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Abstract

Ultrasound image analysis and recognition techniques for improving workflow in 
diagnosis and treatment are introduced. Fully automatic techniques for applications of 
cardiac plane extraction, foetal weight measurement and ultrasound-CT image regis-
tration for liver surgery navigation are included. For standard plane extraction in 3D 
cardiac ultrasound, multiple cardiac landmarks defined in ultrasound cardiac exami-
nation guidelines are detected and localized by a Hough-forest-based detector, and by 
six standard cardiac planes, cardiac diagnosis is extracted following the guideline. For 
automatic foetal weight measurement, biparietal diameter (BPD), femur length (FL) and 
abdominal circumference (AC) are estimated by segmenting corresponding organs and 
regions from foetal ultrasound images. For ultrasound-CT liver image registration, initial 
alignment is obtained by localizing a corresponding portal vein branch from an intra-
operative ultrasound and preoperative CT image pair. Then portal vein regions of the 
ultrasound-CT image pair are extracted by a machine learning method and are used for 
image registration.

Keywords: ultrasound image analysis, automatic measurement, machine learning, 
image registration

1. Introduction

Ultrasound imaging is widely used for examination and navigation in diagnosis and therapy 

procedures. However, ultrasound image quality is affected by speckle noise and physical 
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characteristics of the patient. Moreover, ultrasound image acquisition highly depends on 

skills and experience of a user. As a result, high-accuracy measurement or navigation by using 

ultrasound imaging is difficult and time-consuming. Therefore, it is necessary to develop 
automatic ultrasound image analysis and recognition techniques to improve the efficiency 
and accuracy in workflow of diagnosis and treatment. In this chapter, automatic techniques 
for applications of cardiac plane extraction [1], foetal weight measurement and ultrasound-

CT image registration for liver surgery navigation [2, 3] are introduced.

2. Standard plane extraction in 3D cardiac ultrasound

2.1. Overview of standard plane extraction

Cardiac ultrasound device is a necessary tool that can help clinicians evaluate, diagnose 

and treat cardiac diseases. In a routine cardiac examination, six standard planes, apical four 
chamber (A4C), apical two chamber (A2C), apical three chamber (A3C), parasternal short-

axis mitral valve (PSX MV), parasternal short-axis papillary muscle (PSX PM) and parasternal 

short-axis apex (PSX AP) [4] are commonly used to evaluate the structure and function of the 

heart. However, diagnosis using ultrasound device still suffers from inefficiency problems, 
such as user/patient dependency and complex operational procedures. There are market 

needs of improving the workflow in ultrasound diagnosis. According to such needs, there is 
a trend that cardiac diagnosis is changing from 2D diagnosis to 3D diagnosis. In conventional 
2D ultrasound diagnosis shown in Figure 1(a), 1D array probe is used for data acquisition. 

Clinicians have to change multiple positions to check different views of the heart. As a result, 
a large number of images are acquired. During the measurement, clinicians have to evaluate 

and diagnose cardiac diseases manually, which is inefficient. On the other hand, in 3D ultra-

sound diagnosis in the near future shown in Figure 1(b), a 2D array probe is used to acquire a 

whole heart volume. Measurement then can be applied automatically using the acquired vol-

ume, and it is much more efficient than the conventional 2D ultrasound diagnosis. Therefore, 
an efficient and robust method for automatic plane extraction in 3D cardiac ultrasound is 
significant for improving the cardiac examination workflow.

There are literatures on automatic detection and localization in medical volume data [5–8]. 

However, large computational load is required since the standard planes were extracted in an 

independent way in most of these works. This chapter introduces a machine learning frame-

work based on the cardiac-ultrasound examination guideline presented by the American 

Society of Echocardiography [4]. The presented framework is shown in Figure 2. The proce-

dures are as follows: (1) Feature point detection: The above guideline indicates that clinicians 

should firstly localize the A4C plane with image features of mitral annulus and apical in the 
examination. Accordingly, three anatomical points on the A4C plane are selected as targets of 

localization, and a Hough forest classifier [9, 10] is modified and applied for the feature point 
localization. As a result, the A4C plane is localized. (2) Plane initialization: The guideline indi-

cates that there are anatomical regularities between A4C and the other five planes. Therefore, 
initial locations of the other five planes are estimated by using that of the A4C plane and 
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the anatomical regularities. (3) Plane refinement: Plane location refinement is required due 
to individual differences. Here, a regression forest method with locations constraints is pre-

sented for the plane localization refinement.

2.2. Standard plane initialization

In the presented method, three anatomical points, including the apex, left mitral annulus 
(left MA) and right mitral annulus (right MA), are selected for the localization of the A4C 

Figure 1. (a) Conventional 2D ultrasound diagnosis and (b) 3D ultrasound diagnosis in the future.

Figure 2. Framework of guideline-based machine learning for standard plane extraction.
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plane. Feature point localization is performed by utilizing a Hough forest classifier, which is 
presented in Section 2.2.1. Moreover, on the purpose of improving the accuracy and speed, 

a multi-scale hierarchical searching approach is presented in Section 2.2.2. Next, initial loca-

tions of all six planes are determined by using the locations of the earlier feature points and 

anatomical regularities. The explanation is given in Section 2.2.3.

2.2.1. Hough forest

A Hough forest classifier is modified and applied for feature point localization. This approach 
can map from image patches to anatomical locations. In our work, Hough forest is extended 
from 2D to 3D by using 3D image features and 3D Hough voting.

Training process: In Hough forest, each tree T is constructed on the basis of a set of image 
patches   P  
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     n   refers to one channel of the feature vector, such as pixel intensity, first 

or second derivative and so on. During training, each node needs to be constructed with a 

binary test. A key point of Hough forest is how binary test is evaluated. In order to achieve an 
optimal test, the uncertainties in both the class labels and the offset vectors should decrease 
towards the leaves. Class label uncertainty   U  
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where  A  is a set of patches,    | A |    is the number of patches,  p (c | A)   is the proportion of patches with 

label  c  in set  A  and   d  
A
    is the mean offset vector over all object patches. The node construction 

process is as follows [10]. Given a training set of patches, we firstly generate a pool of pixel 
tests   { t   k }   by uniformly choosing one feature channel and two pixel locations inside a patch. 

The threshold τ for each test is chosen randomly from the range of differences observed on 
the data. Then, the randomized decision is made whether the node should minimize the class 

label uncertainty or the offset uncertainty. The process can be represented as:
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   |  t   k  = 0}   is the set of patches 

that satisfy the binary test   t   k  = 0  and   { P  
i
   |  t   k  = 1}   is the set of patches that satisfy the binary test   t   k  = 1 .
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Testing process: The detection process can be divided into regression and voting steps. The 

regression process is as follows. Step 1: for each pixel at a location  p , an image patch surround-

ing the pixel with a fixed size is extracted and input is fed to the trained forest (trees). Step 2: 
when passing through each node, the patch is split into either the left or the right child node 

according to the binary test of the trained node. All pixels in the image are going through the 

forest simultaneously in steps 1–2 until they reach the leaves. During the voting process, the 

information stored in the leaves is used to cast the probabilistic Hough votes to the location 

of the object centre. Leaf information consists of proportion   C  
L
    and offset vectors   D  

L
   , so that   C  

L
   /  

D  
L
    is defined as a weight value for a vote. Each pixel with its location  p  votes to all locations   

{p − d | d ∈  D  
L
  }   (the candidate positions of the object centre) with a weight value   C  

L
   /  D  

L
   . After 

Gaussian filtering of all the accumulated votes at all the candidate positions from each pixel, 
a Hough image  V (x)   can be obtained. The maxima position of the Hough image can be consid-

ered as the detected object centre, that is, the detected vessel branch.

2.2.2. Coarse-to-fine localization strategy

In order to improve the efficiency and accuracy of the landmark localization, a coarse-to-fine 
strategy is applied to both the training and test procedures. In the training procedure, images 
of training data are firstly down-sampled to a low resolution level and the corresponding 
Hough forest classifiers are trained. Then regions of interest (ROIs) centred at the landmark 
locations are extracted for the training of the fine resolution level. In the test (detection) pro-

cedure, the rough landmark location is estimated at the coarse level and the ROI centred at 
the detected location are extracted at the fine resolution level. By applying the fine-level clas-

sifiers, final detection result can be achieved.

2.2.3. Plane initialization with anatomical regularity

First, the A4C plane can be localized by the detection of the three feature points. The cardiac long 

axis can also be localized by point A and the centre of point B and point C, as shown in Figure 2.  

Next, the A3C and A2C planes can be localized by rotating the A4C plane along the long axis at 

angles of 53 degrees and 129 degrees, respectively. Finally, localization of the three short-axis 

planes (MV, PM and AP) starts from positions that are perpendicular to A4C. Then they can be 

localized by translating along the long axis with proportional intervals of 1/6, 3/6 and 5/6.

2.3. Plane refinement with regression forest

The refinement is divided into two parts: refinement of the long-axis planes and refinement of 
the short-axis planes. The long-axis planes include A4C, A3C and A2C. Because the location 

of A4C can be determined by three detected points, only the refinement of the other two long-
axis planes (A3C and A2C) is considered. According to the guideline of standard plane extrac-

tion, the long-axis planes should all pass through the long axis. An example of plane A3C is 

shown in Figure 3. A geometry theorem defines that two lines (not collinear) will uniquely 
determine a plane. Therefore, the long-axis planes can be localized by the long-axis and an 

angle around the long axis  α . Here, the angle  α  equals to a line with a point intersected at the 

long axis. Since the long axis is fixed by the detected feature points, during refinement, only 
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the angle  α  of the planes (A3C and A2C) needs to be optimized. A method based on regression 

forest [7, 8] is used for searching the optimized angles.

According to the guideline of standard plane extraction, the short-axis planes should be per-

pendicular to the long axis. An example of plane PM is shown in Figure 4(a). In addition, 
there is a geometry theorem defining that a plane is uniquely determined by a nonzero nor-

mal vector and a point. Therefore, the short-axis planes can be localized by the long axis (non-

zero normal vector) and a point on each plane. Here, anatomical feature points are selected 

on each plane for refinement, as shown in Figure 4(b). Three points selected as feature points 

are (1) for plane MV, the centre of mitral valve (marked as point D), (2) for plane PM, centre of 

papillary muscle (the bottom one, marked as point E) and (3) for plane AP, the centre of apex 
(marked as point F). Point D, E and F are first detected from the 3D volume for the refinement 
of the short-axis planes. Each short-axis plane is then determined by the long axis and each 

detected point. The detection of point D, E and F also uses the method which is presented in 

Section 2.2.1. However, for the feature points on the short axis, only coarse-level detection is 

Figure 4. An example of long-axis plane refinement. (a) Short-axis plane refinement and (b) three anatomical feature 
points on short-axis planes.

Figure 3. An example of long-axis plane refinement.
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applied. Evaluation experiments demonstrated that the fine-level detection applied for these 
points led to a larger error. This is mainly because these three points are lacking of discrimina-

tive local features which are crucial for the success of the fine-level detection. Therefore, the 
whole volume of information of the heart is applied to predict the final location of the three 
feature points on the short-axis planes.

2.4. Experiments and discussions

The presented method was evaluated on a 3D cardiac ultrasound dataset that was available in 

the works of Tobon-Gomez et al. [11]. The database includes 15 datasets from healthy volun-

teers. Only the end diastole frame from each volunteer is used in this experiment. A fivefold 
cross-validation scheme was performed in the evaluation. Moreover, data augmentation was 

performed by randomly rotating and scaling the original cardiac volume. As a result, 120 vol-

umes were generated for training, and 30 volumes were generated for evaluation in each of 

the fivefold validations. Dimensions of the volumes were around 320 × 347 × 241, and image 
resolution is 0.5 × 0.5 × 0.5 mm3.

To measure the accuracy of plane extraction, that is, how close the extracted plane is from 

the ground-truth plane, two evaluation standards were presented by Lu et al. [5]. Such stan-

dards are angle error and distance error. The angle error is defined as the angle between the 

Angle (degree) Distance (mm) Run time (s)

MSL [5] 11.3 ± 8.0 3.7 ± 2.1 2

Class-specific RF [7] 6.4 ± 4.3 4.2 ± 3.8 30

Proposed method 8.3 ± 4.9 2.7 ± 2.3 0.8

Table 1. Comparison of point detection between Hough forest and proposed method.

Figure 5. Examples of standard plane extraction, from left to right: A4C, A3C, A2C, PSX AP, PSX PM, and PSX MV: 

(a) plane extraction results and (b) ground-truth.
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normal vector of the ground-truth plane and that of the extracted plane. The distance error is 

defined as the distance of an anchor on one plane to the other plane, where the anchor is the 
LV centre. Evaluation results of the proposed method and the previous works by Lu et al. and 

Chykeyuk et al. [5, 7] are listed in Table 1. Average angle errors and distance errors of plane 

extraction were measured. Run time was measured as the total computational time of the six-
plane extraction. The experiments were performed on an Intel® Core™ i7 3.6 GHz computer 
with 16 GB of RAM. Examples of standard plane extraction are shown in Figure 5. As shown 

in Table 1, plane extraction accuracy was improved by about 30%, while computational time 

was significantly reduced.

3. Automatic foetal weight measurement

3.1. Overview

Generally, growth diagnosis of foetus is used by length of foetal head, abdomen and femur 

in ultrasound image. Nowadays, it is measured by doctor or clinical examiner, and the mea-

surement process is very complex and needs a long time. In this chapter, a fully automated 
method for estimated foetal weight (EFW) measurement is proposed. In Figure 6, measure-

ment plane images and measurement positions in common ultrasound scanning are shown 

[12]. Biparietal diameter (BPD) for foetal head, abdominal circumference (AC) for foetal abdo-

men and femur length (FL) for foetal femur are measured. Using the above three measure-

ment results, foetal weight can be estimated by common formulas such as.

  EFW = 1.07 ×  BPD   3  + 0.30 ×  AC   2  × FL  (4)

Figure 6. Measurement of foetus (Left: BPD, Mid: AC, Right: FL) [12].
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3.2. Automatic BPD measurement

In Figure 7, the procedures of BPD measurement are shown. At first, the input ultrasound 
image of the foetal head is transformed to that of polar coordinates, as shown in Figure 8. 

Second, line-route searching on pixels with high intensity in the polar transformed image 

is performed by using dynamic programming (DP). Third, the detected line route is trans-

formed back to the original image coordinates. Then, ellipse fitting is performed on pixels 
with high intensity. Here, direct least squares fitting (DLSF) [13] is applied. According to the 

shape of foetal head, only the ellipses with aspect rates of higher than 0.65 are adopted as 

candidate results. Next, mid-line of foetal head is masked out, and outer-inner processing 

is performed to obtain the final BPD measurement result. Figure 9 shows example results of 

ellipse fitting and BPD measurement.

3.3. Automatic FL measurement

In Figure 10, the procedures of FL measurement are shown. First, as image preprocessing, 

intensity normalization and weighting is performed to prevent misdetection of tissues of pla-

centa or uterine wall. Second, candidate areas of foetal femur are detected by using entropy 

binarization [14]. Figure 11(a) and (b) shows example results of such detected areas. Third, 

area integration process is performed to extract appropriate range of femur area by using 

second moment of the candidate area. Figure 11(c) shows the integration result of the candi-

date detected areas in Figure 11(b). Finally, measurement points are detected by intersection 

points between searching line along the second moment angle and the femur area. Figure 12 

shows the detection result of measurement.

Figure 7. Procedures of BPD measurement.
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3.4. Automatic AC measurement

In Figure 13, the procedures of AC measurement are shown. First, foetal abdomen area is 

detected by using an AdaBoost classifier. Detection scale is set as 150-500 pixels. Second, fea-

ture points representing abdomen contour are extracted by using Laplacian of Gaussian (LoG) 

filter. Third, ellipse fitting on the abdomen contour candidates is performed. Next, outliers are 

Figure 9. Example results of ellipse fitting (left) and BPD measurement (right).

Figure 10. Procedures of FL measurement.

Figure 8. Input image and polar transformed image.
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Figure 11. Results of detection: (a) binary image; (b) candidate area; (c) integration result.

Figure 12. Retection result of FL measurement. (a) Measurement points detection of FL and (b) FL measurement result.

Figure 13. Procedures of AC measurement.
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removed by using a [15] RANdom Sample Consensus (RANSAC-)based method. Finally, mea-

surement points are detected. Figure 14 shows an example of obtained measurement points.

3.5. Experiments and discussion

In evaluation experiments, 32 foetal head images, 44 foetal femur images and 105 foetal 
abdomen images are collected. Measurement points for BPD, FL and AC are automatically 

detected by using the proposed method. Such results are compared with those of manual 

measurement. Success rate of measurement and running time (estimate running time in C++) 

are shown in Table 2. We can see that measurement points for foetal weight estimation can be 
automatically and accurately detected with the proposed method.

4. Ultrasound-CT liver image registration

4.1. Overview

The registration of intraoperative ultrasound image to preoperative planning data is an 

important issue in the area of surgery navigation. In this chapter, a fully automatic method for 

Figure 14. Example of AC measurement points.

BPD FL AC

Success rate (%) 90.6 90.9 93

Run time (ms) 34 5 79

Table 2. Comparison of point detection between Hough forest and proposed method.
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anatomical landmark localization, portal vein region classification and intraoperative-preop-

erative image registration is proposed. The registration framework is shown in Figure 15, and 

the system configuration is shown in Figure 16. Before registration, a 3D freehand ultrasound 

image is acquired with an ultrasound probe which can be tracked by a position sensor. In 
order to find an appropriate initialization to guide the registration, a specified vessel branch 
(here, the right and left portal vein branch, PB, is used) is recognized and localized from the 

ultrasound image and CT image, respectively. The branch localization is based on a Hough 

forest detector. Then, local 3D images around the detected branches are then extracted from 

the ultrasound image and CT image, respectively. These two local images are used for the 

following registration. As a result, a reliable initialization (translation) of the registration is 

achieved. Next, vessel candidate regions are extracted from both local images. According to 

the opinions of surgeons, portal vein regions should be used for ultrasound-CT liver image 

registration. Here, an AdaBoost-based method was proposed for recognizing the portal vein 

region. Since the coordinates of the extracted portal vein regions can be represented as point 

sets in 3D space, the vessel point sets of the ultrasound-CT local images are then registered by 

using iterative closest point (ICP) [16].

4.2. Portal vein branch localization

Hough forest detector mentioned in Section 2.2.1 is modified and applied for the portal vein 
branch localization. Hough forest provides a way to map from local image patches to anatom-

ical locations. It is a combination of random forest and Hough transform. Hough forests are 
sets of decision trees learnt from the training data. Each tree in the Hough forest maps local 

appearance and anatomical locations of image patches to its leaves and each leaf provides a 

probabilistic vote in the Hough space.

4.3. Vessel candidate region extraction

When the vessel branch is detected, a local 3D image around the branch is cropped from the 
ultrasound image, and the voxel spacing is resized to 1.0 × 1.0 × 1.0 mm3. Vessel regions are 

then extracted from these local images. For the purpose of reducing computational time, a 

2D image filtering and thresholding approach is applied. First, 2D image slices are extracted 
from the ultrasound volume. Then denoise processing by using median filter is executed. 

Figure 15. Registration framework.
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Next, image contrast enhancement is performed, and vessel candidate regions are segmented 

and binarized on each slice by using an adaptive mean filter. After that, the resulting binary 
images are constructed to a 3D binary volume. Finally, connected components which include 

the location of the detected bifurcation are extracted as vessel regions. Brief explanations of 

the image filtering and thresholding will be given as follows.

Contrast-enhanced filtering: A contrast-enhanced filter is applied to the 2D ultrasound slices 
as a preprocessing step of the vessel extraction. The filter is defined as:

   I  
E
   =  ( I  M   −  I  W  )  ∗ k +  I  

M
  ,  (5)

where   I  
E
    is the contrast-enhanced image,   I  

M
    is a mean-filtered image,   I  

W
    is a weighted mean-

filtered image and  k  is a coefficient that represents the degree of image contrast enhance-

ment. Here, a  3 × 3  mean filter and a  3 × 3  Gaussian filter are used for the mean filtering and the 
weighted-mean filtering. Coefficient  k  is set as  2.0  experimentally.

Adaptive mean thresholding: After the contrast-enhanced filtering, image thresholding is 
applied to the 2D ultrasound images. If the intensity of an interesting pixel is smaller than 
the threshold value, the pixel is considered as a part of the vessel. Such a threshold value is 

determined by mean filtering on the local surrounding region of the pixel:

   v  
th

   =  μ  
N
   − c.  (6)

Here,   μ  
N
    is the output value of an  N × N  mean filtering and  c  is a coefficient that represents the 

standard deviation of the filtered region. In this work,  N = 5  and  c = 7  are determined empiri-

cally. The resulting binary images are then reconstructed to a 3D binary image. Since the 

portal vein volumes are considered to have relative large capacities in liver vessels, only eight 

of largest labelled volumes are extracted as candidate regions for the next procedure.

Figure 16. System configuration.
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4.4. Portal vein region classification

As mentioned earlier, it is necessary to classify and extract portal vein regions from the above 

vessel candidate regions. In this chapter, a machine learning-based method is proposed for 
the portal vein region extraction, as shown in Figure 17. It is based on an object detector by 
using AdaBoost classifier [17]. Figure 18 shows procedures of the proposed method. First, 

input vessel candidate regions. Second, randomly sample a number of image patches from 

the input candidate regions. Next, input the image patches to the AdaBoost classifier and 
perform detection of portal vein objects. Finally, according to the votes of detected portal vein 

objects, determine whether the vessel candidate regions belong to portal vein.

The AdaBoost classifier is composed of a set of weak learners with associated weights. Each 
weak learner uses a single image feature to produce a hypothesis. In training process, AdaBoost 
is used to find the best weak learners and the corresponding weights for these classifiers. In 
this chapter, portal vein objects are detected from image patches which are randomly sam-

pled from the extracted vessel candidate regions. Figure 19(a) shows how the image patches 

are sampled for training data generation, and Figure 19(b) shows some examples of positive 

and negative image patches. Positive examples are sampled from the extracted regions which 

belong to portal vein, and negative examples are sampled from other extracted regions which 

do not belong to portal vein.

In the stage of portal vein region identification, image patches are randomly sampled from 
five of the largest vessel candidate volumes. The number of image patches sampled from 
each vessel candidate volume is the same. Next, such image samples are inputs to the trained 

AdaBoost-based portal vein object detector. Once more than one object of portal vein regions 
is detected, the image patch is identified as a portal vein sub-region. The number of detected 
sub-regions is measured on each vessel candidate volume. If this number exceeds a threshold 
value, the corresponding candidate volume is classified as a portal vein object. The resulted 
regions are used for ultrasound-CT point-set registration.

4.5. ICP registration of vessel point sets

Since image quality and characteristics of the ultrasound volumes differ greatly from those of 
preoperative modalities, intensity-based approaches are difficult to obtain a reliable registration 

Figure 17. Overview of portal vein region classification.
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result. On the other hand, coordinates of the segmented vessel regions can be considered as point 
sets in 3D space. Such point sets without intensity information are able to be utilized to a registra-

tion. Here, ICP method for point set registration is applied. Figure 20 illustrates an example of 

ultrasound-CT vessel point-set registration; the first row shows the point sets and the second row 
shows the corresponding cross-sections of CT and ultrasound images. For initial registration, 

a large scale of transformation is needed to be estimated. Fortunately, only rotation should be 

updated since vessel branch detection already provides rough translation. For the fine registra-

tion, a robust method of wrong-pair rejection is applied for removing vessel points outside the 

field of view (FOV) of an ultrasound image.

4.6. Experiments and discussion

Ultrasound-CT image registration accuracy was evaluated by using clinical data acquired in 

liver resection surgery. Ultrasound-CT images from 44 patients were used in the  experiment. 

Figure 19. Examples of image patches for training. (a) Image patch sampling and (b) examples of image patches.

Figure 18. Procedures of portal vein classification.
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Since more than 1 ultrasound volume is acquired from each patient, 30 CT images and 114 

ultrasound images of 30 patients were for training, and 14 CT images and 36 ultrasound 

images of 14 patients were for testing. Dimension sizes of the CT and ultrasound images 

are  512 × 512 ×  (134~231)   and  448 × 448 ×  (89~192)  , respectively. Image resolutions are  0.683 × 0.683 ×  (1~1.5)   

mm3 and   (0.328~0.46987)  ×  (0.328~0.46987)  ×  (0.719~1.226)   mm3, respectively. All the experiments were 

performed on a system with Intel® Core™ i7 CPU 3.70-GHz and 12-GB memory. Evaluation 
results are shown in Table 3. The proposed method was compared with our previous work 

[2]. In [2], we set a searching area around the branch, set sample points inside the area and 

estimate and threshold the vesselness by using Hessian-based filtering. The connected region 
with the largest number of vessel points is considered as portal vein region. Registration that 
has an error less than 30 mm is considered as a succeeded one. Distance between the measure-

ment points before registration was 137.6 ± 18.1 mm. After registration, errors of the proposed 

method and our previous work were 8.7 ± 4.4 and 10.2 ± 8.7 mm, respectively. Success rates 

were 94.4 and 77.8%, respectively. Running time of the proposed method was 9.3 s and that 
of the previous work was 8.1 s. It can be seen that the proposed method outperforms the 
previous work by improving both the registration accuracy and robustness. The running time 

is slightly longer than that of the previous work because AdaBoost-based classification is 
performed to select portal vein regions. The objectives of registration error, success rate and 

running time were achieved. The study was approved by the ethics committee of Hitachi 
group headquarters.

Figure 20. An example of US-CT point-set registration.

Distance before 

registration (mm)
Registration error 

(mm)
Success rate 

(error < 30 mm)
Running time (s)

Proposed method 137.6 ± 18.1 8.7 ± 4.4 34/36 = 94.4% 9.3

Previous work [2] 10.2 ± 8.7 28/36 = 77.8% 8.1

Table 3. Comparison of point detection between Hough forest and proposed method.
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5. Conclusion

Fully automatic techniques for ultrasound imaging applications of cardiac plane extraction, 

foetal weight measurement and ultrasound-CT image registration for liver surgery naviga-

tion are introduced. With such techniques, automatic ultrasound examination and navigation 
can be achieved accurately and efficiently. Workflow in diagnosis and treatment by using 
ultrasound image analysis can be improved.
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