofugal projection to the ipsi-
lateral superior colliculus as the potential substrate for unconscious vision or blindsight in 
hemispherectomized patients [17, 37].

Histological data from this model, as well as that from clinical studies, suggest that residual 
subcortical and brain stem areas play a significant role in functional remodeling following 
early-life hemispherectomy. The culmination of over 20 plus-year experience with this model 
has shed new light on the ability of the infant brain to reorganize [20]. The application of valid-

ity criteria further shows the significant contribution to the understanding of human conditions 
by studying nonhuman primates. We have also applied these criteria to a nonhuman primate 
model of pediatric HIV infection [11]. There are relatively few pediatric simian immunodefi-

ciency virus (SIV) models, but the ones that are available show strengths in each of the five 
validity criteria and provide a platform in which to test therapeutic interventions that are aimed 
at reducing HIV neurological dysfunction that is prevalent in the pediatric population [11, 38].

4. Conclusions

In this book, we present a series of chapters dedicated to the study of primates that range 
from phyletic organization, to observational and conservational efforts, to using nonhuman 
primates, to understand our own human condition. In their natural habitat, the interaction 
between humans and nonhuman primates may be contentious as monkeys may be seen as 
agricultural pests [1, 2, 39], something that we could only speculate Marais would argue 
against. Whether or not we are cognizant of his work, Marais [1] helped lay the foundation 

for multiple lines of research for the better understanding of our own human psyche, empha-

sized the need to protect and observe primates in their habitat so that we may better under-

stand our own “soul.”
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